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Nächste WocheNächste Woche

● Dienstag, 2. 12.: Vortrag Ian Witten (statt Vorlesung)
  IGD, 10h

● Donnerstag, 4.12.: Übung (keine Vorlesung)
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Evaluation and Evaluation and 
Cost-Sensitive LearningCost-Sensitive Learning

● Evaluation
 Hold-out Estimates
 Cross-validation

● Significance Testing
 Sign test

● ROC Analysis
 Cost-Sensitive Evaluation
 ROC space
 ROC convex hull
 Rankers and Classifiers
 ROC curves
 AUC

● Cost-Sensitive Learning
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Evaluation of Learned ModelsEvaluation of Learned Models

● Validation through experts
 a domain experts evaluates the plausibility of a learned model

+ but often the only option (e.g., clustering)
− subjective, time-intensive, costly

● Validation on data
 evaluate the accuracy of the model on a separate dataset 

drawn from the same distribution as the training data
− labeled data are scarce, could be better used for training
+ fast and simple, off-line, no domain knowledge needed, methods 

for re-using training data exist (e.g., cross-validation)
● On-line Validation

 test the learned model in a fielded application
+ gives the best estimate for the overall utility
− bad models may be costly
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Confusion Matrix Confusion Matrix 
(Concept Learning)(Concept Learning)

Classified as + Classified as −

Is + true positives (tp) false negatives (fn) tp + fn = P

Is − false positives (fp) true negatives (tn) fp + tn = N

tp + fp fn + tn |E| =P + N

● the confusion matrix summarizes all important information 
 how often is class i confused with class j 

● most evaluation measures can be computed from the 
confusion matrix
 accuracy
 recall/precision, sensitivity/specificity
 ...
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Basic Evaluation MeasuresBasic Evaluation Measures

● true positive rate:
● percentage of correctly classified positive examples

● false positive rate:
● percentage of negative examples incorrectly classified as positive

● false negative rate:
● percentage of positive examples incorrectly classified as negative

● true negative rate:
● percentage of correctly classified negative examples

● accuracy:
● percentage of correctly classified examples
● can be written in terms of tpr and fpr: 

● error:
● percentage of incorrectly classified examples

acc= tptn
PN

fpr= fp
fptn

tpr= tp
tp fn

err= fp fn
PN =1−acc= P

PN⋅1−tpr N
PN⋅ fpr

fnr= fn
tp fn=1−tpr

tnr= tn
fptn=1− fpr

acc= P
PN

⋅tpr N
PN

⋅1 – fpr
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● for multi-class problems, the confusion matrix has many 
more entries:

● accuracy is defined analogously to the two-class case:

Confusion Matrix Confusion Matrix 
(Multi-Class Problems)(Multi-Class Problems)

A B C D

A nA,A nB,A nC,A nD,A nA

B nA,B nB,B nC,B nD,B nB

C nA,C nB,C nC,C nD,C nC

D nA,D nB,D nC,D nD,D nD

|E|

classified as

n A nB nC nD

tru
e 

cl
as

s

accuracy=
nA , AnB, BnC ,CnD , D

∣E∣
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Out-of-Sample TestingOut-of-Sample Testing
● Performance cannot be measured on training data

 overfitting!
● Reserve a portion of the available data for testing

 typical scenario
● 2/3 of data for training
● 1/3 of data for testing (evaluation)

 a classifier is trained on the training data
 and tested on the test data

● e.g., confusion matrix is computed for test data set
● Problems:

 waste of data
 labelling may be expensive
 high variance 

● often: repeat 10 times or → cross-validation



8 © J. Fürnkranz

Typical Learning CurvesTypical Learning Curves

Quelle: Winkler 2007, nach Mitchell 1997,
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Cross-ValidationCross-Validation
● Algorithm:

 split dataset into x (usually 10) partitions
 for every partition X

● use other x-1 partitions for learning and partition X for testing
 average the results

● Example: 4-fold cross-validation
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Leave-One-Out Cross-ValidationLeave-One-Out Cross-Validation

● n-fold cross-validation
 where n is the number of examples:

● use n-1 examples for training
● 1 example for testing
● repeat for each example

● Properties:
+ makes best use of data

● only one example not used for testing
+ no influence of random sampling

● training/test splits are determined deterministically
− typically very expensive

● but, e.g., not for k-NN (Why?)
− bias

● example see exercises
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Experimental Evaluation of AlgorithmsExperimental Evaluation of Algorithms

● Typical experimental setup (in % Accuracy):
 evaluate n algorithms 

● Can we conclude that algorithm X is better than Y? How?

on m datasets
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Summarizing Experimental ResultsSummarizing Experimental Results

● Averaging the performance 
 May be deceptive:

● algorithm A is 0.1% better on 19 datasets with thousands of 
examples

● algorithm B is 2% better on 1 dataset with 50 examples
● A is better, but B has the higher average accuracy

 In our example: “Grading” is best on average

● Counting wins/ties/losses
 now “Stacking” is best
 Results are “inconsistent”:

● Grading > Select > Voting > Grading
 How many “wins” are needed to conclude that one method is 

better than the other?
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● Given: 
 A coin with two sides (heads and tails)

● Question:
 How often do we need heads in order to be sure that 

the coin is not fair?
● Null Hypothesis:

 The coin is fair (P(heads) = P(tails) = 0.5)
 We want to refute that!

● Experiment:
 Throw up the coin N times

● Result:
 i heads, N− i tails
 What is the probability of observing i under the null hypothesis?

Sign TestSign Test
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● Given: 
 A coin with two sides (heads and tails)

● Question:
 How often do we need heads in order to be sure that 

the coin is not fair?
● Null Hypothesis:

 The coin is fair (P(heads) = P(tails) = 0.5)
 We want to refute that!

● Experiment:
 Throw up the coin N times

● Result:
 i heads, N− i tails
 What is the probability of observing i under the null hypothesis?

Sign TestSign Test

Two Learning Algorithms (A and B)

On how many datasets must A be better than B 
to ensure that A is a better algorithm than B?

Both Algorithms are equal.

Run both algorithms on N datasets

i wins for A on N-i wins for B
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Sign Test: SummarySign Test: Summary

We have a binomial distribution with p = ½ 
● the probability of having i successes is
● the probability of having at most k successes is

(one-tailed test)

● the probability of having at most k successes or at least N− k 
successes is (two-tailed test)

● for large N, this can be approximated with a normal distribution

P i =Ni  pi 1− pN−i

P i≤k∨i≥N−k = 1
2N ∑

i=1

k

Ni  1
2N ∑

i=1

k

 N
N−i = 1

2N−1∑
i=1

k

Ni 

P i≤k =∑
i=1

k

Ni  1
2i⋅

1
2N−i=

1
2N ∑

i=1

k

 N
i 

Illustrations taken from http://www.mathsrevision.net/
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Table Table 
Sign TestSign Test

● Example:
 20 datasets
 Alg. A vs. B

● A 4 wins
● B 14 wins
● 2 ties (not counted)

 we can say 
with a certainty
of 95% that B is 
better than A

 but not with 
99% certainty!

● Online:

Source: Erich Mittenecker, Planung und Statistische Auswertung von Experimenten, 
              10th edition, Deuticke Verlag, Wien, 1983.

http://www.fon.hum.uva.nl/Service/Statistics/Sign_Test.html

http://www.fon.hum.uva.nl/Service/Statistics/Sign_Test.html
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PropertiesProperties

● Sign test is a very simple test
 does not make any assumption about the distribution

● Sign test is very conservative
 If it detects a significant difference, you can be sure it is
 If it does not detect a significant difference, a different test that 

models the distribution of the data may still yield significance
● Alternative tests:

 two-tailed t-test:
● incorporates magnitude of the differences in each experiment
● assumes that differences form a normal distribution

● Rule of thumb:
 Sign test answers the question “How often?”
 t-test answers the question “How much?”



18 © J. Fürnkranz

Problem of Multiple ComparisonsProblem of Multiple Comparisons

● Problem:
 for each pair of algorithms we have a probability of 5% that 

one algorithm appears to be better than the other 
● even if the null hypothesis holds!

→ if we make many pairwise comparisons the chance that a 
“significant” difference is observed increases rapidly

● Solutions:
 Bonferroni adjustments:

● Basic idea: tighten the significance thresholds depending on the 
number of comparisons

● Too conservative
 Friedman and Nemenyi tests

→ Demsar, Journal of Machine Learning Research 7, 2006
      http://jmlr.csail.mit.edu/papers/v7/demsar06a.html
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Cost-Sensitive EvaluationCost-Sensitive Evaluation

● Predicting class i instead of the correct j is associated with 
a cost factor C(i | j)
 0/1-loss (accuracy):

 general case for concept learning:

Classified as + Classified as −

Is + C(+|+) C(−|+)

Is − C(+|−) C(−|−)

C i∣ j  = { 0 if i= j
1 if i≠ j
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Examples Examples 

● Loan Applications
 rejecting an applicant who will not pay back → minimal costs
 accepting an applicant who will pay back      → gain
 accepting an applicant who will not pay back → big loss
 rejecting an applicant who would pay back     → loss

● Spam-Mail Filtering
 rejecting good E-mails (ham) is much worse than accepting a 

few spam mails
● Medical Diagnosis

 failing to recognize a disease is often much worse than to 
treat a healthy patient for this disease
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Cost-Sensitive EvaluationCost-Sensitive Evaluation

● Expected Cost (Loss): 

● If there are no costs for correct classification:

 note the general form:
● this is (except for a constant term) the linear cost metric we know 

from rule learning
● Distribution of positive and negative examples may be 

viewed as a cost parameter
 error is a special case 
 we abbreviate the costs with c− = C(+|−), c+ = C(−|+) 

L = tpr⋅C ∣  fpr⋅C ∣−  fnr⋅C −∣  tnr⋅C −∣−

C ∣−=
N

PN , C −∣=
P

PN 

L = fpr⋅C ∣−  fnr⋅C −∣ = fpr⋅C ∣−  1−tpr ⋅C −∣
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ROC AnalysisROC Analysis

● Receiver Operating Characteristic
 origins in signal theory to show tradeoff between hit rate and 

false alarm rate over noisy channel
● Basic Objective:

 Determine the best classifier for varying cost models
● accuracy is only one possibility, where true positives and false 

positives receive equal weight
● Method:

 Visualization in ROC space
● each classifier is characterized by its measured fpr and tpr

 ROC space is like coverage space (→ rule learning) except 
that axes are normalized
● x-axis: false positive rate fpr
● y-axis: true positive rate tpr



23 © J. Fürnkranz

Example ROC plot Example ROC plot 

ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/)

Slide © P. Flach, ICML-04 Tutorial on ROC
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ROC spaces vs. Coverage SpacesROC spaces vs. Coverage Spaces

● ROC spaces are normalized coverage spaces
 Coverage spaces may have different shapes of the 

rectangular area (0,P) × (0,N)
 ROC spaces are normalized to a square (0,1) × (0,1)
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Costs and Class DistributionsCosts and Class Distributions

● assume no costs for correct classification and a cost ratio 
r = c− /c+ for incorrect classifications
 this means that false positives are r times as expensive as 

false negatives
● this situation can be simulated by increasing the proportion 

of negative examples by a factor of r
 e.g. by replacing each negative example with r identical 

copies of the same example
 the number of mistakes on negative examples are then 

counted with r, the number of mistakes on positive examples 
are still counted with 1

 computing the error in the new set corresponds to computing 
a cost-sensitive evaluation in the original dataset

➔ the same trick can be used for cost-sensitive learning!
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ExampleExample

● Coverage space with equally distributed positive and 
negative examples (P = N)

● assume a false positive is 
twice as bad as a false 
negative (i.e., c− = 2c+)

● this situation can be 
modeled by counting each 
covered negative example 
twice
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ExampleExample

● Doubling the number of negative examples 
 changes the shape of the coverage space and the location of 

the points 
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ExampleExample

● Mapping back to ROC space
 yields the same (relative) location of the original points

 but the angle of the isometrics 
has changed as well

 accuracy in the coverage 
space with doubled negative 
examples corresponds to a 
line with slope          in ROC 
space

r=2
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Important LessonsImportant Lessons

● Class Distributions and Cost Distributions are interchangable
 cost-senstive evaluation (and learning) can be performed by 

changing the class distribution (e.g., duplication of examples)
● Therefore there is always a coverage space that corresponds to 

the current cost distribution
 in this coverage space, the cost ratio r = 1, i.e., positive and 

negative examples are equally important
● The ROC space results from normalizing this rectangular 

coverage space to a square
 cost isometrics in the ROC space are accuracy isometrics in the 

corresponding coverage space
● The location of a classifier in ROC space is invariant to changes 

in the class distribution
 but the slope of the isometrics changes when a different cost model 

is used
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ROC isometricsROC isometrics

● Iso-cost lines connects ROC 
points with the same costs c


  

● Cost isometrics are parallel 
ascending lines with slope 
r = c−/c+ 
 e.g., error/accuracy slope = N/P

tpr=
c−

c
⋅ fpr c

c
−1 

Slide adapted from P. Flach, ICML-04 Tutorial on ROC

c=c⋅1−tprc−⋅fpr
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Selecting the optimal classifierSelecting the optimal classifier

For uniform class distribution (r = 1), C4.5 is optimal

Slide © P. Flach, ICML-04 Tutorial on ROC
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Selecting the optimal classifierSelecting the optimal classifier

With four times as many positives as negatives (r = 1/4), SVM is optimal

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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Selecting the optimal classifierSelecting the optimal classifier

With four times as many negatives as positives (r = 4), CN2 is optimal

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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Selecting the optimal classifierSelecting the optimal classifier

 With less than 9% positives, predicting always negative is optimal
 With less than 11% negatives, predicting always positive is optimal

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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The ROC convex hullThe ROC convex hull

Slide adapted from P. Flach, ICML-04 Tutorial on ROC

Classifiers on the 
convex hull 

minimize costs for 
some cost model

Classifiers below 
the convex hull are 
always suboptimal

Any performance on a 
line segment connecting 
two ROC points can be 
achieved by interpolating 
between the classifiers 
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Interpolating ClassifiersInterpolating Classifiers

● Given two learning schemes we can achieve any 
point on the convex hull!
 TP and FP rates for scheme 1: tpr1 and fpr1

 TP and FP rates for scheme 2: tpr2 and fpr2

● If scheme 1 is used to predict q×100% of the cases 
and scheme 2 for the rest, then
 TP rate for combined scheme:
 FP rate for combined scheme:

Slide adapted from Witten/Frank, Data Mining

tpr q=q⋅tpr11−q⋅tpr2

fprq=q⋅fpr11−q⋅fpr 2
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Rankers and ClassifiersRankers and Classifiers
● A scoring classifier outputs scores f (x,+) and f (x,–) for each 

class
 e.g. estimate probabilities P(+|x) and P(–|x)
 scores don’t need to be normalised

● f (x) = f (x,+) / f (x,–) can be used to rank instances from most 
to least likely positive
 e.g. odds  ratio P(+|x) / P(–|x)

● Rankers can be turned into classifiers by setting a threshold 
on f (x)

● Example:
 Naïve Bayes Classifier for two classes is actually a ranker
 that has been turned into classifier by setting a probability 

threshold of 0.5 (corresponds to a odds ratio treshold of 1.0)
● P(+|x) > 0.5 > 1 – P(+|x) = P(−|x) means that class + is more likely

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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Drawing ROC Curves for RankersDrawing ROC Curves for Rankers

Performance of a ranker can be visualized via a ROC curve
● Naïve method:

 consider all possible thresholds 
● only k+1 thresholds between the k instances need to be considered

 each threshold corresponds to a new classifier
 for each classifier

● construct confusion matrix
● plot classifier at point (fpr,tpr) in ROC space

● Practical method: 
 rank test instances on decreasing score f (x)
 start in (0,0)

● if the next instance in the ranking is +: move 1/P up
● if the next instance in the ranking is –: move 1/N to the right
● make diagonal move in case of ties

Slide adapted from P. Flach, ICML-04 Tutorial on ROC

Note: It may be 
easier to draw in 
coverage space 
(1 up/right).
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A sample ROC curveA sample ROC curve

Slide adapted from Witten/Frank, Data Mining

1
N

1
P
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Properties of ROC Curves Properties of ROC Curves 
for Rankersfor Rankers

● The curve visualizes the quality of the ranker or probabilistic 
model on a test set, without committing to a classification 
threshold
 aggregates over all possible thresholds

● The slope of the curve indicates class distribution in that 
segment of the ranking
 diagonal segment → locally random behaviour

● Concavities indicate locally worse than random behaviour
 convex hull corresponds to discretizing scores
 can potentially do better: repairing concavities

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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Some example ROC curvesSome example ROC curves

 Good separation between classes, convex curve

Slide © P. Flach, ICML-04 Tutorial on ROC
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Some example ROC curvesSome example ROC curves

 Reasonable separation, mostly convex

Slide © P. Flach, ICML-04 Tutorial on ROC
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Some example ROC curvesSome example ROC curves

 Fairly poor separation, mostly convex

Slide © P. Flach, ICML-04 Tutorial on ROC
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Some example ROC curvesSome example ROC curves

 Poor separation, large and small concavities

Slide © P. Flach, ICML-04 Tutorial on ROC
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Some example ROC curvesSome example ROC curves

 Random performance 

Slide © P. Flach, ICML-04 Tutorial on ROC
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Comparing Rankers with ROC CurvesComparing Rankers with ROC Curves

Slide adapted from Witten/Frank, Data Mining

If low fpr is 
more important,  

use Method A

Inbetween, 
interpolate 
between A 

and B

If high tpr is 
more important, 
use Method B
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AUC: The Area Under the ROC CurveAUC: The Area Under the ROC Curve

AUC

1 - AUC
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  The AUC metricThe AUC metric

● The Area Under ROC Curve (AUC) assesses the ranking in 
terms of separation of the classes
 all the positives before the negatives:  AUC = 1 
 random ordering:                                AUC = 0.5
 all the negatives before the positives:  AUC = 0

● can be computed from the step-wise curve as:

where ri is the rank of a negative example and 
● Equivalent to the Mann-Whitney-Wilcoxon sum of ranks test

 estimates probability that randomly chosen positive example is 
ranked before randomly chosen negative example

AUC = 1
P⋅N ∑

i=1

N

r i−i  = 1
P⋅N ∑i=1

N

r i−∑
i=1

N

i  =
S−−N N1/2

P⋅N

Slide adapted from P. Flach, ICML-04 Tutorial on ROC

S−=∑
i=1

N

r i
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Multi-Class AUCMulti-Class AUC

● ROC-curves and AUC are only defined for two-class 
problems (concept learning)
 Extensions to multiple classes are still under investigation

● Some Proposals for extensions:
 In the most general case, we want to calculate Volume Under 

ROC Surface (VUS)
● number of dimensions proportional to number of entries in 

confusion matrix
 Projecting down to sets of two-dimensional curves and 

averaging
● MAUC (Hand & Till, 2001): 

 unweighted average of AUC of pairwise classification (1-vs-1)
● (Provost & Domingos, 2001): 

 weighted average of 1-vs-all AUC for class c weighted by P(c)

MAUC= 2
c⋅c−1∑i j

AUC i , j 

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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Calibrating a Ranking ClassifierCalibrating a Ranking Classifier

● What is the right threshold of the ranking score if the 
ranker does not estimate probabilities?
 classifier can be calibrated by choosing appropriate 

threshold that minimizes costs
 may also lead to improved performance in accuracy if 

probability estimates are bad (e.g., Naïve Bayes)

● Easy in the two-class case: 
 calculate cost for each point/threshold while tracing the curve
 return the threshold with minimum cost

● Non-trivial in the multi-class case

Note: threshold selection is part of the classifier training and 
must therefore be performed on the training data!

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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Example: Uncalibrated thresholdExample: Uncalibrated threshold

True and false positive rates 
achieved by default threshold
(NB. worse than always 
predicting majority class!)

Slide © P. Flach, ICML-04 Tutorial on ROC

Accuracy isometric
for this domain
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Example: Calibrated thresholdExample: Calibrated threshold

Optimal achievable 
accuracy 

Slide © P. Flach, ICML-04 Tutorial on ROC
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Cost-sensitive learningCost-sensitive learning

● Most learning schemes do not perform cost-sensitive learning
 They generate the same classifier no matter what costs are 

assigned to the different classes
 Example: standard decision tree learner

● Simple methods for cost-sensitive learning:
 If classifier is able to handle weighted instances

● weighting of instances according to costs
● covered examples are not counted with 1, but with their weight

 For any classifier
● resampling of instances according to costs 
● proportion of instances with higher weights/costs will be increased

 If classifier returns a score f or probability P
● varying the classification threshold

Slide adapted from Witten/Frank, Data Mining
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Costs and Example WeightsCosts and Example Weights

● The effort of duplicating examples can be saved if the 
learner can use example weights
 positive examples get a weight of c+

 negative examples get a weight of c− 
● All computations that involve counts are henceforth 

computed with weights
 instead of counting, we add up the weights

● Example: 
 Precision with weighted examples is

wx is the weight of example x
Cov is the set of covered examples
Pos is the set of positive examples

 if wx = 1 for all x, this reduces to the familiar 

prec=
∑

x∈Cov∩Pos
w x

∑
x∈Cov

w x

prec= p
pn
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Minimizing Expected CostMinimizing Expected Cost

● Given a specification of costs for correct and incorrect 
predictions
 an example should be predicted to have the class that leads 

to the lowest expected cost
 not necessarily to the lowest error

● The expected cost (loss) for predicting class i for an 
example x
 sum over all possible outcomes, weighted by estimated 

probabilities

● A classifier should predict the class that minimizes L(i,x)
 If the classifier can estimate the probability distribution P(i | x) 

of an example x

Li , x=∑
j

C i∣ j P  j∣x
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Minimizing Cost in Concept LearningMinimizing Cost in Concept Learning

● For two classes:
 predict positive if it has the smaller expected cost:

 as P(+| x) = 1 − P(−| x):

predict positive if

● Example:
 Classifying a spam mail as ham costs 1, classifying ham as 

spam costs 99, correct classification cost nothing:
⇒ classify as spam if spam-probability is at least 99% 

C ∣⋅P ∣x   C ∣−⋅P −∣x  ≤ C −∣⋅P ∣x   C −∣−⋅P −∣x 

cost if we predict positive cost if we predict negative

P ∣x  ≥ C ∣− − C −∣−
C ∣−  C −∣ − C ∣ − C −∣−
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