
1 © J. FürnkranzInstance-Based Learning

Instance-Based LearningInstance-Based Learning

● Rote Learning
● k Nearest-Neighbor Classification

 Prediction, Weighted Prediction
 choosing k
 feature weighting (RELIEF)
 instance weighting (PEBLS)
 efficiency
 kD-trees

● IBL and Rule Learning
 EACH: Nearest Nested Hyper-Rectangles
 RISE

Acknowledgements:
Some slides adapted from

 Tom Mitchell
 Eibe Frank & Ian Witten
 Kan, Steinbach, Kumar
 Ricardo Gutierrez-Osuna
 Gunter Grieser

2 © J. FürnkranzInstance-Based Learning

Instance Based ClassifiersInstance Based Classifiers

● No model is learned
 The stored training instances themselves represent the

knowledge
 Training instances are searched for instance that most closely

resembles new instance
→ lazy learning

● Examples:
 Rote-learner

● Memorizes entire training data and performs classification only if
attributes of record match one of the training examples exactly

3 © J. FürnkranzInstance-Based Learning

Rote LearningRote Learning

Day Temperature Outlook Humidity Windy Play Golf?
07-05 hot sunny high false no
07-06 hot sunny high true no
07-07 hot overcast high false yes
07-09 cool rain normal false yes
07-10 cool overcast normal true yes
07-12 mild sunny high false no
07-14 cool sunny normal false yes
07-15 mild rain normal false yes
07-20 mild sunny normal true yes
07-21 mild overcast high true yes
07-22 hot overcast normal false yes
07-23 mild rain high true no
07-26 cool rain normal true no
07-30 mild rain high false yes

today cool sunny normal false yes

4 © J. FürnkranzInstance-Based Learning

Nearest Neighbor ClassificationNearest Neighbor Classification

Day Temperature Outlook Humidity Windy Play Golf?
07-05 hot sunny high false no
07-06 hot sunny high true no
07-07 hot overcast high false yes
07-09 cool rain normal false yes
07-10 cool overcast normal true yes
07-12 mild sunny high false no
07-14 cool sunny normal false yes
07-15 mild rain normal false yes
07-20 mild sunny normal true yes
07-21 mild overcast high true yes
07-22 hot overcast normal false yes
07-23 mild rain high true no
07-26 cool rain normal true no
12-30 mild rain high false yes

tomorrow mild sunny normal false yes

5 © J. FürnkranzInstance-Based Learning

Instance Based ClassifiersInstance Based Classifiers

● No model is learned
 The stored training instances themselves represent the

knowledge
 Training instances are searched for instance that most closely

resembles new instance
→ lazy learning

● Examples:
 Rote-learner

● Memorizes entire training data and performs classification only if
attributes of record match one of the training examples exactly

 Nearest-neighbor classifier
● Uses k “closest” points (nearest neigbors) for performing

classification

6 © J. FürnkranzInstance-Based Learning

?

Training

ClassificationNew Example

K-Nearest Neighbor algorithms
classify a new example by

comparing it to all previously
seen examples. The

classifications of the k most
similar previous cases are used
for predicting the classification

of the current example.

The training examples are
used for

• providing a library of
sample cases

• re-scaling the similarity
function to maximize

performance

Nearest Neighbor ClassifierNearest Neighbor Classifier

7 © J. FürnkranzInstance-Based Learning

Nearest NeighborsNearest Neighbors

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

 k nearest neighbors of an example x are the data points
that have the k smallest distances to x

8 © J. FürnkranzInstance-Based Learning

PredictionPrediction

The predicted class is determined from the nearest neighbor list

● classification
 take the majority vote of class labels among the k-nearest

neighbors

● can be easily be extended to regression
 predict the average value of the class value of the k-nearest

neighbors

y=1
k ∑i=1

k
yi

y=maxc∑i=1

k {1 if y i=c
0 if y i≠c

=maxc∑i=1

k
1 yi=c

indicator function

9 © J. FürnkranzInstance-Based Learning

Weighted PredictionWeighted Prediction

● Often prediction can be improved if the influence of each
neighbor is weighted

● Weights typically depend on distance, e.g.

● Note:
 with weighted distances, we could use all examples for

classifications (→ Inverse Distance Weighting)

y=
∑i=1

k
w i⋅y i

∑i=1

k
w i

w i=
1

d x i , x2

10 © J. FürnkranzInstance-Based Learning

Nearest-Neighbor ClassifiersNearest-Neighbor Classifiers

Unknown record ● Require three things
 The set of stored examples
 Distance Metric to compute

distance between examples
 The value of k, the number of

nearest neighbors to retrieve
● To classify an unknown example:

 Compute distance to other
training examples

 Identify k nearest neighbors
 Use class labels of nearest

neighbors to determine the
class label of unknown example
(e.g., by taking majority vote)

unknown example

11 © J. FürnkranzInstance-Based Learning

Voronoi DiagramVoronoi Diagram

● shows the regions
of points that are
closest to a given
set of points

● boundaries of these
regions correspond
to potential decision
boundaries of 1NN
classifier

12 © J. FürnkranzInstance-Based Learning

Choosing the value of kChoosing the value of k

13 © J. FürnkranzInstance-Based Learning

Choosing the value of kChoosing the value of k

● If k is too small
 sensitive to noise in the data (misclassified examples)

● If k is too large
 neighborhood may include

points from other classes
 limiting case:

● all examples are considered
● largest class is predicted

● good values can be found
 e.g, by evaluating various

values with cross-validation on the training data

X

k≥∣D∣

14 © J. FürnkranzInstance-Based Learning

Distance Functions Distance Functions

● Computes the distance between two examples
 so that we can find the “nearest neighbor” to a given example

● General Idea:
 reduce the distance d (x1, x2) of two examples to the distances

d A (v1, v2) between two values for attribute A
● Popular choices

 Euclidean Distance:
● straight-line between two points

 Manhattan or City-block Distance:
● sum of axis-parallel line segments

d  x1, x2=∑A
d Av1, A , v2, A

2

d  x1, x2=∑A
d Av1, A , v2, A¿

15 © J. FürnkranzInstance-Based Learning

Distance Functions for Distance Functions for
Numerical AttributesNumerical Attributes

● Numerical Attributes:
 distance between two attribute values

● Normalization:
 Different attributes are measured on different scales

→ values need to be normalized in [0,1]:

 Note:
● This normalization assumes a (roughly) uniform distribution of

attribute values
● For other distributions, other normalizations might be preferable

 e.g.: logarithmic for salaries?

vi=
vi−min v j

max v j−min v j

d Av1, v2=∣v1−v2∣

16 © J. FürnkranzInstance-Based Learning

Distance Functions for Distance Functions for
Symbolic AttributesSymbolic Attributes

● 0/1 distance

● Value Difference Metric (VDM) (Stanfill & Waltz 1986)
 two values are similar if they have approximately the same

distribution over all classes (similar frequencies in all classes)
 sum over all classes the difference of the percentage of examples

with value v1 in this class and examples with value v1 in this class

 used in PEBLS with k = 1
(Parallel Exemplar-Based Learning System; Cost & Salzberg, 1993)

d Av1, v2={0 if v1=v2

1 if v1≠v2

d Av1, v2=∑c∣n1, c

n1
−

n2,c

n2 ∣
k

k is a user-settable
parameter (e.g., k=2)

17 © J. FürnkranzInstance-Based Learning

VDM ExampleVDM Example

Distance between values:
d(Refund=Yes,Refund=No)
 = | 0/3 – 3/7 | + | 3/3 – 4/7 | = 6/7

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Class Refund

Yes No

Yes 0 3

No 3 4

18 © J. FürnkranzInstance-Based Learning

VDM ExampleVDM Example

Distance between values:
d(Single,Married)
 = | 2/4 – 0/4 | + | 2/4 – 4/4 | = 1
d(Single,Divorced)
 = | 2/4 – 1/2 | + | 2/4 – 1/2 | = 0
d(Married,Divorced)
 = | 0/4 – 1/2 | + | 4/4 – 1/2 | = 1

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Class Marital Status

Single Married Divorced

Yes 2 0 1

No 2 4 1

19 © J. FürnkranzInstance-Based Learning

Other Distance FunctionsOther Distance Functions

● Other distances are possible
 hierarchical attributes

● distance of the values in the hiearchy
● e.g., length of shortest path form node v1 to node v2

 string values
● edit distance

● in general
● distances are domain-dependent
● can be chosen appropriately

Distances for Missing Values
 not all attribute values may be specified for an example
 Common policy:

● assume missing values to be maximally distant

20 © J. FürnkranzInstance-Based Learning

Feature WeightingFeature Weighting

● Not all dimensions are equally important
 comparisons on some dimensions might even be completely

irrelevant for the prediction task
 straight-forward distance functions give equal weight to all

dimensions
● Idea:

 use a weight for each attribute to denote its importance
 e.g., Weighted Euclidean Distance:

 weights wA can be set by user or determined automatically
● Survey of feature weighting algorithms:

 Dietrich Wettschereck, David W. Aha, Takao Mohri:
A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.
 Artificial Intelligence Review 11(1-5): 273-314 (1997)

d  x1, x2=∑A
w A⋅d A v1, A , v2, A

2

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.1003

21 © J. FürnkranzInstance-Based Learning

Basic idea:
● in a local neighborhood around an example x a good attribute A

should
 allow to discriminate x from all examples of different classes

(the set of misses)
● therefore the probability that the attribute has a different value for

x and a miss m should be high
 have the same value for all examples of the same class as x

(the set of hits)
● therefore the probability that the attribute has a different value for

x and a hit h should be low
→ try to estimate and maximize

where vx is the value of attribute A in example x

RELIEFRELIEF
(Kira & Rendell, ICML-92)(Kira & Rendell, ICML-92)

wA=Pr v x≠vm−Pr v x≠vh

22 © J. FürnkranzInstance-Based Learning

RELIEFRELIEF
(Kira & Rendell, ICML-92)(Kira & Rendell, ICML-92)

● set all attribute weights wA = 0.0
● for i = 1 to r (← user-settable parameter)

 select a random example x
 find

● h: nearest neighbor of same class (near hit)
● m: nearest neighbor of different class (near miss)

 for each attribute A

●

where dA(x,y) is the distance in attribute A between
examples x and y (normalized to [0,1]-range).

wA  wA−
d Ah , x 

r


d Am , x 
r

23 © J. FürnkranzInstance-Based Learning

Lazy Learning AlgorithmsLazy Learning Algorithms

● kNN is considered a lazy learning algorithm
 Defers data processing until it receives a request to classify an

unlabelled example
 Replies to a request for information by combining its stored training

data
 Discards the constructed answer and any intermediate results

● Other names for lazy algorithms
 Memory-based, Instance-based , Exemplar-based , Case-based,

Experiencebased
● This strategy is opposed to eager learning algorithms which

 Compiles its data into a compressed description or model
 Discards the training data after compilation of the model
 Classifies incoming patterns using the induced model

24 © J. FürnkranzInstance-Based Learning

● Only those instances involved in a decision need to be stored
 Noisy instances should be filtered out

● Idea:
 only use prototypical examples

Learning PrototypesLearning Prototypes

25 © J. FürnkranzInstance-Based Learning

Learning Prototypes: IB-algorithmsLearning Prototypes: IB-algorithms

● Case Study for prototype selection
 Aha, Kibler and Albert: Instance-based learning. Machine Learning,1991.

● IB1: Store all examples
● high noise tolerance
● high memory demands

● IB2: Store examples that are misclassified by current example set
● low noise tolerance
● low memory demands

● IB3: like IB2, but
 maintain a counter for the number of times the example participated

in correct and incorrect classifications
 use a significant test for filtering noisy examples

● improved noise tolerance
● low memory demands

26 © J. FürnkranzInstance-Based Learning

Instance WeightingInstance Weighting

● Selecting instances is a special case of instance weighting
● Idea:

 all instances are assigned weights
 instances with higher weights are always distant

● hence have a low impact on classification
● instance weight ignores this instance x

● Similarity function used in PEBLS (Cost & Salzberg, 1993)


where

● if instance x predicts well
● if instance x does not predict well

d  x1, x2=w x1
⋅w x2

⋅∑A
d Av1, v2

k

w x=
Number of times x has been used for prediction
Number of times x has correctly predicted the class

w x≈1
w x1

w x=∞

27 © J. FürnkranzInstance-Based Learning

EfficiencyEfficiency

● very efficient in training
 only store the training data

● not so efficient in testing
 computation of distance measure to every training example
 much more expensive than, e.g., rule learning

● Note that kNN and 1NN are equal in terms of efficiency
 retrieving the k nearest neighbors is (almost) no more expensive

than retrieving a single nearest neighbor
 k nearest neighbors can be maintained in a queue

28 © J. FürnkranzInstance-Based Learning

Finding nearest neighbors efficientlyFinding nearest neighbors efficiently

● Simplest way of finding nearest neighbour:
 linear scan of the data
 classification takes time proportional to the product of the number of

instances in training and test sets
● Nearest-neighbor search can be done more efficiently using

appropriate data structures
 kD-trees
 ball trees

29 © J. FürnkranzInstance-Based Learning

kD-TreeskD-Trees

● common setting (others possible)
 each level corresponds to one of the attributes

● order of attributes can be arbitrary, fixed, and cyclic
 each level splits according to this attribute

● ideally use the median value (results in balanced trees)

30 © J. FürnkranzInstance-Based Learning

Building kD-trees incrementallyBuilding kD-trees incrementally

● Big advantage of instance-based learning: classifier can be
updated incrementally
 Just add new training instance after it arrives!

● Can we do the same with kD-trees?
● Heuristic strategy:

 Find leaf node containing new instance
 Place instance into leaf if leaf is empty
 Otherwise, split leaf according to the longest dimension

(to preserve squareness)
● Tree should be re-built occasionally

 e.g., if depth grows to twice the optimum depth

31 © J. FürnkranzInstance-Based Learning

UsingUsing k kD-trees: exampleD-trees: example

● The effect of a k-d tree is to partition the (multi-dimensional)
sample space according to the underlying data distribution
 finer partitioning in regions with high density
 coarser partitioning in regions with low density

● For a given query point
 descending the tree to find the

data points lying in the cell that
contains the query point

 examine surrounding cells if they
overlap the ball centered at the
query point and the closest data
point so far

→ only a few cells have to be searched

32 © J. FürnkranzInstance-Based Learning

Ball treesBall trees

● Problem in kD-trees: corners
● Observation:

 no need to make sure that
regions don't overlap

● Can use balls (hyperspheres)
instead of hyperrectangles
 A ball tree organizes the data

into a tree of k-dimensional
hyperspheres

 Normally allows for a better fit
to the data and thus more
efficient search

33 © J. FürnkranzInstance-Based Learning

non-overlapping rectangles nested rectangles

Nearest Hyper-RectangleNearest Hyper-Rectangle

● Nearest-Neighbor approaches can be extended to compute the
distance to the nearest hyper-rectangle
 a hyper-rectangle corresponds to a rule
 conditions are intervals along each dimension

● To do so, we need to adapt the distance measure
 distance of a point to a rectangle instead of point-to-point distance

34 © J. FürnkranzInstance-Based Learning

Rectangle-to-Point DistanceRectangle-to-Point Distance

d x , R=0

A

B

d x , R=d A  x , R

d x , R=d B  x , R
d  x , R =

d A  x , R d B  x , R

d A x , R 

d A x , R 

d B x , R
d B x , R

35 © J. FürnkranzInstance-Based Learning

Rectangle-to-Point Attribute DistanceRectangle-to-Point Attribute Distance

● numeric Attributes
 distance of the point to the closest edge of the rectangle along this

attribute (i.e., distance to the upper/lower bound of the interval)

if rule R uses as condition for attribute A
● symbolic attributes

 0/1 distance

if rule R uses as condition for attribute A

d Av , R={ 0 if vmin , AR
≤v≤vmax , AR

v−vmax , AR
if vvmax , AR

vmin , AR
−v if vvmin , AR

vmin , AR
≤A≤vmax , AR

d Av , R={0 if v=v AR

1 if v≠v AR

A=v AR

One can also adapt
other distances.

RISE uses a version
of the VDM.

36 © J. FürnkranzInstance-Based Learning

NEAR NEAR (Salzberg, 1991)(Salzberg, 1991)

1. randomly choose r seed examples
● convert them into rules

2. for each example x
● choose rule
● if x is classified correctly by Rmin

 enlarge the condition of Rmin so that x is covered
 for each numeric attribute enlarge the interval if necessary
 for each symbolic attribute delete the condition if necessary

● else if x is classified incorrectly by Rmin

 add example x as a new rule

Rmin=arg minR d x , R

● NEAR uses both instance and feature weighting

d  x , R=w x⋅∑A
wA

2 d Ax , R2

37 © J. FürnkranzInstance-Based Learning

Instance and Feature WeightingInstance and Feature Weighting

● Instance Weighting as in PEBLS

● Feature Weights are computed incrementally
 if an example is incorrectly classified

● the weights of all matching attributes are increased by a fixed
percentage (20%)
 this has the effect of moving the example farther away along these

dimensions
● the weights of all attributes that do not match are decreased by a

fixed percentage (20%)
 if an example is correctly classified

● do the opposite

38 © J. FürnkranzInstance-Based Learning

Second Chance HeuristicSecond Chance Heuristic

An improved version used a Second Chance Heuristic
● if the nearest rule did not classify correctly, try the second one

 if this one matches → expand it to cover the example
 if not → add the example as a new rule

● this can lead to the generation of nested rules
 i.e., rectangles inside of other rectangles
 at classification time, use the smallest matching rectangle

● but this did not work well (overfitting?)
 thus nested rules may be interpreted as rules with exceptions

39 © J. FürnkranzInstance-Based Learning

RISE RISE (Domingos, 1996)(Domingos, 1996)

1. turn each example into a rule resulting in a theory T
2. repeat

● for each rule R
i. choose uncovered example
ii. R' = minimalGeneralisation(R,xmin)
iii. replace R with R' if this does not decrease the

accuracy of T
iv. delete R' if it is already part of T (duplicate rule)

3. until no further increase in accuracy

xmin=arg min x d  x , R

● RISE uses the simple distance function

d  x , R=∑A
d Ax , Rk

(Rule Induction from a Set of Exemplars)

40 © J. FürnkranzInstance-Based Learning

Differences NEAR and RISE Differences NEAR and RISE

● NEAR
 focuses on examples
 incremental training
 instance weighted and

feature-weighted Euclidean
distance

 tie breaking using the
smallest rule

● RISE
 focuses on rules
 batch training
 straight-forward Manhattan

distance

 tie breaking with Laplace
heuristic

41 © J. FürnkranzInstance-Based Learning

Discussion Discussion
● Nearest Neighbor methods are often very accurate

 Assumes all attributes are equally important
● Remedy: attribute selection or weights

 Possible remedies against noisy instances:
● Take a majority vote over the k nearest neighbors
● Removing noisy instances from dataset (difficult!)

 Statisticians have used k-NN since early 1950s
● If n → ∞ and k/n → 0, error approaches minimum
● can model arbitrary decision boundaries

● ...but somewhat inefficient (at classification time)
 straight-forward application maybe too slow
 kD-trees become inefficient when number of attributes is too large

(approximately > 10)
 Ball trees work well in higher-dimensional spaces

● several similarities with rule learning

