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Introduction and Motivation

I There has been an increasing interest in integrating probability theory with
first order logic within the last years

I Bayesian networks are elegant and efficient probabilistic frameworks, but they
inherit disadvantages of propositional logic (see next slides)

I Our presentation introduces Bayesian logic programs
I They unify Bayesian networks with inductive logic programming and generalize

both concepts
I Main goal: Inherit advantages and overcome limitations of both frameworks

I Key idea: One-to-one mapping between ground atoms (inductive logic
programming) and random variables (Bayesian networks)
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Genetics Example

A person’s X blood type bt(X) is determined
by a gene that is inherited. Each person X

has two copies of the chromosome
containing this gene. mc(Y) inherited from
the mother m(Y,X) and pc(Z) inherited from
the father f(Z,X).

The genetic model:

I has a probabilistic part through the
biological laws of inheritance, and

I requires the representation of the
relational family structure
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Bayesian Networks
Basics

I A Bayesian network is a directed acyclic graph
I Each node corresponds to a random variable xi
I An edge from x1 to x2 indicates a direct influence from x1 on x2
⇒ The Bayesian network represents the joint probability distribution P(x1, ..., xn)

over the fixed, finite set {x1, ..., xn} of random variables
I The random variable xi possesses the finite set of possible states S(xi )

Possible states:
S(bt_dorothy) = {a, b, ab, 0}
S(pc_dorothy) = {a, b, 0}
S(mc_dorothy) = {a, b, 0}

mc_dorothy pc_dorothy

bt_dorothy

mc_ann pc_ann

bt_ann

mc_brian pc_brian

bt_brian
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Bayesian Networks
Joint Probability Density

I The direct predecessors (parents) of a node x are identified by Pa(x)
I For instance: Pa(bt_ann) = {pc_ann, mc_ann}

Independence Assumption of Bayesian Networks: Each node xi in the graph is
conditionally independent of any subset A of nodes that are not descendants of xi given a
joint state of Pa(xi )

⇒ P(xi |A, Pa(xi )) = P(xi |Pa(xi ))
Applying the independence assumption to the chain rule expression of the joint
probability distribution we get the joint probability density:

P(x1, ..., xn) =
n

∏
i=1

P(xi |Pa(xi ))

And we associate every xi with a conditional probability distribution

P(xi |Pa(xi ))
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Bayesian Networks
Conditional Probability Distribution

The conditional probability distribution for the blood type example could be:

mc_dorothy pc_dorothy P(bt_dorothy)
a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)
... ...
0 0 (0.01,0.01,0.01,0.97)

mc_ann pc_ann P(mc_dorothy)
a a (0.98,0.01,0.01)
b a (0.01,0.98,0.01)
... ...
0 0 (0.01,0.01,0.98)

and for the apriori nodes(nodes having no parents):
P(mc_ann) P(pc_ann) P(mc_brian) P(pc_briany)

(0.38,0.12,0.50) (0.38,0.12,0.50) (0.38,0.12,0.50) (0.38,0.12,0.50)

mc_dorothy pc_dorothy

bt_dorothy

mc_ann pc_ann

bt_ann

mc_brian pc_brian

bt_brian
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Bayesian Networks
Pros and Cons

All Bayesian networks consists of two components:
I a qualitative or logical one, that represents the influences among the random

variables using a directed acyclic graph
I a quantitative one that encodes the probability densities over these influences,

represented by conditional probability tables

Therefore Bayesian networks provide a nice separation of the qualitative and the
quantitative component. The major limitation of Bayesian networks is their
propositional nature. It is not possible to formulate a general probabilistic rule like:

the localization L of gene G is influenced by the localization L’ of another
gene G’ that interacts with G’
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Logic Programs
Basics (1)

A Prolog program consists of clauses. There are two type of clauses: facts and
rules. Facts describe attributes of an object or a relationship between multiple
objects. Facts consist of a functor followed by the list of arguments. A predicate is a
functor and its arity. Let’s have an example:
male(jef).

parent(jef,paul).

parent(paul,ann).

grandparent(X,Y) :-

parent(X,Z),parent(Z,Y).

Existing terms:
I male︸︷︷︸

functor

/ 1︸︷︷︸
arity

and parent︸ ︷︷ ︸
functor

/ 2︸︷︷︸
arity

are predicates

I jef, paul and ann are constants
I X,Y and Z are variables

Rules are logical statements like grandparent(X,Y). This rule can be read as: X
is the grandparent of Y if X is a parent of Z and T is a parent of Y. Let us call this
clause c. grandparent(X,Y) is called head(c) and parent(X,Z),parent(Z,Y)

is body(c) .
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Logic Programs
Basics (2)

Definitions:
I Atoms are predicates followed by the necessary number of terms e.g.

parent(jef,paul)

I Var(E) are the variables occurring in a term, atom or clause: e.g.
Var(c) = X , Y , Z

I If Var(E) = ∅ (no variables occur in term, atom or clause E), E is called
ground

I A substitution θ = {V1/t1, ..., Vn/tn}, e.g. {X /ann} is an assignment of
terms ti to variables Vi
⇒ cθ is grandparent(ann,Y) :- parent(ann,Z),parent(Z,Y)
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Logic Programs
Least Herbrand Model

I A Herbrand base HB(T ) of a logic program T is the set of all ground atoms
constructed with the symbols in T .

I E.g. HB(grandparent) = {parent(ann,ann), parent(jef,jef),

parent(paul,paul), parent(ann,jef), parent(jef,ann), ...,

grandparent(ann,ann), grandparent(jef,jef),...}

I A Herbrand interpretation is a subset of HB(T ).
I The least Herbrand model LH(T ) is the subset of HB(T ) containing all

ground logical consequences (i.e. all relevant facts)
I There several methods to compute the least Herbrand model
I E.g. LH(grandparent) = {male(jef), parent(jef,paul),

parent(paul,ann), grandparent(jef,ann)}
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Representation Language and Semantics
Previous Findings

Findings of the previous example:
I Random variables from the Bayesian network correspond to logical atoms
I The direct influence relation corresponds to the immediate consequence

operator
I The logical component of Bayesian networks correspond to propositional logic

(and inherit there limitations)

To overcome the limitations: Bayes logic programs have to upgrade the network
structure of the Bayesian networks to first order clauses

⇒ Bayesian Clauses
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Representation Language and Semantics
Structural Component

Definition: Bayesian Clauses A Bayesian clause c is an expression of
the form A|A1, ..., An where n ≥ 0, A, A1, ..., An are Bayesian atoms and
all Bayesian atoms are universally quantified.

I A Bayesian predicate p\1 represents a set S(p\1) of random variables
I A Bayesian ground atom g represent random variables over the states S(g)
I ’|’ is used instead of ’:-’ to capture the idea of conditional probability

distributions
I Range assumption: All Bayesian clauses c are range-restricted i.e.

Var(head(c)) ⊆ Var(body(c)) to avoid the derivation of non-ground true
facts

Example: bt(X) | mc(X),pc(X) is a Bayesian clause
I E.g. bt(ann) corresponds to a random variable over the states

S(bt(ann)) = {a, b, ab, 0}
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Representation Language and Semantics
Probabilistic Component

Probabilistic model: Each Bayesian clause c is associated with a conditional
probability distribution cpd(c) = P(head(c)|body(c))

I There may be more than one clause. Considering the following clauses

c1: bt(X) | mc(X)

c2: bt(X) | pc(X)

I Assume substitutions θi that ground the causes c1 and c2 so that they fulfill
head(c1θ1) = head(c2θ2). θi implies cpd(c1θ1) and cpd(c2θ2)

I Problem: For probabilistic reasoning we need the distribution
P(head(c1θ1)|body(c1) ∪ body(c2))

I Solution: A Combining Rule cr(p/l) is a function that maps finite sets of
probability distributions onto one combined conditional probability distribution
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Representation Language and Semantics
Bayesian Logic Programs

A Bayesian logic program B consists of a set of Bayesian clauses
I For each Bayesian clause c there is exactly one cpd(c)
I For each Bayesian predicate p/l there is exactly one cr(p/l)

Example: Bayesian logic program for the blood-type domain

m(ann, dorothy).
f(brian, dorothy).
pc(ann).
pc(brian).
mc(ann).
mc(brian).

mc(X) | m(Y,X),mc(Y),pc(Y).
pc(X) | f(Y,X),mc(Y),pc(Y).

bt(X) | mc(X),pc(X).

mc_dorothy pc_dorothy P(bt_dorothy)
a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)
... ...
0 0 (0.01,0.01,0.01,0.97)

m(ann,dorothy) mc_ann pc_ann P(mc_dorothy)
true a a (0.98,0.01,0.01)
true b a (0.01,0.98,0.01)
... ...

false 0 0 (0.33,0.33,0.33)
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Representation Language and Semantics
Declarative Semantics (1)

A Bayesian logic program B can be visualized by a dependency graph DG(B)
I The nodes are the atoms in the least Herbrand model of the Bayesian logic

program
I There is an edge between a node x and a node y if there exists a clause

c ∈ B and a substitution θ, s.t. y = head(cθ), x ∈ body(cθ) and for all
ground atoms z in cθ : z ∈ LH(B)

I Application of the combining rule cr(p/n) allows us to assign a conditional
probability distribution to the nodes having parents

quality. attention | quality

sleep. attention | sleep quality sleep

attention
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Representation Language and Semantics
Declarative Semantics (2)

A Bayesian logic program B that satisfies

1. LH(B) 6= ∅
2. DG(B) is acyclic

3. each node in DG(B) is influenced by a finite set of random variables

is called well-defined.

I Every well-defined Bayesian logic program specifies a unique joint distribution
over LH(B)

I The joint distribution can be factored to

P(LH(B)) = ∏
x∈LH(B)

P(x |Pa(x))
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Representation Language and Semantics
Query-Answering Procedure

A probabilistic query to a Bayesian logic program B can be defined as an
expression of the form:

?− q1, ..., qn|e1 = e1, ..., em = em

where n > 0, m ≥ 0. It asks for the conditional probability distribution

P(q1, ..., qn|e1 = e1, ..., em = em)

of the query variables q1, ..., qn where {q1, ..., qn, e1, ..., en} ⊆ HB(B).

One naive approach would be to compute the whole least Herbrand model to
answer queries

18.11.2009 | Knowledge Engineering Group | Claus Brech und Moritz Mark | 20



Representation Language and Semantics
Support Networks

In order to answer queries, one has not compute the whole least Herbrand model.
One way to avoid complex network structures is to consider so-called support
networks.

N = {x} ∪ {y |y ∈ LH(B) and y influences x}
The support network N of a random variable x ∈ LH(B) consists of x and all
variables y that influence x

Example: Support Network for bt(dorothy)

mc_dorothy pc_dorothy

bt_dorothy
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Graphical Representation
Extended Bayesian Network Representation (1)

Extended representation for
Bayesian networks:

I Bipartite directed acyclic graph
I Two disjoint sets of nodes in the

bipartite graph:
1. light gray ovals are random

variables
2. black boxes are local

probability models

I The local probability models
specify the conditional
probability distribution
P(xi|Pa(xi))

mc_dorothy pc_dorothy

bt_dorothy

mc_ann pc_ann

bt_ann

mc_brian pc_brian

bt_brian

R1 R2 R3 R4

R5 R6 R7 R8

R9
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Graphical Representation
Extended Bayesian Network Representation (2)

The local probability model for R9

R9

mc_dorothy pc_dorothy

bt_dorothy

mc_dorothy pc_dorothy P(bt_dorothy)
a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)
... ...
0 0 (0.01,0.01,0.01,0.97)

mc_dorothy pc_dorothy

bt_dorothy

mc_ann pc_ann

bt_ann

mc_brian pc_brian

bt_brian

R1 R2 R3 R4

R5 R6 R7 R8

R9

R9 specifies the conditional probability distribution for P(bt(dorothy)|mc(dorothy), pc(dorothy))
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Graphical Representation for Bayesian Logic
Programs (1)

mc/1 pc/1

bt/1

m/2 f/2

R1

R3 R7

R6R2 R4 R8

R5

R9

R1

mc

ann P(mc(ann))
(0.38,0.12,0.50)

I Constants and functors such as ann are
represented as white boxes

I Bayesian atoms are represented as gray
ovals containing the predicate: pc

I Arguments are represented as white
empty circles on the boundary of the
ovals
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Graphical Representation for Bayesian Logic
Programs (2)

mc/1 pc/1

bt/1

m/2 f/2

R1

R3 R7

R6R2 R4 R8

R5

R9

R9

bt

mc pc

Person

mc(Person) pc(Person) P(bt(Person))
a a (0.97,0.01,0.01,0.01)
b a (0.01,0.01,0.97,0.01)
... ... ...
0 0 (0.01,0.01,0.01,0.97)

I Arguments of atoms like Person are
placeholders for terms.
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Graphical Representation for Bayesian Logic
Programs (3)

mc/1 pc/1

bt/1

m/2 f/2

R1

R3 R7

R6R2 R4 R8

R5

R9

R8

pcf

pc

Person

mc

Father

f(Father,Person) mc(Father) pc(Father) P(pc(Person))
true a a (0.98,0.01,0.01)
true b a (0.01,0.98,0.01)
... ... ... ...

false 0 0 (0.33,0.33,0.33)
... ... ... ...
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Graphical Representation for Bayesian Logic
Programs
Logical Atoms (1)

I The mother/2 and father/2 relations are
not really random variables, they are always
in the same state. (true with probability 1)
⇒ mother/2 and father/2 are logical
atoms

I Logical atoms have no conditional probability
distribution

I pc(X)|f(Y,X),mc(Y),pc(Y) is modified to
pc(X)|mc(Y),pc(Y) and it only applies for
substitutions for which f(Y,X) is true (in the
least Herbrand model)

I Bayesian atoms are light gray ovals, logical
atoms are dark gray ovals

mc/1 pc/1

bt/1

m/2 f/2

R2 R4

R6R1 R3 R5

R7

founder/1
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Graphical Representation for Bayesian Logic
Programs
Logical Atoms (2)

mc/1 pc/1

bt/1

m/2 f/2

R2 R4

R6R1 R3 R5

R7

founder/1

R1

mc

founderPerson

P(mc(Person)|founder(Person))
(0.38,0.12,0.50)

I The new foundation/1 relation is defined as:
founder(Person):-

\+(mother(_,Person);father(_,Person))

I \+ is a negation, _ represents a anonymous variable and
; stands for disjunction

I Essentially founder(Person) is true if Person has no
parents (is an apriori node)
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Graphical Representation for Bayesian Logic
Programs
Logical Atoms (3)

mc/1 pc/1

bt/1

m/2 f/2

R2 R4

R6R1 R3 R5

R7

founder/1 R5

pcf

pc

Person

mc

Father

mc(Father) pc(Father) P(pc(Person))
a a (0.98,0.01,0.01)
b a (0.01,0.98,0.01)
... ... ...
0 0 (0.33,0.33,0.33)
... ... ...
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Graphical Representation for Bayesian Logic
Programs
Another example

hidden/1

obs/1

R1

R3

next/2

R2

R2

hidden

next

NextTime

hidden

Time

R1

hidden

0

R3

obs

hidden

Time
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Graphical Representation for Bayesian Logic
Programs
Hidden Markov Models (1)

left General hidden Markov model
Parameters:

x states
y possible observations
a state transition probabilities
b output probabilities

bottom The graph of the Bayesian logic program on the
previous slide directly encodes the Bayesian
network structure of hidden Markov models

hidden(next(0))hidden(0) hidden(next(next(0)))

obs(0) obs(next(0)) obs(next(next(0)))
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Graphical Representation for Bayesian Logic
Programs
Hidden Markov Models (2)

hidden/1

obs/1

R1

R3

next/2

R2

R2

hidden

next

NextTime

hidden

Time

R1

hidden

0

R3

obs

hidden

Time
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Learning Bayesian Logic Programs

Previously:

I Assumption: There is an expert who designs the structure and also the
conditional probability of the network

I Problem: Lack of persons with the necessary expertise or knowledge
I Solution: If there is access to data, there is a possibility learn Bayesian logic

programs

Learning approach:
I Learning based on given data cases (learning from interpretations)
I Key idea: Rules that are valid on one interpretation are likely to be valid on

other interpretations
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The Learning Setting
Data Cases

A data case Di ∈ D consists of a
I Logical part: Var(Di ) = LH(B ∪ Var(Di ) (Herbrand interpretation) and a
I Probabilistic part: Assignment of values to some facts in Var(Di )

Example of a data case:

D1 = {m(cecily , fred) = true, f (henry , fred) =?, pc(cecily) = a, pc(henry) =
b, pc(fred) =?, mc(cecily) = b, mc(henry) = b, mc(fred) =?, bt(cecily) =
ab, bt(henry) = b, bt(fred) =?}

I The logical part specifies the least Herbrand model of the target Bayesian
program and highlights relevant random variables

I The probabilistic part induce a joint distribution over the random variables of
the logical part
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The Learning Setting
Hypothesis Space

The hypothesis space consists of Bayesian logic programs, i.e.
I A finite set of Bayesian clauses
I Associated conditional probability distributions

Adequate restrictions have to be designed to define the hypothesis space, e.g.
I The clauses only contain constant and predicate symbols that occur in one of

the data cases
I One clause is limited to only 3 atoms

Not every element of the hypothesis space is an adequate candidate. Possible
candidates have to fulfill the following requirements:

I It has to be logically valid on the data
I The induced Bayesian network has to be acyclic
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The Learning Setting
Formulation of the Learning Problem

Given:
I A set D = {D1, ..., Dm} of data cases
I A set H of hypothesis
I Scoring function scoreD : H 7→ R

Find: A hypothesis H∗ ∈H such that
I For all Di ∈ D : Var(Di ) = LH(H∗ ∪ Var(Di ))
I The Bayesian network implied by H∗ is acyclic
I H∗ maximizes scoreD : H 7→ R

Assumption: An adequate score function is given that expresses how well a given
candidate H ∈H fits the given Data. Example for a scoring function: Likelihood.
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Structural Learning of Bayesian Logic Programs
Scooby (1)

Scooby: Structural learning of intensionall Bayesian logic programs
I performs a heuristic search through the hypothesis space
I uses the refinement operators ρg and ρs to traverse the hypotheses space
I Works for the special case of Bayesian networks only

Example of the use of the refinement operators:

a(X) | b(X), c(Y).
b(X) | c(X).
c(X) | d(X).

a(X) | b(X).
b(X) | c(X).
c(X) | d(X).

a(X) | b(X), c(Y).
b(X) | c(X).
c(X) | d(X).
d(X).

a(X) | b(X).
b(X) | c(X).
c(X) | d(X), a(X)

g

s

s
X
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Structural Learning of Bayesian Logic Programs
Scooby (2)

Scooby: Structural learning of intensionall Bayesian logic programs

Let H be an initial (valid) hypothesis; S(H) := scoreD(H);
ρg and ρs are generalization and specialization operators
repeat

H ′ := H; S(H ′) := S(H);
for all H ′′ ∈ ρg(H ′) ∪ ρs(H ′) do

if H ′′ is (logically) valid on D then
if the Bayesian networks induced by H ′′ on the data are acyclic then

if scoreD(H ′′) > S(H) then
H := H ′′

S(H) := S(H ′′)
end if

end if
end if

end for
until S(H ′) = S(H)
return H;

I ρg deletes a Bayesian proposition from the body of a clause
I ρs adds a Bayesian proposition to the body of a clause
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Structural Learning of Bayesian Logic Programs
Scooby (3)

In order to adapt Scooby to work in the case of Bayesian networks one has to
consider:

1. Some Bayesian logic programs will be logically invalid
I Initialization of valid Bayesian logic programs
I Filtering out those Bayesian logic programs that are logically invalid

2. The traditional first order refinement operator must be used
I Instead of adding/deleting propositions, they add/delete constant-free atoms

Ideas to improve the algorithms performance:
I Lookahead: Allowing atoms to be chosen that do not result in a better score

to avoid local optima of the score function
I Include Background Knowledge i.e. fixed regularities that are common to all

examples
I Improve Scoring Function e.g. use of minimal description length principle
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Learning Probabilities

Previously we assumed that there is a given method to calculate the conditional
probability distribution. Parameter Estimation:

I Given: A set D = {D1, ..., Dn} and a set H of Bayesian clauses, a scoring
function scoreD : H 7→ R

I Find: Parameters of H maximizing scoreD

Maximum Likelihood is used as the method for parameter estimation. As
parameter estimation techniques

I Gradient-based approaches and
I Expectation-Maximization algorithm

will be discussed.

18.11.2009 | Knowledge Engineering Group | Claus Brech und Moritz Mark | 41



Learning Probabilities
Maximum Likelihood Estimation

Given: Bayesian logic program B consisting of Bayesian clauses c1, ..., cn, data
cases D = {D1, ..., Dn}
The likelihood L(D|λ) is the probability of the data D as a function of unknown
parameters λ

L(D|λ) := PB(D|λ)
Task: Find parameter values λ∗ that maximize the likelihood

λ∗ = max
λ∈H

PB(D|λ) = PB(λ)(D)

Using the fact that it is sufficient to consider the support network N. Due to the
monotonicity of the logarithm, we can formulate the problem like that:

λ∗ = max
λ∈H

log PN(λ)(D)
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Learning Probabilities
Gradient-Based approach

According to the Gradient-Based approach the chain rule is applied and
parameters λ are fixed

δlog PN(D)
δcpd(ci )jk

= ∑
subst .θs.t .sn(ci θ)

δlog PN(D)
δcpd(ci θ)jk

(1)

with grounding substitutions θ and sn(ci θ) is true iff
{head(ci θ)jk} ∪ body(ci θ) ⊂ N Equation (1) can be rearranged to:

δlog PN(D)
δcpd(ci )jk

=
en(cijk |θ, D)
cpd(ci θ)jk

(2)

where en(cijk |θ, D) := ∑m
l=1 PN(head(ci θ) = uj , body(ci θ) = uk|Dl ) are the

expected counts.
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Learning Probabilities
Gradient-Based approach (Algorithm)

input:Bayesian logic program B, associated cpds parameterized by λ, data cases D
output: Modified Bayesian logic program B
λ←INITIAL PARAMETERS
N ←SUPPORTNETWORK(B,D)
repeat

∆λ← 0
set associated conditional probability distribution of N according to λ
for all Dl ∈ D do

set evidence in N from Dl
for all Bayesian clause c ∈ B do

for all ground instance cθ s.t. {head(cθ)} ∪ body(cθ) ⊂ N do
for all single parameter cpd(cθ)jk do

∆cpd(c)jk ← cpd(c)jk + (δlogPN (Dl )/δcpd(c)jk )
end for

end for
end for

end for
∆λ← PROJECTIONONTOCONSTRAINTSURFACE(∆λ)
λ← λ + α ∗ ∆λ

until ∆λ ≈ 0
Return B
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Learning Probabilities
Gradient-Based approach

The algorithm is relatively simplified. There are two important points left out to
keep it simple:

1. Constraint satisfaction
I λ consists of probability values⇒ ∑j cpd(ci )jk = 1
I Way to enforce this: Re-parameterizing the problem i.e. design of parameters that

automatically respect the constraint

2. Decomposable combining rules are assumed

b_11

h

b_1k

h_1

b_11 b_1k

h_n...

... ... I Each group corresponds to
a ground instance

I The state of h is a
deterministic function of the
parents joint state
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Learning Probabilities
Expectation-Maximization (EM)

Expectation-Maximization algorithm:
I Another approach to estimate parameters of the maximum likelihood function
I Used in the presence of missing values

If all values are available then the parameters corresponds to frequency counting:

P(X = x |Pa(X ) = u) =
n(X = x , Pa(X ) = uk|Dl )

n(Pa(X ) = uk|Dl )

where n(a|D) denotes the count of a state a given data D.
If some values are missing the EM-algorithm performs two steps:

1. E-Step: Calculation of a distribution over all possible completions1 given λ
and D

2. M-Step: Computes the parameters that maximize the log likelihood function
1There is one completion for each partially observed data case. The completion are treated as

weighted fully-observed data cases
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Learning Probabilities
Gradient vs. EM

Both approaches:
I Rely on computing expected counts
I Perform a greedy local search

Key differences are:
I EM is easier to implement. Reason: EM does not have to enforce the

constraint that the parameters are probabilities
I The EM converges faster to near by optimal solutions
I Gradient approaches are more flexible than EM as they allow to consider

other scoring functions

Idea: Use of EM and then switch to gradient, since EM converges slowly when it is
at a near by optimal solution
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Test Cases and Experiments
Genetic Domain

Setting:
I Goal was to learn the bloodtype program that was used as example
I Two families with 12 respectively 15 members
I For each family 1000 data cases were given (total 2000)
I 40% of the given data was missing

Results:
I Fixing the definitions for m/2 and f/2 the hypotheses that scored best

included: bt(X) | mc(X), pc(X)

⇒ The logical structure to generate the data cases was re-discovered
I The definitions of mc/1 and pc/1 considered the information from the

grandparent to be important, the predicates m/2 and f/2 were not used
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Test Cases and Experiments
Bongard Domain (1)

positive false

Setting 1:
I 20 positive and 20 negative examples of the

concept ’there is a triangle in a circle’
I {class(e1) = pos, obj(e1, o1) =

triangle, obj(e1, o2) = circle, class(e2) =
false, obj(e2, o1) = triangle, ...}

I Given background knowledge in(e1, o1, o2)
I 20% missing values in the dataset

Results:
I With obj(Ex , o2) as lookahead for in(Ex , o1, o2) the best scored hypothesis is:

class(Ex)|obj(Ex , o1), in(Ex , o1, o2), obj(Ex , o2)
I Without the lookahead the correct hypothesis was not considered
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Test Cases and Experiments
Bongard Domain (2)

Setting 2 was based on the structure of the program learned in setting 1
I Goal: Estimating the parameters
I 20 positive and 20 negative examples of the disjunctive concept ’there is a

(triangle or a circle) in a circle’
⇒ The probability for the object o1 to be triangle or a circle was equal (no

significant difference)
In Setting 3 background knowledge about in(e1, o1, o2) was not given
⇒ The algorithm did not discover the correct rule

Setting 4 was a clustering experiment
I 20 positive and 20 negative examples of the concept ’there is a triangle’
I The examples had 2 to 8 triangles, circles or squares
I 20% of the class labels were missing
⇒ The algorithm learned class(X) | obj(X,Y) which separated the classes

perfectly
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Test Cases and Experiments
KDD Cup 2001

I Task: Predict the localization of a given gene in a cell among 15 distinct
positions

I Data: Relation table with six categorical attributes Essential, Class, Complex,
Phenotype, Motif, Chromosome Number

I Training set has 862 genes and the test set 381 genes
⇒ The naive Prolog representation (4.400 random variables with over 60.000

parameters) broke cause of memory limits in Sicstus Prolog
I Due to this limitation, the logical structure was based on naive Bayes and only

the parameters were estimated
I Estimating the parameters took 12 iterations (about 30 min.)
⇒ The learned Bayesian logic Program achieved an accuracy of 0.57 (top 50%

of the submitted models was 0.61, best submission was 0.72)
I The correct localization of a gene was among the top 3 classifications in 77%

of the test cases
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Conclusion and Outlook (1)

I Bayesian logic programs link up Bayesian networks with inductive logic
programming

I Any type of Bayesian network and all types of ’pure’ Prolog programs can be
both represented with Bayesian logic networks. Possible implementations for
the blood type example and hidden Markov models were introduced

I They combine the advantages of both Bayesian networks and definite clause
logic, including the nice separation into

I a qualitative part: logical structure of the domain
I and a quantitative part: conditional probability distributions between the objects of

the domain

I Along with strict separation comes the graphical representation
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Conclusion and Outlook (2)

I A framework for learning Bayesian network was introduced
I SCOOBY is used to learn the structure of Bayesian logic program
I To learn the probabilities Maximum Likelihood approach was used. To estimate

the parameters for the Maximum Likelihood two techniques were considered
I Gradient based approach
I Expectation Maximization algorithm

I In the experiments the principle of the algorithm is shown and some of the test
cases brought good results

I For a general use, the framework has to be improved. This could be done
with:

I An enhanced scoring function for SCOOBY
I Intensified research on the refinement operator to add or delete atoms
I Also data cases that do not represent the complete logical structure should be

considered respectively
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