
16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 1

CLP(BN)

Bayesian networks as constraints in logic
programming

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 2

Outline

 Motivation
 Introduction
 Example
 Syntax & Semantics of a CLP(BN) program
 2 views: operational (query resolution) and model-theoretic

 Examples for how to make use of logic programming
 Non-deterministic aggregates
 Recursion

 PRM ⊂ CLP(BN)
 Learning (the ILP style)
 References

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 3

Motivation

 Relational DB's foundations lie in FOL
 e. g. ∀x ∃y Registration(x) → Registration_Grade(x,y)

 Problem: Relational DBs with unknown fields
 Our goal:
 Estimate probabilities for possible values (like in PRM)
 Make this information accessible in logic programs

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 4

Introduction

 Skolemization of existentially quantified fields (non-key data)
 e. g. ∀x Registration(x) → Registration_Grade(x,grade(x))

 In CLP(BN) Skolem functions are represented as Skolem terms
 CLP(BN) expresses probabilities over these Skolem terms as

constraints
 It's still a logic program → clauses

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 5

Example: DB

 Black attributes in italics are
keys (arbitrary unique IDs)

 Attributes with blue links are
foreign keys

 Red attributes are random
variables (RVs) (= mostly
unknown fields)

 Arcs express dependencies
between these RVs and
therefore form a Bayesian net

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 6

Example: CLP(BN) clauses

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 7

Example: CLP(BN) clauses

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 8

Example: CLP(BN) clauses

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 9

Example: CLP(BN) clauses

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 10

Example: Queries to RVs

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 11

Example: Queries with evidence

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 12

Example: Evidence only

 Often large databases with lots of observed evidence
 Queries would become very large
 CLP(BN) offers a way to feed in evidence at compile time which is

processed at query execution (if needed)
 Grounded Skolem term with empty constraint

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 13

Syntax: Definitions

 Alphabet of CLP(BN) is the alphabet of logic programming
 Skolem functors := Subset of valid functors
 Skolem term := term whose primary functor is a Skolem functor

(gained during process of Skolemization)

 Skolem functor Sk/n → its Skolem term has the form Sk(W
1
,...,W

n
)

 CLP(BN) program := { H
i
 ← A

i
 / B

i
| 1 ≤ i ≤ N }

 H
i
 and A

i
 as in Prolog (=: logical portion C

i
 of clause i)

 B
i
 := possibly empty conjunction of { V = Sk with CPT }

 B
i
 empty → clause is called a Prolog clause (→ Prolog ⊂ CLP(BN))

 these B
i
 are our Bayesian constraints to Variable V

 CPT is term of the form p(D, T, P)
 D = Domain, T = Probability table, P = Parents in BN

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 14

Syntax: Well-formed constraints

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 15

Semantics: Answer queries

 Queries as in Prolog
 Proofs constructed by

resolution
 Two clauses may be unified at

any step in the proof
 If both these clauses

participate in BN constraints,
unify the corresponding nodes

 Check for cycles (recursive
occurrences in CPT)

 Marginalize away unknown
nodes (except the one to be
queried)

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 16

Semantics: Model-theoretic

 Let P be a CLP(BN) program
 P defines a joint probability distribution PD(P) over all ground

Skolem terms (= RVs) as follows:
 These RVs with the corresponding grounded constraints

(containing ground CPTs and parents) build a (possibly infinite)
Bayesian net BN for P

 BN is acyclic, as for Skolemization, each Skolem term may appear
only in one clause

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 17

Semantics: Model-theoretic

 Build a Herbrand quotient model:
 Take the least Herbrand model H of the logical portion C of P
 Every non-Skolem constant in H represents one equivalence class
 Add every ground Skolem term in P to exactly one equivalence class

 S := Set of all possible quotient models
 D := Any Probability distribution over S that is consistent with BN
 D consistent with BN ↔ P(t = c | P) =
 for any ground Skolem term t and non-Skolem constant c

 Our models for P are such pairs

∑
h∈S , t≡c in h

P h | D

〈D , S 〉

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 18

Semantics: Match the 2 views

 Theorem:
 Given any CLP(BN) program P, any derivation D from P, any to D

attached ground Bayes net BN' and any query Q to BN', the answer to
Q is the same as would be given by PD(P) (defined from the full Bayes
net BN of P)

 Proof (sketch):
 Assume answer from BN' to query P(q | E) is different from answer

from BN to same query for some evidence E
 BN' ⊆ BN
 As answers differ, there must flow evidence through q in BN, but not in

BN'
 By Lemma given in [1] this is impossible

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 19

Non-deterministic aggregates

 Aggregate all Skolem terms of interest (setof/3)
 Apply deterministic functions (like average/2) on their CPTs
 Compute CPT for goal and use it in its constraint

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 20

Non-deterministic aggregates

 Concept already part of Prolog framework
 Only problem: CPTs grow exponentially fast with number of a

node's parents
 2 approaches:
 More intelligent data structure (binary trees with aggregating nodes)
 Approximative inference on Bayesian nets

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 21

Recursion

 Can encode sequences of
events or observations (Hidden
Markov Models)

 Example scenario:
 Send spy to enemy
 2 possible watchmen (careful &

lax)
 Only information: watchman at

time I is likely to be watchman at
time I+1

 p(I): probability who is watching
at time I

 c(I): probability for the spy to be
caught by time I

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 22

PRM to CLP(BN)

 Binarization of PRM tables (many <key,attribute> tables)
 Slot-chains via unification of foreign key variables
 Aggregates as shown
 Now the parents in the BN are found it remains to give the CPT in

another literal

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 23

Learning CLP(BN) programs

 Simplifying assumption:
predicates can be defined by
just one clause

 Examples contain no missing
data

 Use ILP learning algorithm (like
ALEPH [3]) with Bayesian
Information criterion (BIC) to
find dependencies

 As most of these algorithms
learn rules independently:
remove cycles in a post
learning process (authors
recommend greedy algorithm
with BIC)

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 24

Learning CLP(BN) programs

 Benchmarked on KDD01 Task 2
training data

 2 class problem: Does a certain
gene code for metabolism?

 Not significantly better than
ordinary logic program learned
with ALEPH [3]

 Advantage of CLP(BN):
probabilities give a ranking
classifier → can draw ROC
curve and trade-off between
F.P.R. & T.P.R.

16.12.2009 | Knowledge Engineering Group | Tobias Krönke | 25

References

 [1] Luc De Raedt, Paolo Frasconi, Kristian Kersting, Stephen
Muggleton (eds.​): Probabilistic Inductive Logic Programming,
Springer-Ver­lag, 2009

 [2] Vítor Santos Costa, David Page, Maleeha Qazi, James Cussens:
CLP(BN): Constraint Logic Programming for Probabilistic Knowledge
, UAI 2003

 [3] Ashwin Srinivasan: The Aleph Manual, (last visit: Dec. 2009)

http://www.cos.ufrj.br/~vitor/Yap/clpbn/uai03.ps
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html

	Titelseite Haupt-Überschrift
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

