Ensemble Methods

- Basic Idea
- Bagging
- Boosting
- Stacking

Ensemble Classifiers

- IDEA:
 - do not learn a *single* classifier but learn a *set of classifiers*
 - combine the predictions of multiple classifiers
- MOTIVATION:
 - <u>reduce variance</u>: results are less dependent on peculiarities of a single training set
 - <u>reduce bias</u>: a combination of multiple classifiers may learn a more expressive concept class than a single classifier

• KEY STEP:

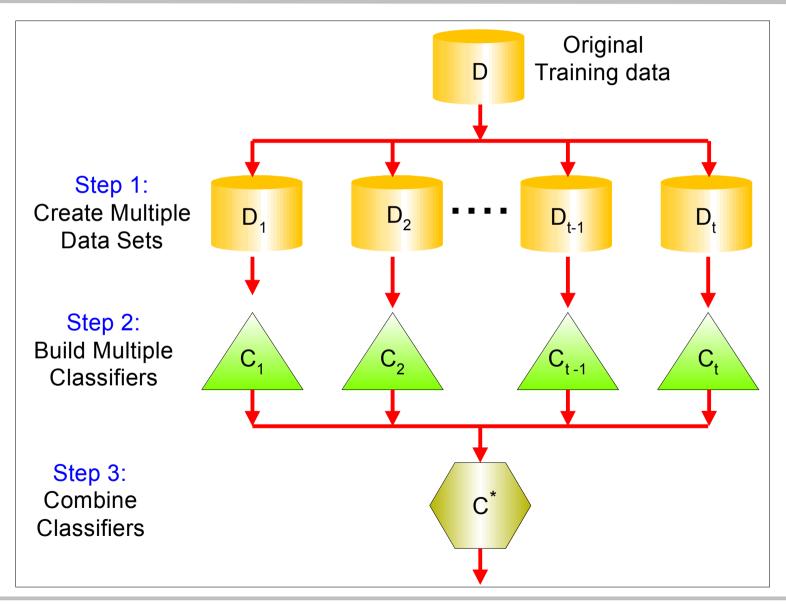
formation of an ensemble of *diverse* classifiers from a single training set

Why do ensembles work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - i.e., probability that a classifier makes a mistake does not depend on whether other classifiers made a mistake
 - **Note:** in practice they are not independent!
- Probability that the ensemble classifier makes a wrong prediction
 - The ensemble makes a wrong prediction if the majority of the classifiers makes a wrong prediction
 - The probability that 13 or more classifiers err is

$$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1-\varepsilon)^{25-i} \approx 0.06 \ll \varepsilon$$

Bagging: General Idea



Generate Bootstrap Samples

Generate new training sets using sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- some examples may appear in more than one set
- for each set, the probability that a given example appears in it is $Pr(x \in D_i) = (1 - \frac{1}{n})^n \rightarrow 0.3678$
- i.e., less than 2/3 of the examples appear in one bootstrap sample

Bagging Algorithm

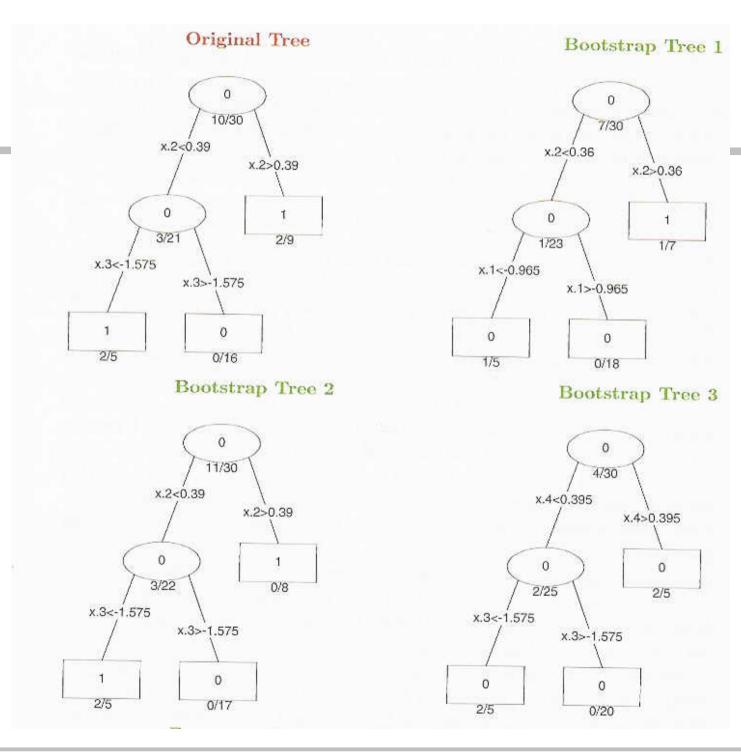
1. for m = 1 to M // M ... number of iterations

a) draw (with replacement) a bootstrap sample D_m of the data

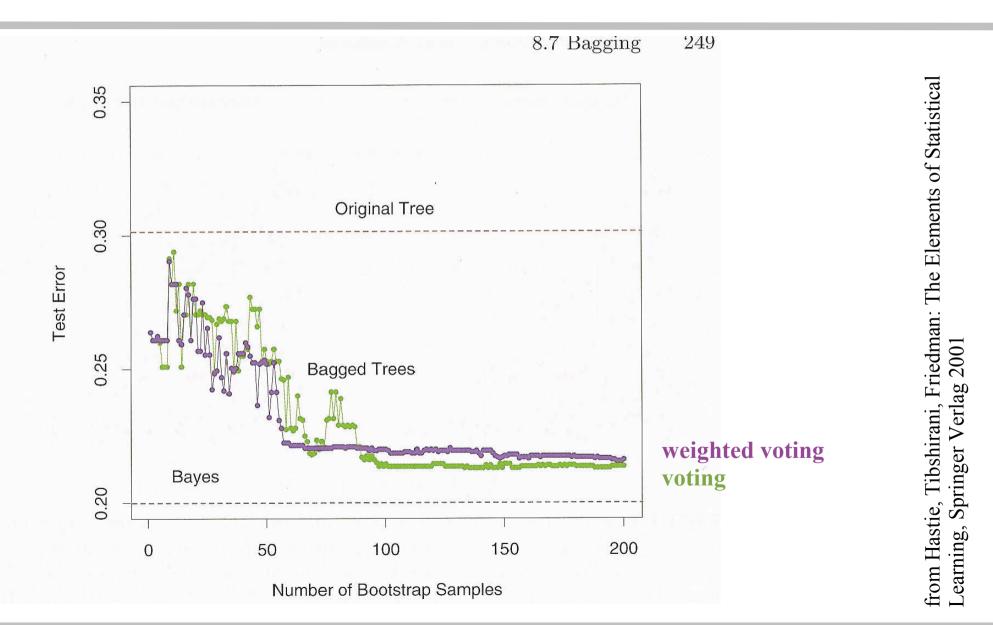
- **b**) learn a classifier C_m from D_m
- 2. for each test example
 - a) try all classifiers C_m

b) predict the class that receives the highest number of votes

- variations are possible
 - e.g., size of subset, sampling w/o replacement, etc.
- many related variants
 - sampling of features, not instances
 - learn a set of classifiers with different algorithms



from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001



© J. Fürnkranz

Boosting

- Basic Idea:
 - later classifiers focus on examples that were misclassified by earlier classifiers
 - weight the predictions of the classifiers with their error
- Realization
 - perform multiple iterations
 - each time using different example weights
 - weight update between iterations
 - <u>increase</u> the weight of <u>incorrect</u>ly classified examples
 - this ensures that they will become more important in the next iterations (misclassification errors for these examples count more heavily)
 - combine results of all iterations
 - weighted by their respective error measures

Dealing with Weighted Examples

Two possibilities (\rightarrow cost-sensitive learning)

- directly
 - example e_i has weight w_i
 - number of examples $n \Rightarrow$ total example weight $\sum_{i=1}^{n} w_i$
- via sampling
 - interpret the weights as probabilities
 - examples with larger weights are more likely to be sampled
 - assumptions
 - sampling with replacement
 - weights are well distributed in [0,1]
 - learning algorithm sensible to varying numbers of identical examples in training data

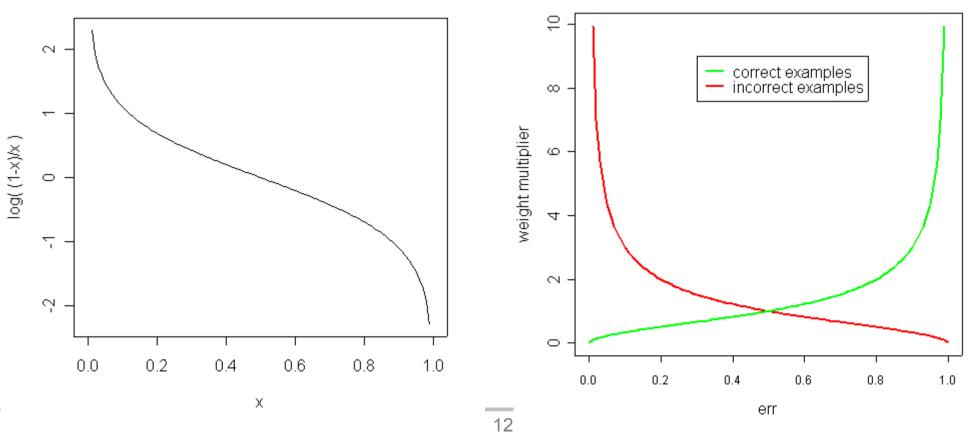
Boosting – Algorithm AdaBoost

1. initialize example weights $w_i = 1/N$ (i = 1..N) 2. for m = 1 to M// M ... number of iterations a) learn a classifier C_m using the current example weights b) compute a weighted error estimate $err_m = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^N w_i} = 1$ because weights are normalized c) compute a classifier weight $\alpha_m = \frac{1}{2} \log(\frac{1 - err_m}{err_m})$ update weights so d) for all correctly classified examples $e_i: w_i \leftarrow w_i e^{-\alpha_m}$ that sum of correctly classified e) for all incorrectly classified examples $e_i: w_i \leftarrow w_i e^{\alpha_m}$ examples equals sum of incorrectly f) normalize the weights w_i so that they sum to 1 classified examples 3. for each test example a) try all classifiers C_m

Illustration of the Weights

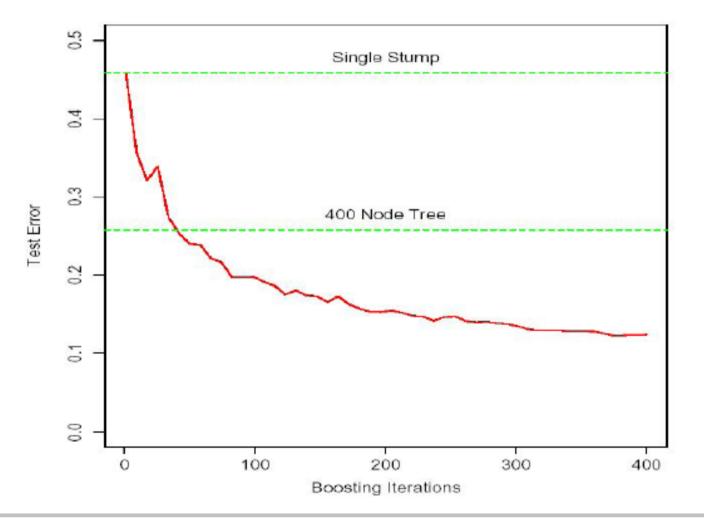
- Classifier Weights α_m
 - differences near 0 or 1 are emphasized

- Example Weights
 - multiplier for correct and incorrect examples, depending on error

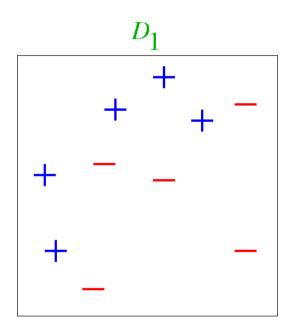


Boosting – Error rate example

• boosting of decision stumps on simulated data

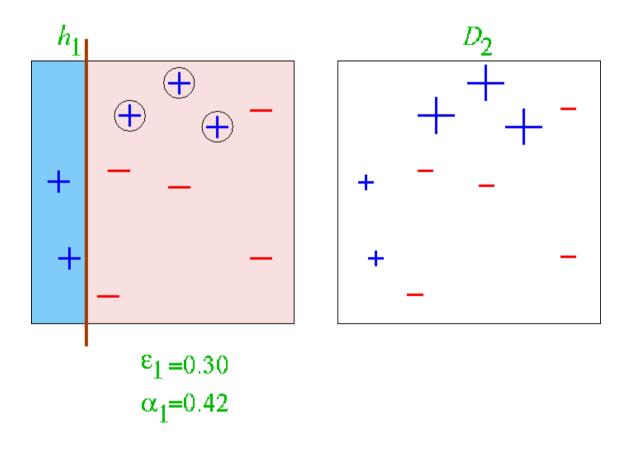


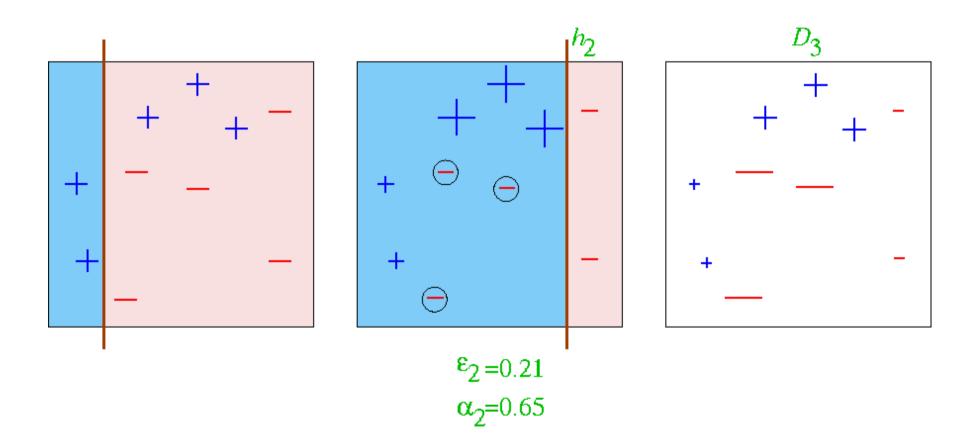
Toy Example

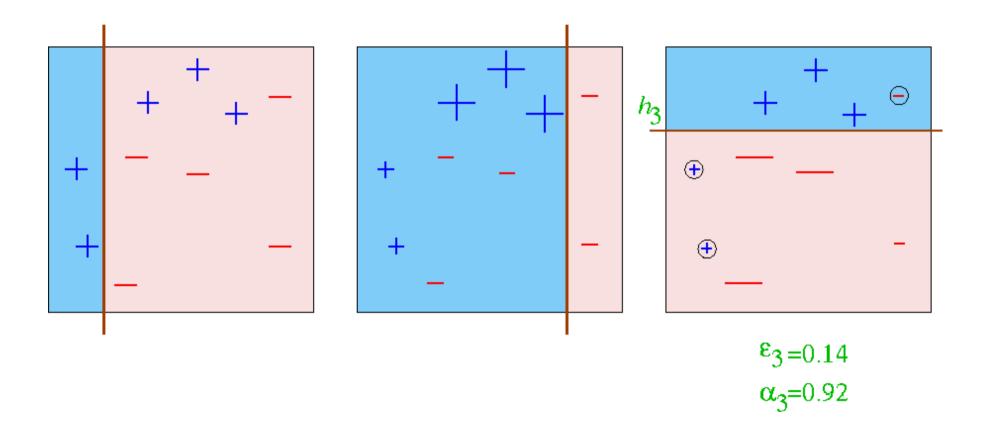


(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)

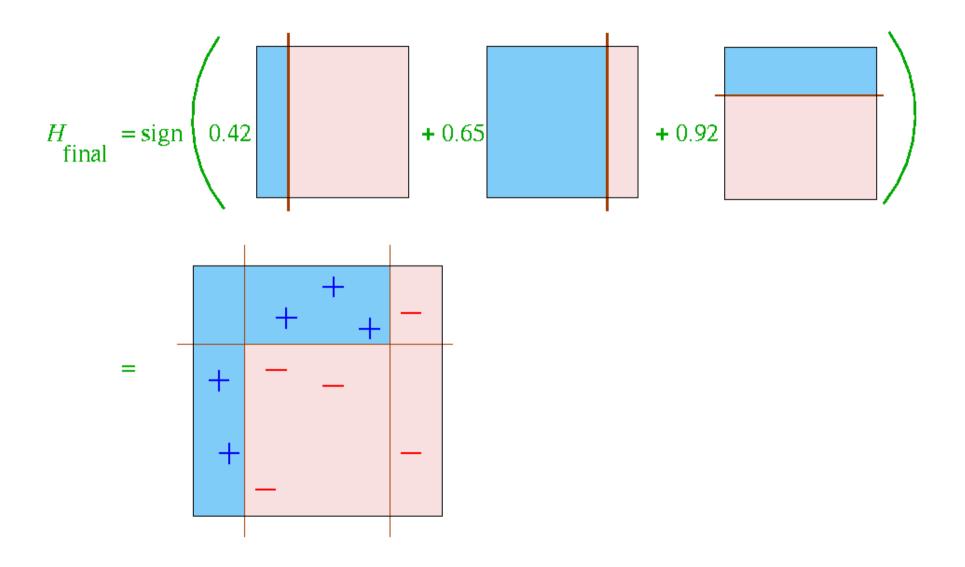
- An Applet demonstrating AdaBoost
 - http://www.cse.ucsd.edu/~yfreund/adaboost/







Final Hypothesis



Example

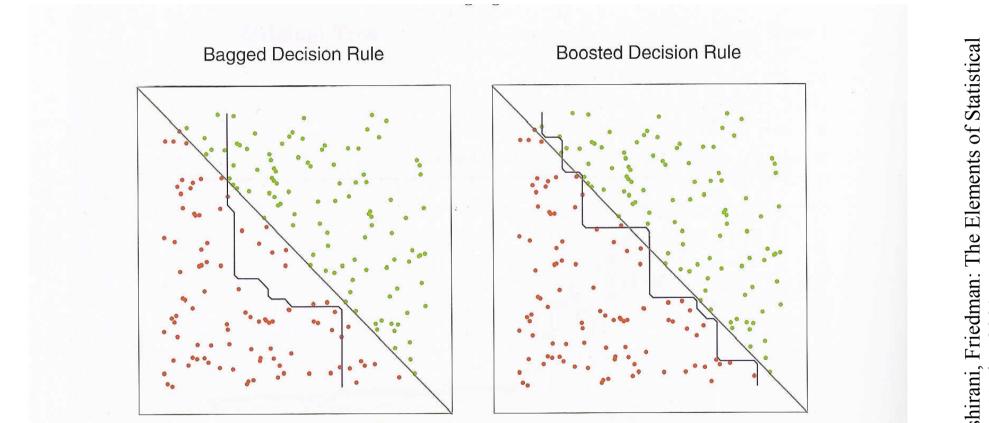


FIGURE 8.11. Data with two features and two classes, separated by a linear boundary. Left panel: decision boundary estimated from bagging the decision rule from a single split, axis-oriented classifier. Right panel: decision boundary from boosting the decision rule of the same classifier. The test error rates are 0.166, and 0.065 respectively. Boosting is described in Chapter 10.

Comparison Bagging/Boosting

- Bagging
 - noise-tolerant
 - produces better class probability estimates
 - not so accurate
 - statistical basis
 - related to random sampling

- Boosting
 - very susceptible to noise in the data
 - produces rather bad class probability estimates
 - if it works, it works really well
 - based on learning theory (statistical interpretations are possible)
 - related to windowing

Combining Predictions

- voting
 - each ensemble member votes for one of the classes
 - predict the class with the highest number of vote (e.g., bagging)
- weighted voting
 - make a weighted sum of the votes of the ensemble members
 - weights typically depend
 - on the classifiers confidence in its prediction (e.g., the estimated probability of the predicted class)
 - on error estimates of the classifier (e.g., boosting)
- stacking
 - Why not use a classifier for making the final decision?
 - training material are the class labels of the training data and the (cross-validated) predictions of the ensemble members

Stacking

- Basic Idea:
 - learn a function that combines the predictions of the individual classifiers
- Algorithm:
 - train *n* different classifiers $C_1 \dots C_n$ (the base classifiers)
 - obtain predictions of the classifiers for the training examples
 - better do this with a cross-validation!
 - form a new data set (the meta data)
 - classes
 - the same as the original dataset
 - attributes
 - one attribute for each base classifier
 - value is the prediction of this classifier on the example
 - train a separate classifier M (the meta classifier)

Stacking (2)

• Example:

1	Class	
x_{11}	 x_{1n_a}	t
x_{21}	 x_{2n_a}	f
x_{n_e1}	 $x_{n_e n_a}$	t

training set



predictions of the classfiers

C_1	C_2	 C_{n_c}	Class
t	t	 f	t
f	t	 t	f
f	f	 t	t

training set for stacking

- Using a stacked classifier:
 - try each of the classifiers C₁...C_n
 - form a feature vector consisting of their predictions
 - submit this feature vectors to the meta classifier M

Forming an Ensemble

- Modifying the data
 - Subsampling
 - bagging
 - boosting
 - feature subsets
 - randomly feature samples
- Modifying the learning task
 - pairwise classification / round robin learning
 - error-correcting output codes

- Exploiting the algorithm characterisitics
 - algorithms with random components
 - neural networks
 - randomizing algorithms
 - randomized decision trees
 - use multiple algorithms with different characteristics
- Exploiting problem characteristics
 - e.g., hyperlink ensembles