CLP(BN)

Bayesian networks as constraints in logic programming

Outline

- Motivation
- Introduction
- Example
- Syntax & Semantics of a CLP(BN) program
 - 2 views: operational (query resolution) and model-theoretic
- Examples for how to make use of logic programming
 - Non-deterministic aggregates
 - Recursion
- PRM \subset CLP(*BN*)
- Learning (the ILP style)
- References

Motivation

- Relational DB's foundations lie in FOL
 - e. g. $\forall x \exists y \text{ Registration}(x) \rightarrow \text{Registration}_\text{Grade}(x,y)$
- Problem: Relational DBs with unknown fields
- Our goal:
 - Estimate probabilities for possible values (like in PRM)
 - Make this information accessible in logic programs

Introduction

- Skolemization of existentially quantified fields (non-key data)
 - e. g. $\forall x \text{ Registration}(x) \rightarrow \text{Registration}_{Grade}(x, grade(x))$
- In CLP(BN) Skolem functions are represented as Skolem terms
- CLP(BN) expresses probabilities over these Skolem terms as constraints
- It's still a logic program → clauses

Example: DB

- Black attributes in italics are keys (arbitrary unique IDs)
- Attributes with blue links are foreign keys
- Red attributes are random variables (RVs) (= mostly unknown fields)
- Arcs express dependencies between these RVs and therefore form a Bayesian net

Figure 1: The School Database

Example: CLP(BN) clauses

Ranking

Grade

Example: CLP(BN) clauses

TECHNISCHE UNIVERSITÄT DARMSTADT

Example: CLP(BN) clauses

Example: Queries to RVs

?- grade(r2,Grade).

Step	Bindings	SkolemTerms
0	$\{R = r2\}$	{}
1	$\cup \{S = \mathtt{s1}, \mathtt{C} = \mathtt{c3}\}$	
2		$\cup \{D(c3)\}$
3		$\cup \{I(\mathtt{s1})\}$
4		$\cup \{G(r2, D(\texttt{c3}), \texttt{I}(\texttt{s1}))\}$

?- registration_grade(r2,Grade).	~
p(Grade=a)=0.4115,	
p (Grade=b)=0.356,	
p(Grade=c)=0.16575,	1.000
p(Grade=d)=0.06675 ?	=
yes	
?-	\sim

Example: Queries with evidence

?- grade(r2,X), satisfaction(r2,h).

Step	Bindings	Skolem Terms
5	$\{C' = c2\}$	
6	$\cup \{P' = p7\}$	
7		$\cup \{A(p7)\}$
8 - 12		
13		$\cup \{S(\texttt{r2},\texttt{A}(\texttt{p7}),\texttt{G}(\texttt{r2},\ldots))\}$
14		$\cup \{S(\texttt{r2},\ldots)=\texttt{h}\}$

?- registration_grade(r2,Grade), registration_satisfaction(r2,h).	^
p (Grade=a)=0.533096689359442,	
p (Grade=b)=0.322837654892765,	
p(Grade=c)=0.114760451955444,	
p(Grade=d)=0.0293052037923492 ?	_
yes	
?-	\sim

Example: Evidence only

- Often large databases with lots of observed evidence
- Queries would become very large
- CLP(BN) offers a way to feed in evidence at compile time which is processed at query execution (if needed)
- Grounded Skolem term with empty constraint

grade(r2, a) :- {}.

Syntax: Definitions

- Alphabet of CLP(BN) is the alphabet of logic programming
- Skolem functors := Subset of valid functors
- Skolem term := term whose primary functor is a Skolem functor (gained during process of Skolemization)
- Skolem functor Sk/n \rightarrow its Skolem term has the form Sk(W₁,...,W_n)
- CLP(BN) program := { $H_i \leftarrow A_i / B_i \mid 1 \le i \le N$ }
 - H_i and A_i as in Prolog (=: logical portion C_i of clause i)
 - B_i := possibly empty conjunction of { V = Sk with CPT }
 - $B_i \text{ empty} \rightarrow \text{clause}$ is called a Prolog clause ($\rightarrow \text{Prolog} \subset \text{CLP(BN)}$)
 - these B_i are our Bayesian constraints to Variable V
 - CPT is term of the form p(D, T, P)
 - D = Domain, T = Probability table, P = Parents in BN

Syntax: Well-formed constraints

A CLP(\mathcal{BN}) constraint B_i is well-formed if and only if:

- 1. all variables in B_i appear in C;
- 2. Sk's functor is unique in the program; and,
- 3. there is at least one substitution σ such that $CPT\sigma = \mathbf{p}(\mathbf{D}\sigma, \mathbf{T}\sigma, \mathbf{P}\sigma)$, and (a) $D\sigma$ is a ground list, all members of the list are different, and no subterm of a term in the list is a Skolem term; (b) $P\sigma$ is a ground list, all members of the list are different, and all members of the list are Skolem terms; and (c) $T\sigma$ is a ground list, all members of $T\sigma$ are numbers p such that $0 \le p \le 1$, and the size of $T\sigma$ is a multiple of the size of $D\sigma$.

Semantics: Answer queries

- Queries as in Prolog
- Proofs constructed by resolution
- Two clauses may be unified at any step in the proof
- If both these clauses participate in BN constraints, unify the corresponding nodes
- Check for cycles (recursive occurrences in CPT)
- Marginalize away unknown nodes (except the one to be queried)

Semantics: Model-theoretic

- Let P be a CLP(BN) program
- P defines a joint probability distribution PD(P) over all ground Skolem terms (= RVs) as follows:
- These RVs with the corresponding grounded constraints (containing ground CPTs and parents) build a (possibly infinite) Bayesian net BN for P
- BN is acyclic, as for Skolemization, each Skolem term may appear only in one clause

Semantics: Model-theoretic

- Build a Herbrand quotient model:
 - Take the least Herbrand model *H* of the logical portion *C* of *P*
 - Every non-Skolem constant in H represents one equivalence class
 - Add every ground Skolem term in P to exactly one equivalence class
- S := Set of all possible quotient models
- D := Any Probability distribution over S that is consistent with BN
- *D* consistent with $BN \leftrightarrow P(t = c \mid P) = \sum_{h \in S, t \equiv c \text{ in } h} P(h \mid D)$
 - for any ground Skolem term t and non-Skolem constant c
- Our models for *P* are such pairs $\langle D, S \rangle$

Semantics: Match the 2 views

• Theorem:

- Given any CLP(BN) program P, any derivation D from P, any to D attached ground Bayes net BN' and any query Q to BN', the answer to Q is the same as would be given by PD(P) (defined from the full Bayes net BN of P)
- Proof (sketch):
 - Assume answer from BN' to query P(q | E) is different from answer from BN to same query for some evidence E
 - $BN' \subseteq BN$
 - As answers differ, there must flow evidence through q in BN, but not in BN'
 - By Lemma given in [1] this is impossible

Non-deterministic aggregates

- Aggregate all Skolem terms of interest (setof/3)
- Apply deterministic functions (like average/2) on their CPTs
- Compute CPT for goal and use it in its constraint

Non-deterministic aggregates

- Concept already part of Prolog framework
- Only problem: CPTs grow exponentially fast with number of a node's parents
- 2 approaches:
 - More intelligent data structure (binary trees with aggregating nodes)
 - Approximative inference on Bayesian nets

Recursion

- Can encode sequences of events or observations (Hidden Markov Models)
- Example scenario:
 - Send spy to enemy
 - 2 possible watchmen (careful & lax)
 - Only information: watchman at time I is likely to be watchman at time I+1
 - p(I): probability who is watching at time I
 - c(I): probability for the spy to be caught by time I

```
caught(0,Caught) :- !,
  {Caught = c(0) with p([t,f],[0.0,1.0],[])}.
caught(I,Caught) :-
  I1 is I-1, caught(I1, Caught0),
  watch(I, Police),
  caught(I,Caught0, Police, Caught).
```

```
watch(0, P) :- !,
    {P = p(0) with p([m,1],[0.5,0.5],[])}.
watch(I, P) :-
    I1 is I-1, watch(I1, P0),
    {P = p(I) with
        p([m,1],[0.8,0.2,0.2,0.8],[P0])}.
```


PRM to CLP(BN)

- Binarization of PRM tables (many <key,attribute> tables)
- Slot-chains via unification of foreign key variables
- Aggregates as shown
- Now the parents in the BN are found it remains to give the CPT in another literal

```
registration<sub>3</sub>(RegKey, StudentKey),
registration<sub>2</sub>(RegKey, CourseKey),
course<sub>2</sub>(CourseKey, ProfKey),
professor<sub>2</sub>(ProfKey, Ability)
```

findall(Ability, (registration₂(RegKey, CourseKey), course₂(CourseKey, ProfKey), professor₂(ProfKey, Ability), L),

mean(L, X)

Learning CLP(BN) programs

- Simplifying assumption: predicates can be defined by just one clause
- Examples contain no missing data
- Use ILP learning algorithm (like ALEPH [3]) with Bayesian Information criterion (BIC) to find dependencies
- As most of these algorithms learn rules independently: remove cycles in a post learning process (authors recommend greedy algorithm with BIC)

Learning CLP(BN) programs

- Benchmarked on KDD01 Task 2 training data
- 2 class problem: Does a certain gene code for metabolism?
- Not significantly better than ordinary logic program learned with ALEPH [3]
- Advantage of CLP(BN): probabilities give a ranking classifier → can draw ROC curve and trade-off between F.P.R. & T.P.R.

References

- [1] Luc De Raedt, Paolo Frasconi, Kristian Kersting, Stephen Muggleton (eds.): Probabilistic Inductive Logic Programming, Springer-Ver-lag, 2009
- [2] Vítor Santos Costa, David Page, Maleeha Qazi, James Cussens: CLP(BN): Constraint Logic Programming for Probabilistic Knowledge , UAI 2003
- [3] Ashwin Srinivasan: The Aleph Manual, (last visit: Dec. 2009)

