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Learning of Rule SetsLearning of Rule Sets
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Learning Rule SetsLearning Rule Sets

● many datasets cannot be solved with a single rule
 not even the simple weather dataset
 they need a rule set for formulating a target theory

● finding a computable generality relation for rule sets is not 
trivial
 adding a condition to a rule specializes the theory
 adding a new rule to a theory generalizes the theory

● practical algorithms use different approaches
 covering or separate-and-conquer algorithms
 based on heuristic search
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A sample taskA sample task
Temperature  Outlook  Humidity  Windy Play Golf?

hot  sunny  high false  no 
hot  sunny  high true  no 
hot  overcast  high false  yes 
cool  rain  normal false  yes 
cool  overcast  normal true  yes 
mild  sunny  high false  no 
cool  sunny  normal false  yes 
mild  rain  normal false  yes 
mild  sunny  normal true  yes 
mild  overcast  high true  yes 
hot  overcast  normal false  yes 
mild  rain  high true  no 
cool  rain  normal true  no 
mild  rain  high false  yes 

● Task:
 Find a rule set that correctly predicts the dependent 

variable from the observed variables 
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A Simple SolutionA Simple Solution

IF T=hot AND H=high AND O=overcast AND W=false THEN yes 
IF T=cool AND H=normal AND O=rain AND W=false THEN yes 
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes 
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes 
IF T=mild AND H=normal AND O=rain AND W=false THEN yes 
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes 
IF T=mild AND H=high AND O=overcast AND W=true THEN yes 
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes 
IF T=mild AND H=high AND O=rain AND W=false THEN yes

● The solution is 
 a set of rules 
 that is complete and consistent on the training examples
→ it must be part of the version space

● but it does not generalize to new examples!
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The Need for a BiasThe Need for a Bias

● rule sets can be generalized by 
 generalizing an existing rule (as usual)
 introducing  a new rule (this is new)

● a minimal generalization could be
 introduce a new rule that covers only the new example

● Thus:
 The solution on the previous slide will be found as a result of 

the FindS algorithm
 FindG (or Batch-FindG) are less likely to find such a bad 

solution because they prefer general theories
● But in principle this solution is part of the hypothesis space 

and also of the version space
⇒ we need a search bias to prevent finding this solution!
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A Better SolutionA Better Solution

IF   Outlook = overcast THEN yes

IF   Humidity = normal AND Outlook = sunny THEN  yes

IF   Outlook = rainy      AND Windy = false            THEN     yes
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Recap: Batch-FindRecap: Batch-Find

● Abstract algorithm for learning a single rule:

1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T  
3. return T

● Problem:
 the basic assumption is that the found rules are complete, 

i.e., they cover all positive examples
 What if they don't?

● Simple solution:
 If we have a rule that covers part of the positive examples:
 add some more rules that cover the remaining examples
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Separate-and-ConquerSeparate-and-Conquer
Rule LearningRule Learning

 Learn a set of rules, one by one
1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T  
3. If T is satisfactory (complete), return T
4. Else:

● Separate: Remove examples explained by R from E
● Conquer:  If E is non-empty, goto 2.

● One of the oldest family of learning algorithms
 goes back AQ (Michalski, 60s)
 FRINGE, PRISM and CN2: relation to decision trees (80s)
 popularized in ILP (FOIL and PROGOL, 90s)
 RIPPER brought in good noise-handling

● Different learners differ in how they find a single rule 
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Relaxing Completeness Relaxing Completeness 
and Consistencyand Consistency

● So far we have always required a learner to learn a 
complete and consistent theory
 e.g., one rule that covers all positive and no negative examples

● This is not always a good idea (→ overfitting)
● Motivating Example:

Training set with 200 examples, 100 positive and 100 negative
 Theory A consists of 100 complex rules, each covering a 

single positive example and no negatives
→ Theory A is complete and consistent on the training set

 Theory B consists of a single rule, covering 99 positive and 1 
negative example
→ Theory B is incomplete and incosistent on the training set

Which one will generalize better to unseen examples?
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Separate-and-Conquer Rule LearningSeparate-and-Conquer Rule Learning

``

Quelle für Grafiken: http://www.cl.uni-heidelberg.de/kurs/ws03/einfki/KI-2004-01-13.pdf
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TerminologyTerminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P

class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n)  P+N

● training examples
● P: total number of positive examples
● N: total number of negative examples

● examples covered by the rule (predicted positive)
● true positives p: positive examples covered by the rule
● false positives n: negative examples covered by the rule

● examples not covered the rule (predicted negative)
● false negatives P-p: positive examples not covered by the rule
● true negatives N-n: negative examples not covered by the rule
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Coverage Spaces Coverage Spaces 

● good tool for visualizing properties of covering algorithms
● each point is a theory covering p positive and n negative examples

universal theory:
all examples 
are covered

empty theory:
no examples 
are covered

perfect theory:
all positive and 

no negative
examples 

are covered

default distribution:
maintain P/(P+N)

positive and N/(P+N)
negative examples

opposite theory:
all negative and

no positive 
examples 

are covered

iso-accuracy:
cover same
amount of
positive

and negative
examples
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Covering StrategyCovering Strategy

● Covering or Separate-and-Conquer 
rule learning learning algorithms 
learn one rule at a time

● This corresponds to a path in 
coverage space:

● The empty theory R0 (no rules) 
corresponds to (0,0)

● Adding one rule never 
decreases p or n because 
adding a rule covers more 
examples (generalization)

● The universal theory R+ (all 
examples are positive) 
corresponds to (N,P)

+
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Top-Down Hill-ClimbingTop-Down Hill-Climbing

 Top-Down Strategy: A rule is successively specialized

1. Start with an empty rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

● Almost all greedy s&c rule learning systems use this 
strategy
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Top-Down Hill-ClimbingTop-Down Hill-Climbing
● successively extends a rule by adding conditions

● This corresponds to a path in 
coverage space:
 The rule p:-true covers all 

examples (universal theory)
 Adding a condition never 

increases p or n (specialization) 
 The rule p:-false covers 

no examples (empty theory)

● which conditions are selected depends on a heuristic function that 
estimates the quality of the rule



16 © J. Fürnkranz

Rule Learning HeuristicsRule Learning Heuristics

● Adding a rule should
 increase the number of covered negative examples as little as 

possible (do not decrease consistency)
 increase the number of covered positive examples as much 

as possible (increase completeness)
● An evaluation heuristic should therefore trade off these two 

extremes
 Example: Laplace heuristic 

● grows with 
● grows with 

 Note: Precision is not a good heuristic. Why?

hLap=
p1

pn2

hPrec=
p

pn

p∞
n0
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ExampleExample

p n Laplace p-n
2 2 0.5000 0.5000 0

Mild 3 1 0.7500 0.6667 2
4 2 0.6667 0.6250 2
2 3 0.4000 0.4286 -1
4 0 1.0000 0.8333 4

Rain 3 2 0.6000 0.5714 1
3 4 0.4286 0.4444 -1

Normal 6 1 0.8571 0.7778 5
3 3 0.5000 0.5000 0
6 2 0.7500 0.7000 4

Condition Precision
Hot

Temperature =
Cold
Sunny

Outlook = Overcast

Humidity = High

Windy = True
False

● Heuristics Precision and Laplace 
 add the condition Outlook= Overcast to the (empty) rule
 stop and try to learn the next rule

● Heuristic Accuracy / p − n
 adds Humidity = Normal
 continue to refine the rule (until no covered negative)
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Isometrics in Coverage SpaceIsometrics in Coverage Space

● Isometrics are lines that connect points for which a 
function in p and n has equal values
 Examples: Isometrics for heuristics h

p
 = p and h

n
 = -n
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Precision (Confidence)Precision (Confidence)

● basic idea:
percentage of positive 
examples among covered 
examples

● effects:
 rotation around origin 

(0,0)
 all rules with same 

angle equivalent
 in particular, all rules 

on P/N axes are 
equivalent 

hPrec=
p

pn
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Entropy and Gini Index Entropy and Gini Index 





 effects:
 entropy and Gini index are 

equivalent
 like precision, isometrics 

rotate around (0,0)
 isometrics are symmetric 

around 45o line 
 a rule that only covers 

negative examples is as 
good as a rule that only 
covers positives

hEnt=− p
pn

log2
p

pn
 n

pn
log2

n
pn



hGini=1− p
pn


2

− n
pn


2

≃ pn
 pn2

These will be explained
later (decision trees)
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Accuracy Accuracy 

● basic idea:
percentage of correct 
classifications 
(covered positives plus 
uncovered negatives)

● effects:
 isometrics are parallel 

to 45o line
 covering one positive 

example is as good as 
not covering one 
negative example

hAcc=
pN−n

PN
≃ p−n Why are they

equivalent?
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Weighted Relative AccuracyWeighted Relative Accuracy

● Two Basic ideas:
 Precision Gain: compare precision to precision of a rule that 

classifies randomly

 Coverage: Multiply with the percentage of covered examples

● Resulting formula:

 one can show that sorts rules in exactly the same way as 

p
pn

−
P

PN

pn
PN

hWRA=
pn

PN


p
pn

−
P

PN


hWRA '= p
P
−

n
N
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Weighted Relative Accuracy Weighted Relative Accuracy 

● basic idea:
normalize accuracy with 
the class distribution

● effects:
 isometrics are parallel 

to diagonal
 covering x% of the 

positive examples is
considered to be as 
good as not covering 
x% of the negative 
examples

hWRA=
pn
PN


p

pn
−

P
PN

≃
p
P
−

n
N
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Linear Cost MetricLinear Cost Metric

● Accuracy and weighted relative accuracy are only two 
special cases of the general case with linear costs:
 costs c mean that covering 1 positive example is as good 

as not covering c/(1-c) negative examples

 The general form is then
● the isometrics of hcost are parallel lines with slope (1-c)/c

hcost=cp−1−cn

c measure

½ accuracy

N/(P+N) weighted relative accuracy

0 excluding negatives at all costs

1 covering positives at all costs
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Relative Cost MetricRelative Cost Metric

● Defined analogously to the Linear Cost Metric
● Except that the trade-off is between the normalized 

values of p and n
 between true positive rate p/P and false positive rate n/N

 The general form is then
● the isometrics of hcost are parallel lines with slope (1-c)/c

● The plots look the same as for the linear cost metric
 but the semantics of the c value is different:

● for hcost it does not include the example distribution
● for hrcost it includes the example distribution

hrcost=c p
P
−1−c n

N
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Laplace-Estimate Laplace-Estimate 



● basic idea:
precision, but count 
coverage for positive 
and negative examples 
starting with 1 instead 
of 0

● effects:
 origin at (-1,-1)
 different values on 

p=0 or n=0 axes
 not equivalent to 

precision

hLap=
p1

 p1n1
=

p1
pn2
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m-Estimate m-Estimate 
● basic idea:

initialize the counts with m 
examples in total, distributed 
according to the prior 
distribution P/(P+N) of
 p and n.

● effects:
 origin shifts to

(-mP/(P+N),-mN/(P+N))
 with increasing m, the 

lines become more and 
more parallel

 can be re-interpreted as a 
trade-off between WRA 
and precision/confidence

hm=
pm P

PN

 pm P
PN

nm N
PN


=

pm P
PN

pnm



28 © J. Fürnkranz

Generalized m-EstimateGeneralized m-Estimate

● One can re-interpret the m-Estimate:
 Re-interpret c = N/(P+N) as a cost factor like in the general 

cost metric
 Re-interpret m as a trade-off between precision and cost-

metric
● m = 0: precision (independent of cost factor)
● m∞: the isometrics converge towards the parallel isometrics of 

the cost metric
● Thus, the generalized m-Estimate may be viewed as a 

means of trading off between precision and the cost metric
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Optimizing Precision Optimizing Precision 
● Precision tries to pick the steepest continuation of the curve 

● tries to maximize the area under this curve 
(→ AUC: Area Under the ROC Curve)

● no particular angle of isometrics is preferred, i.e. no preference for 
a certain cost model
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Optimizing AccuracyOptimizing Accuracy
● Accuracy assumes the same costs in all subspaces

● a local optimum in a sub-space is also a global optimum in 
the entire space
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Summary of Rule Learning HeuristicsSummary of Rule Learning Heuristics
● There are two basic types of (linear) heuristics.

 precision: rotation around the origin
 cost metrics: parallel lines

● They have different goals
 precision picks the steepest continuation for the curve for 

unkown costs
 linear cost metrics pick the best point according to known or 

assumed costs

● The m-heuristic may be interpreted as a trade-off 
between the two prototypes
 parameter c chooses the cost model
 parameter m chooses the “degree of parallelism”
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CorrelationCorrelation

● basic idea:
measure correlation coefficient 
of predictions with target

● effects:
 non-linear isometrics
 in comparison to WRA

● prefers rules near the 
edges

● steepness of connection 
of intersections with 
edges increases

 equivalent to χ2

hCorr=
p N−n−P− pn

PN  pnP− pN−n
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Foil GainFoil Gain

 (c is the precision of the parent rule)

h foil=−plog 2 c−log2
p

pn
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Which Heuristic is Best?Which Heuristic is Best?

● There have been many proposals for different heuristics
 and many different justifications for these proposals
 some measures perform better on some datasets, others on 

other datasets

● Large-Scale Empirical Comparison:
 27 training datasets 

● on which parameters of the heuristics were tuned)
 30 independent datasets 

● which were not seen during optimization
 Goals:

● see which heuristics perform best
● determine good parameter values for parametrized functions
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Best Parameter SettingsBest Parameter Settings

       for m-estimate: m = 22.5

     for relative cost metric: c = 0.342
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Empirical Comparison Empirical Comparison 
of Different Heuristicsof Different Heuristics

Training

84,96 16,93 78,97 12,20
85,63 26,11 78,87 25,30
85,87 48,26 78,67 46,33
83,68 37,48 77,54 47,33

Laplace 82,28 91,81 76,87 117,00
82,36 101,63 76,22 128,37
82,68 106,30 76,07 122,87

WRA 82,87 14,22 75,82 12,00
82,24 85,93 75,65 99,13

 Datasets Independent Datasets
Heuristic Accuracy # Conditions Accuracy  #Conditions
Ripper (JRip)
Relative Cost Metric (c =0.342)
m-Estimate (m = 22.466)
Correlation

Precision
Linear Cost Metric (c = 0.437)

Accuracy

● Ripper is best, but uses pruning (the others don't)
● the optimized parameters for the m-estimate and the relative cost 

metric perform better than all other heuristics
 also on the 30 datasets on which they were not optimized

● some heuristics clearly overfit (bad performance with large rules)
● WRA over-generalizes (bad performance with small rules)
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Overfitting Overfitting 

● Overfitting
 Given 

● a fairly general model class 
● enough degrees of freedom

 you can always find a model that explains the data
● even if the data contains error (noise in the data)
● in rule learning: each example is a rule

● Such concepts do not generalize well!
 → Pruning
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Overfitting - IllustrationOverfitting - Illustration

Prediction for 
this value of x?

Polynomial degree 1
(linear function)

    Polynomial degree 4
(n-1 degrees can always fit n points)

 

 

 
 

 

□ here

□ or here ?
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OverfittingOverfitting

● Eine perfekte Anpassung an die gegebenen Daten ist nicht 
immer sinnvoll
 Daten könnten fehlerhaft sein

● z.B. zufälliges Rauschen (Noise)
 Die Klasse der gewählten Funktionen könnte nicht geeignet sein

● eine perfekte Anpassung an die Trainingsdaten ist oft gar nicht 
möglich

● Daher ist es oft günstig, die Daten nur ungefähr anzupassen
 bei Kurven:

● nicht alle Punkte müssen auf der Kurve liegen
 beim Konzept-Lernen:

● nicht alle positiven Beispiele müssen von der Theorie abgedeckt 
werden

● einige negativen Beispiele dürfen von der Theorie abgedeckt werden
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OverfittingOverfitting

 beim Konzept-Lernen:
 nicht alle positiven Beispiele müssen von der Theorie 

abgedeckt werden
 einige negativen Beispiele dürfen von der Theorie 

abgedeckt werden
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Komplexität von KonzeptenKomplexität von Konzepten

● Je weniger komplex ein Konzept ist, desto geringer ist die 
Gefahr, daß es sich zu sehr den Daten anpaßt
 Für ein Polynom n-ten Grades kann man n+1 Parameter 

wählen, um die Funktion an alle Punkte anzupassen
● Daher wird beim Lernen darauf geachtet, die Größe der 

Konzepte klein zu halten
 eine kurze Regel, die viele positive Beispiele erklärt (aber 

eventuell auch einige negative) ist oft besser als eine lange 
Regel, die nur einige wenige positive Beispiele erklärt.

● Pruning: komplexe Regeln werden zurechtgestutzt
 Pre-Pruning:

● während des Lernens
 Post-Pruning:

● nach dem Lernen
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Pre-Pruning Pre-Pruning 

● keep a theory simple while it is 
learned

● decide when to stop adding 
conditions to a rule 
(relax consistency 
constraint)

● decide when to stop adding 
rules to a theory
(relax completeness 
constraint)

 efficient but not accurate

Rule set with three rules 
á 3, 2, and 2 conditions

Pre-pruning decisions
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Pre-Pruning HeuristicsPre-Pruning Heuristics

1. Thresholding a heuristic value
 require a certain minimum value of the search heuristic
 e.g.: Precision > 0.8.

2. Foil's Minimum Description Length Criterion
 the length of the theory plus the exceptions (misclassified 

examples) must be shorter than the length of the examples by 
themselves

 lengths are measured in bits (information content)
3. CN2's Significance Test

 tests whether the distribution of the examples covered by a 
rule deviates significantly from the distribution of the examples 
in the entire training set

 if not, discard the rule
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Minimum Coverage FilteringMinimum Coverage Filtering

         positive examples (support)             all examples (coverage)

filter rules that do not cover a minimum number of  
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Support/Confidence FilteringSupport/Confidence Filtering

● filter rules that
 cover not enough positive 

examples (p < suppmin)
 are not precise enough 

(hprec < confmin)
● effects:

 all but a region around 
(0,P) is filtered

→  we will return to support/confidence in the context of association rule 
learning algorithms! 
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CN2's likelihood ratio statisticsCN2's likelihood ratio statistics

● basic idea:
measure significant deviation 
from prior probability 
distribution

● effects:
 non-linear isometrics

● similar to m-estimate
● but prefer rules near the 

edges
 distributed χ2

 significance levels 95% 
(dark) and 99% (light grey)

hLRS=2 p log p
e p

n log n
en
 e p= pn P

PN
; en= pn N

PN

are the expected number of 
positive and negative example
in the p+n covered examples.
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CorrelationCorrelation

● basic idea:
measure correlation coefficient 
of predictions with target

● effects:
 non-linear isometrics
 in comparison to WRA

● prefers rules near the 
edges

● steepness of connection 
of intersections with 
edges increases

 equivalent to χ2

 grey area = cutoff of 0.3

hCorr=
p N−n−P− pn

 PN  pnP− pN−n
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MDL-Pruning in FoilMDL-Pruning in Foil

● based on the Minimum Description Length-Principle (MDL)
 is it more effective to transmit the rule or the covered examples?

● compute the information contents of the rule (in bits)
● compute the information contents of the examples (in bits)
● if the rule needs more bits than the examples it covers, on can 

directly transmit the examples → no need to further refine the rule
 Details → (Quinlan, 1990)

● doesn't work all that well
 if rules have expections (i.e., are inconsistent), the negative 

examples must be encoded as well
● they must be transmitted, otherwise the receiver could not 

reconstruct which examples do not conform to the rule
 finding a minimal encoding (in the information-theoretic sense) 

is practically impossible
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Foil's MDL-based Stopping CriterionFoil's MDL-based Stopping Criterion

● basic idea:
compare the encoding length 
of the rule l(r) to the encoding 
length hMDL of the example.
 we assume l(r) = c constant

● effects:
 equivalent to filtering on 

support
 because function only 

depends on p

hMDL=log2PN log2 PN
p  costs for transmitting

which of the P+N
examples are covered

and positive

costs for transmitting how 
many examples we have 

(can be ignored)
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Anomaly of Foil's Stopping criterionAnomaly of Foil's Stopping criterion

● We have tacitly assumed N > P...

● hMDL assumes its maximum at p = (P+N)/2
 thus, for P > N, the maximum is not on top!

● there may be rules 
● of equal length
● covering the same number of negative 

examples
● the rule covering fewer positive examples is 

acceptable
● but the rule covering more positive 

examples is not!
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How Foil WorksHow Foil Works

 filtering of rules with no 
information gain
● after each refinement step, 

the region of acceptable 
rules is adjusted as in 
precision/confidence 
filtering

 filtering of rules that 
exceed the rule length
● after each refinement step, 

the region of acceptable 
rules is adjusted as in 
support filtering

→ Foil (almost) implements Support/Confidence Filtering
      (will be explained later → association rules)
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Pre-Pruning SystemsPre-Pruning Systems

● Foil:
 Search heuristic: Foil Gain
 Pruning: MDL-Based

● CN2:
 Search heuristic: Laplace/m-heuristic
 Pruning: Likelihood Ratio

● Fossil:
 Search heuristic: Correlation
 Pruning: Threshold
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Post PruningPost Pruning
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Post-Pruning: ExamplePost-Pruning: Example

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no 
IF T=hot AND H=high AND O=overcast AND W=false THEN yes 
IF T=cool AND H=normal AND O=rain AND W=false THEN yes 
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes 
IF T=mild AND H=high AND O=sunny AND W=false THEN no 
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes 
IF T=mild AND H=normal AND O=rain AND W=false THEN yes 
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes 
IF T=mild AND H=high AND O=overcast AND W=true THEN yes 
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes 
IF T=mild AND H=high AND O=rain AND W=true THEN no 
IF T=cool AND H=normal AND O=rain AND W=true THEN no 
IF T=mild AND H=high AND O=rain AND W=false THEN yes
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Reduced Error Pruning Reduced Error Pruning 

● basic idea
 optimize the accuracy of a rule set on a separate pruning set

0.split training data into a growing and a pruning set

1.learn a complete and consistent rule set covering all positive 
examples and no negative examples

2.as long as the error on the pruning set does not increase

● delete condition or rule that results in the largest reduction of 
error on the pruning set

3.return the remaining rules

● accurate but not efficient 
 O(n4)
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Incremental Incremental 
Reduced Error PruningReduced Error Pruning

● Prune each rule right after it is learned:

1. split training data into a growing and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does 
not increase

4. if the rule is better than the default rule, add it to the rule set 
and goto 1.

● More accurate, much more efficient
 because it does not learn overly complex intermediate concept
 REP: O(n4)         I-REP: O(n log2n)

● Subsequently used in the RIPPER (JRip in  Weka) rule 
learner (Cohen, 1995)
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Multi-class problems Multi-class problems 

 GOAL: discriminate c 
classes from each other

 PROBLEM: many learning 
algorithms are only suitable 
for binary (2-class) 
problems

 SOLUTION: 
"Class binarization": 
Transform an c-class 
problem into a series of 2-
class problems
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Class Binarization for Rule LearningClass Binarization for Rule Learning

● None
 class of a rule is defined by the majority of covered 

examples
 decision lists, CN2 (Clark & Niblett 1989)

● One-against-all / unordered
 foreach class c: label its examples positive, all others 

negative
 CN2 (Clark & Boswell 1991), Ripper -a unordered 

● Ordered
 sort classes - learn first against rest - remove first - repeat
 Ripper (Cohen 1995)

● Error Correcting Output Codes (Dietterich & Bakiri, 1995)
 generalized by (Allwein, Schapire, & Singer, JMLR 2000)
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One-against-all binarizationOne-against-all binarization

Treat each class as a separate concept:
 c binary problems, one for each class
 label examples of one class positive, all others negative
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PredictionPrediction
● It can happen that multiple rules fire for a class

 no problem for concept learning (all rules say +)
 but problematic for multi-class learning

● because each rule may predict a different class
 Typical solution: 

● use rule with the highest precision for prediction
 more complex approaches are possible: e.g., voting

● It can happen that no rule fires on a class
 no problem for concept learning (the example is then -)
 but problematic for multi-class learning

● because it remains unclear which class to select
 Typical solution: predict the largest class
 more complex approaches: 

● e.g., rule stretching: find the most similar rule to an example
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Round Robin LearningRound Robin Learning
(aka (aka Pairwise ClassificationPairwise Classification))

 c(c-1)/2 problems
 each class against each 

other class

✔ smaller training sets
✔ simpler decision 

boundaries
✔ larger margins
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PredictionPrediction

● Voting: 
 as in a sports tournament:

● each class is a player
● each player plays each other player, i.e., for each pair of classes 

we get a prediction which class „wins“
● the winner receives a point
● the class with the most points is predicted

 tie breaks, e.g., in favor of larger classes
● Weighted voting:

 the vote of each theory is proportional to its own estimate of 
its correctness 

 e.g., proportional to proportion of examples of the predicted 
class covered by the rule that makes the prediction
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AccuracyAccuracy

● error rates on 20 
datasets with 4 or 
more classes
 10 significantly 

better (p > 0.99, 
McNemar)

 2 significantly 
better (p > 0.95)

 8 equal
 never 

(significantly) 
worse

pairwiseone-vs-all
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Yes, but isn't that expensive?Yes, but isn't that expensive?

YES: 
We have O(c2) learning problems...

but NO:
the total training effort is smaller than for the c learning 
problems in the one-against-all setting!

● Fine Print :
 single round robin

● more rounds add a constant factor
 training effort only 

● test-time and memory are still quadratic
● BUT: theories to test may be simpler
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Advantages of Round RobinAdvantages of Round Robin
● Accuracy

 never lost against one-
against-all

 often significantly more 
accurate

● Efficiency
 proven to be faster than, 

e.g., one-against-all, 
ECOC, boosting...

 higher gains for slower 
base algorithms

● Understandability
 simpler boundaries/concepts
 similar to pairwise ranking as 

recommended by Pyle (1999)
● Example Size Reduction

 each binary task is 
considerably smaller than 
original data 

 subtasks might fit into 
memory where entire task 
does not

● Easily parallelizable
 each task is independent of 

all other tasks
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A Pathology forA Pathology for
Top-Down LearningTop-Down Learning

● Parity problems (e.g. XOR)
 r relevant binary attributes
 s irrelevant binary attributes 
 each of the n = r + s attributes has values 0/1 with probability ½
 an example is positive if the number of 1's in the relevant 

attributes is even, negative otherwise
 Problem for top-down learning:

● by construction, each condition of the form a
i
 = 0 or a

i
 = 1 

covers approximately 50% positive and 50% negative 
examples

● irrespective of whether a
i
 is a relevant or an irrelevant attribute

➔ top-down hill-climbing cannot learn this type of concept
 Typical recommendation: 

● use bottom-up learning for such problems
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Bottom-Up Approach: Motivation Bottom-Up Approach: Motivation 

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no 
IF T=hot AND H=high AND O=overcast AND W=false THEN yes 
IF T=cool AND H=normal AND O=rain AND W=false THEN yes 
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes 
IF T=mild AND H=high AND O=sunny AND W=false THEN no 
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes 
IF T=mild AND H=normal AND O=rain AND W=false THEN yes 
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes 
IF T=mild AND H=high AND O=overcast AND W=true THEN yes 
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes 
IF T=mild AND H=high AND O=rain AND W=true THEN no 
IF T=cool AND H=normal AND O=rain AND W=true THEN no 
IF T=mild AND H=high AND O=rain AND W=false THEN yes
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Bottom-Up Hill-ClimbingBottom-Up Hill-Climbing

 Simple inversion of top-down hill-climbing

 A rule is successively generalized

1. Start with an empty rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one

4. If R is satisfactory, return it

5. Else goto 2.

a fully specialized a single example

delete
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A Pathology of Bottom-Up A Pathology of Bottom-Up 
Hill-ClimbingHill-Climbing

att1 att2 att3

+ 1 1 1

+ 1 0 0

− 0 1 0

− 0 0 1

 Target concept att1 = 1 not (reliably) learnable with 
bottom-up hill-climbing
● because no generalization of any seed example will increase 

coverage
● Hence you either stop or make an arbitrary choice (e.g., 

delete attribute 1)



72 © J. Fürnkranz

Bottom-Up Rule Learning AlgorithmsBottom-Up Rule Learning Algorithms

● AQ-type:
 select a seed example and search the space of its 

generalizations
 BUT: search this space top-down
 Examples: AQ (Michalski 1969), Progol (Muggleton 1995)

● based on least general generalizations (lggs)
 greedy bottom-up hill-climbing
 BUT: expensive generalization operator 

(lgg/rlgg of pairs of seed examples)
 Examples: Golem (Muggleton & Feng 1990), DLG (Webb 1992), RISE 

(Domingos 1995)
● Incremental Pruning of Rules:

 greedy bottom-up hill-climbing via deleting conditions
 BUT: start at point previously reached via top-down specialization
 Examples: I-REP (Fürnkranz & Widmer 1994), Ripper (Cohen 1995)



● language bias: 
 which type of 

conditions are allowed 
(static)

 which combinations of 
condictions are 
allowed (dynamic)

● search bias:
 search heuristics
 search algorithm 

(greedy, stochastic, 
exhaustive)

 search strategy (top-
down, bottom-up)

● overfitting avoidance 
bias:
 pre-pruning 

(stopping criteria)
 post-pruning
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Rules vs. Trees Rules vs. Trees 

● Each decision tree can be converted into a rule set
→ Rule sets are at least as expressive as decision trees

 a decision tree can be viewed as a set of non-overlapping 
rules

 typically learned via divide-and-conquer algorithms 
(recursive partitioning)

● Many concepts have a shorter description as a rule set
 exceptions: if one or more attributes are relevant for the 

classification of all examples (e.g., parity)
● Learning strategies:

 Separate-and-Conquer vs. Divide-and-Conquer


