
1 © J. Fürnkranz

Data Mining - MotivationData Mining - Motivation

"Computers have promised us a fountain of wisdom but
delivered a flood of data."

"It has been estimated that the amount of information in
the world doubles every 20 months."

(Frawley, Piatetsky-Shapiro, Matheus, 1992)

2 © J. Fürnkranz

Knowledge Discovery in Databases Knowledge Discovery in Databases
(KDD)(KDD)

Mining for nuggets of knowledge in mountains of Data.

3 © J. Fürnkranz

DefinitionDefinition

● Data Mining is a non-trivial
process of identifying
● valid
● novel
● potentially useful
● ultimately

understandable
patterns in data.
(Fayyad et al. 1996)

It employs techniques from
● machine learning
● statistics
● databases

Or maybe:
● Data Mining is torturing your database until it confesses.
 (Mannila (?))

4 © J. Fürnkranz

Knowledge Discovery in Databases:Knowledge Discovery in Databases:
Key StepsKey Steps

Key steps in the Knowledge Discovery cycle:
1.Data Cleaning: remove noise and incosistent data
2.Data Integration: combine multiple data sources
3.Data Selection: select the part of the data that are relevant for

the problem
4.Data Transformation: transform the data into a suitable format

(e.g., a single table, by summary or aggregation operations)
5.Data Mining: apply machine learning and machine discovery

techniques
6.Pattern Evaluation: evaluate whether the found patterns meet

the requirements (e.g., interestingness)
7.Knowledge Presentation: present the mined knowledge to the

user (e.g., visualization)

5 © J. Fürnkranz

Data Mining is a Process ! Data Mining is a Process !

Source: http://alg.ncsa.uiuc.edu/tools/docs/d2k/manual/dataMining.html, after Fayyad, Piatetsky-Shapiro, Smyth, 1996

The steps are not followed linearly, but in an iterative process.

6 © J. Fürnkranz

Another Process ModelAnother Process Model

Source: http://www.crisp-dm.org/

file://./

7 © J. Fürnkranz

Pre-ProcessingPre-Processing

● Databases are typically not made to support analysis with a
data mining algorithm
 pre-processing of data is necessary

● Pre-processing techniques:
 Data Cleaning: remove inconsistencies from the data
 Feature Engineering: find the right features/attribute set

● Feature Subset Selection: select appropriate feature subsets
● Feature Transformation: bring attributes into a suitable form

(e.g., discretization)
● Feature Construction: construct derived features

 Sampling:
● select appropriate subsets of the data

8 © J. Fürnkranz

Unsupervised vs. SupervisedUnsupervised vs. Supervised
Pre-processingPre-processing

● Unsupervised
 do not use information about the learning task

● only prior information (from knowledge about the data)
● and information about the distribution of the training data

● Supervised
 use information about the learning task

● e.g.: look at relation of an attribute to class attribute

● WARNING:
● pre-processing may only use information from training data!

 compute pre-processing model from training data
 apply the model to training and test data
 otherwise information from test data may be captured in the pre-

processing step → biased evaluation
● in particular: apply pre-processing to every fold in cross-validation

9 © J. Fürnkranz

Feature Subset SelectionFeature Subset Selection
● Databases are typically not collected with data mining in

mind
● Many features may be

 irrelevant
 uninteresting
 redundant

● Removing them can
 increase efficiency
 improve accuracy
 prevent overfitting

● Feature Subsect Selection techniques try to determine
appropriate features automatically

10 © J. Fürnkranz

Unsupervised FSSUnsupervised FSS

● Using domain knowledge
 some features may be known to be irrelevant, uninteresting or

redundant
● Random Sampling

 select a random sample of the feature
 may be appropriate in the case of many weakly relevant

features and/or in connection with ensemble methods

11 © J. Fürnkranz

Supervised FSSSupervised FSS

● Filter approaches:
 compute some measure for estimating the ability to

discriminate between classes
 typically measure feature weight and select the best n

features
 problems

● redundant features (correlated features will all have similar
weights)

● dependent features (some features may only be important in
combination (e.g., XOR/parity problems).

● Wrapper approaches
 search through the space of all possible feature subsets
 each search subset is tried with the learning algorithm

12 © J. Fürnkranz

Supervised FSS: FiltersSupervised FSS: Filters

● foreach attribute A
 W[A] = feature weight according to some measure of

 discrimination
● e.g., decision tree splitting criteria (entropy/information gain, gini-

index, ...), attribute weighting criteria (Relief, ...), etc.
● select the n features with highest W[A]

Basic idea:
● a good attribute should discriminate between the different

classes
● use a measure of discrimination to determine which attributes to

select
Disadvantage:

● quality of each attribute is measured in isolation
● some attributes may only be useful in combination with others

13 © J. Fürnkranz

Basic idea:
● in a local neighborhood around an example R a good

attribute A should
 allow to discriminate R from all examples of different classes

(the set of misses)
● therefore the probability that the attribute has a different value for

R and a miss M should be high
 have the same value for all examples of the same class as R

(the set of hits)
● therefore the probability that the attribute has a different value for

R and a hit H should be low
→ try to estimate and maximize

where aX is the value of attribute A in example X

RELIEFRELIEF
(Kira & Rendell, ICML-92)(Kira & Rendell, ICML-92)

W [A]=P aR≠aM −P aR≠aH 

14 © J. Fürnkranz

RELIEFRELIEF
(Kira & Rendell, ICML-92)(Kira & Rendell, ICML-92)

● set all attribute weights W[A] = 0.0
● for i = 1 to m (← user-settable parameter)

 select a random example R
 find

● H: nearest neighbor of same class (near hit)
● M: nearest neigbor of different class (near miss)

 for each attribute A
●

where d(A,X,Y) is the distance in attribute A between
examples X and Y (normalized to [0,1]-range).

W [A]  W [A]−
d A , H , R

m


d A , M , R
m

15 © J. Fürnkranz

FSS: Wrapper ApproachFSS: Wrapper Approach
(John, Kohavi, Pfleger, ICML-94)(John, Kohavi, Pfleger, ICML-94)

● Wrapper Approach:
 try a feature subset with the learner
 improve it by modifying the feature sets based on the result
 repeat

Figure by Kohavi & John

16 © J. Fürnkranz

FSS: Wrapper ApproachFSS: Wrapper Approach
● Forward selection:

1.start with empty feature set F
2. for each attribute A

a) F = F ∪ {A}
b) Estimate Accuracy of Learning algorithm on F
c) F = F \ {A}

3. F = F ∪ {attribute with highest estimated accuracy}
4.goto 2. unless estimated accuracy decreases significantly

● Backward elimination:
 start with full feature set F
 try to remove attributes

● Bi-directional search is also possible

17 © J. Fürnkranz

Example: Forward SearchExample: Forward Search

Figure by John, Kohavi & Pfleger

Attrs: current set of attributes
Est: accuracy estimated by wrapper
Real: „real“ accuracy

18 © J. Fürnkranz

PropertiesProperties

● Advantage:
 find feature set that is tailored to learning algorithm
 considers combinations of features, not only individual feature

weights
 can eliminate redundant features

(picks only as many as the algorithm needs)

● Disadvantage:
 very inefficient: many learning cycles necessary

19 © J. Fürnkranz

Comparison Wrapper / ReliefComparison Wrapper / Relief

Figure by John, Kohavi & Pfleger

Note: RelieveD is a version of Relief that uses all examples instead of a random sample

● on these datasets:
 forward selection reduces attributes w/o error increase

● in general, it may also reduce error

20 © J. Fürnkranz

Feature TransformationFeature Transformation

● bring features into a usable form
● numerization

 some algorithms can only use numeric data
 nominal → binary

● a nominal attribute with n values is converted into n binary attributes
 binary → numeric

● binary features may be viewed as special cases of numeric
attributes with two values

● discretization
 some algorithms can only use categorical data

● transform numeric attributes into a number of (ordered) categorical
values

21 © J. Fürnkranz

DiscretizationDiscretization

● Supervised vs. Unsupervised:
 Unsupervised:

● only look at the distribution of values of the attribute
 Supervised:

● also consider the relation of attribute values to class values

● Merging vs. Splitting:
 Merging (bottom-up discretization):

● Start with a set of intervals (e.g., each point is an interval)
and successively combine neighboring intervals

 Splitting (top-down discretization):
● Start with a single interval and successively split the interval

into sub-intervals

22 © J. Fürnkranz

Unsupervised DiscretizationUnsupervised Discretization

● domain-dependent:
● suitable discretizations are often known
● age (0-18) →

baby (0-3), child (3-6), school child (6-10), teenager (11-18)

● equal-width:
● divide value range into a number of intervals with equal width
● age (0,18) → (0-3, 4-7, 8-11, 12-15, 16-18)

● equal-frequency:
● divide value range into a number of intervals so that (approximately)

the same number of datapoints are in each interval
● e.g., N = 5: each interval will contain 20% of the training data
● good for non-uniform distributions (e.g., salary)

23 © J. Fürnkranz

Supervised Discretization: Supervised Discretization:
 Chi-Merge Chi-Merge (Kerber, AAAI-92)(Kerber, AAAI-92)

● initialization:
 sort examples according to feature value
 construct one interval for each value

● interval merging:
 compute 2 value for each pair of adjacent intervals

Aij = number of examples in i-th interval that are of class j
Eij = expected number of examples in i-th interval that are of class j
 = examples in i-th interval Ni × fraction Cj/N of (all) examples of class j

 merge those with lowest 2 value
● stop

 when the 2 values of all pairs exceed a significance threshold

2=∑
i=1

2

∑
j=1

c Aij−E ij 
2

E ij

 Basic Idea: merge neighboring intervals if the class information is
 independent of the interval an example belongs to

E ij=N i
C j

N
N i=∑

j=1

c

Aij C j=∑
i=1

nintervals

Aij

24 © J. Fürnkranz

Supervised Discretization: Supervised Discretization:
 Entropy-Split Entropy-Split (Fayyad & Irani, IJCAI-93)(Fayyad & Irani, IJCAI-93)

 Basic Idea: grow a decision tree using a single numeric attribute and
 use the value ranges in the leaves as ordinal values

● initialization:
 initialize intervals with a single interval covering all examples S
 sort all examples according to the attribute value
 initialize the set of possible split points

 simple: all values
 more efficient: only between class changes in sorted list

● interval splitting:
 select split point with the minimum weighted entropy

 recursively apply Entropy-Split to and
● stop

 when a given number of splits is achieved
 or when splitting would yield too small intervals
 or MDL-based stopping criterion (Fayyad & Irani, 1993)

T max=arg min
T ∣S AT∣

∣S∣
Entropy S AT 

∣S A≥T∣
∣S∣

Entropy S A≥T 
S AT max

S A≥T max

25 © J. Fürnkranz

ExampleExample

Play

Temperature

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Play

Temperature

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Slide taken from Witten & Frank

26 © J. Fürnkranz

Unsupervised Feature ConstructionUnsupervised Feature Construction

● based on domain knowledge
 Example: Body Mass Index

● automatic
 Examples:

● kernel functions
 may be viewed as feature construction modules
 → support vector machines

● principal components analysis
 transforms an n-dimensional space into a lower-dimensional subspace

w/o losing much information
● GLEM:

 uses an Apriori -like algorithms to compute all conjunctive combinations
of basic features that occur at least n times

 application to constructing evaluation functions for game Othello

BMI=weight kg 
height m2

27 © J. Fürnkranz

Supervised Feature ConstructionSupervised Feature Construction

● use the class information to construct features that help to
solve the classification problem

● Examples:
 Wrapper approach

● use rule or decision tree learning algorithm
● observe frequently co-occurring features or feature values
● encode them as separate features

 Neural Network
● nodes in hidden layers may be interpreted as constructed features

28 © J. Fürnkranz

ScalabilityScalability

● databases are often too big for machine learning algorithms
 ML algorithms require frequent counting operations and multi-

dimensional access to data
 only feasible for data that can be held in main memory

● two strategies to make DM algorithms scalable
 design algorithms that are explicitly targetted towards

minimizing the number of database operations (e.g., Apriori)
 use sampling to work on subsets of the data

29 © J. Fürnkranz

SamplingSampling

● Random Sampling
 Select a random subset of the data

● Progressive Sampling
 start with a small sample
 increase sample size

● arithmetic: increase sample size by fixed number of examples
● geometric: multiply size with a fixed number (e.g., double size)

 stop when convergence is detected

● Sequential sampling
 rule out solution candidates based on significant differences

30 © J. Fürnkranz

WindowingWindowing
● Idea:

 focus the learner on the parts of the search space that are not
yet correctly covered

● Algorithm:

1. Initialize the window with a random subsample of the
available data

2.Learn a theory from the current window
3. If the learned theory correctly classifies all examples

(including those outside of the window), return the theory
4.Add some mis-classified examples to the window and goto 2.

● Properties:
 may learn a good theory from a subset of the data
 problems with noisy data

31 © J. Fürnkranz

Weiterführende Lehrveranstaltungen Weiterführende Lehrveranstaltungen

● Computer Poker Challenge
 besteht aus:

● Seminar KE und ML in Spielen
● Praktikum aus Künstliche Intelligenz

 ACHTUNG: Beginn in der 2. März-Woche!
 Teilnahme an einem Internationalen Computer Poker-Wettbewerb

● Maschinelles Lernen: Statistische Verfahren 1 + 2 (Roth/Schiele)
● Neural Networks (Stibor)
● Einführung in die Künstliche Intelligenz (Fürnkranz, 3+1)
● Web Mining (erst wieder SS09)
● Data und Knowledge Engineering (A. Buchmann, Fürnkranz)
● Seminare (wechselnde Themen, z.B. Mining in Graphs).
● Hiwis gesucht!

