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CLP(BN)

Bayesian networks as constraints in logic 
programming 



16.12.2009  |  Knowledge Engineering Group | Tobias Krönke  |  2

Outline

 Motivation
 Introduction
 Example
 Syntax & Semantics of a CLP(BN) program
 2 views: operational (query resolution) and model-theoretic

 Examples for how to make use of logic programming
 Non-deterministic aggregates
 Recursion

 PRM ⊂ CLP(BN)
 Learning (the ILP style)
 References



16.12.2009  |  Knowledge Engineering Group | Tobias Krönke  |  3

Motivation

 Relational DB's foundations lie in FOL
 e. g. ∀x ∃y Registration(x) → Registration_Grade(x,y)

 Problem: Relational DBs with unknown fields
 Our goal:
 Estimate probabilities for possible values (like in PRM)
 Make this information accessible in logic programs
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Introduction

 Skolemization of existentially quantified fields (non-key data)
 e. g. ∀x Registration(x) → Registration_Grade(x,grade(x))

 In CLP(BN) Skolem functions are represented as Skolem terms
 CLP(BN) expresses probabilities over these Skolem terms as 

constraints
 It's still a logic program → clauses
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Example: DB

 Black attributes in italics are 
keys (arbitrary unique IDs) 

 Attributes with blue links are 
foreign keys

 Red attributes are random 
variables (RVs) (= mostly 
unknown fields)

 Arcs express dependencies 
between these RVs and 
therefore form a Bayesian net
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Example: CLP(BN) clauses
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Example: CLP(BN) clauses
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Example: CLP(BN) clauses
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Example: CLP(BN) clauses
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Example: Queries to RVs
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Example: Queries with evidence
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Example: Evidence only

 Often large databases with lots of observed evidence
 Queries would become very large
 CLP(BN) offers a way to feed in evidence at compile time which is 

processed at query execution (if needed)
 Grounded Skolem term with empty constraint
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Syntax: Definitions

 Alphabet of CLP(BN) is the alphabet of logic programming
 Skolem functors := Subset of valid functors
 Skolem term := term whose primary functor is a Skolem functor 

(gained during process of Skolemization)

 Skolem functor Sk/n → its Skolem term has the form Sk(W
1
,...,W

n
)

 CLP(BN) program := { H
i
 ← A

i
 / B

i  
| 1 ≤ i ≤ N }

 H
i
 and A

i
 as in Prolog (=: logical portion C

i
 of clause i)

 B
i
 := possibly empty conjunction of { V = Sk with CPT }

 B
i
 empty → clause is called a Prolog clause (→ Prolog ⊂ CLP(BN))

 these B
i
 are our Bayesian constraints to Variable V

 CPT is term of the form p(D, T, P)
 D = Domain, T = Probability table, P = Parents in BN
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Syntax: Well-formed constraints



16.12.2009  |  Knowledge Engineering Group | Tobias Krönke  |  15

Semantics: Answer queries

 Queries as in Prolog
 Proofs constructed by 

resolution
 Two clauses may be unified at 

any step in the proof
 If both these clauses 

participate in BN constraints, 
unify the corresponding nodes

 Check for cycles (recursive 
occurrences in CPT)

 Marginalize away unknown 
nodes (except the one to be 
queried)
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Semantics: Model-theoretic

 Let P be a CLP(BN) program
 P defines a joint probability distribution PD(P) over all ground 

Skolem terms (= RVs) as follows:
 These RVs with the corresponding grounded constraints 

(containing ground CPTs and parents) build a (possibly infinite) 
Bayesian net BN for P

 BN is acyclic, as for Skolemization, each Skolem term may appear 
only in one clause
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Semantics: Model-theoretic

 Build a Herbrand quotient model:
 Take the least Herbrand model H of the logical portion C of P
 Every non-Skolem constant in H represents one equivalence class
 Add every ground Skolem term in P to exactly one equivalence class 

 S := Set of all possible quotient models
 D := Any Probability distribution over S that is consistent with BN
 D consistent with BN ↔ P(t = c | P) = 
 for any ground Skolem term t and non-Skolem constant c

 Our models for P are such pairs 

∑
h∈S , t≡c  in h

P h  | D

〈D , S 〉
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Semantics: Match the 2 views

 Theorem:
 Given any CLP(BN) program P, any derivation D from P, any to D 

attached ground Bayes net BN' and any query Q to BN', the answer to 
Q is the same as would be given by PD(P) (defined from the full Bayes 
net BN of P)

 Proof (sketch):
 Assume answer from BN' to query P(q | E)  is different from answer 

from BN to same query for some evidence E
 BN' ⊆ BN
 As answers differ, there must flow evidence through q in BN, but not in 

BN'
 By Lemma given in [1] this is impossible
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Non-deterministic aggregates

 Aggregate all Skolem terms of interest (setof/3)
 Apply deterministic functions (like average/2) on their CPTs
 Compute CPT for goal and use it in its constraint
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Non-deterministic aggregates

 Concept already part of Prolog framework
 Only problem: CPTs grow exponentially fast with number of a 

node's parents
 2 approaches:
 More intelligent data structure (binary trees with aggregating nodes)
 Approximative inference on Bayesian nets
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Recursion

 Can encode sequences of 
events or observations (Hidden 
Markov Models)

 Example scenario:
 Send spy to enemy
 2 possible watchmen (careful & 

lax)
 Only information: watchman at 

time I is likely to be watchman at 
time I+1

 p(I): probability who is watching 
at time I

 c(I): probability for the spy to be 
caught by time I
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PRM to CLP(BN)

 Binarization of PRM tables (many <key,attribute> tables)
 Slot-chains via unification of foreign key variables
 Aggregates as shown
 Now the parents in the BN are found it remains to give the CPT in 

another literal
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Learning CLP(BN) programs

 Simplifying assumption: 
predicates can be defined by 
just one clause

 Examples contain no missing 
data

 Use ILP learning algorithm (like 
ALEPH [3]) with Bayesian 
Information criterion (BIC) to 
find dependencies

 As most of these algorithms 
learn rules independently: 
remove cycles in a post 
learning process (authors 
recommend greedy algorithm 
with BIC)
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Learning CLP(BN) programs

 Benchmarked on KDD01 Task 2 
training data

 2 class problem: Does a certain 
gene code for metabolism?

 Not significantly better than 
ordinary logic program learned 
with ALEPH [3]

 Advantage of CLP(BN): 
probabilities give a ranking 
classifier → can draw ROC 
curve and trade-off between 
F.P.R. & T.P.R.
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