
1 © J. Fürnkranz

Decision-Tree LearningDecision-Tree Learning

● Introduction
 Decision Trees
 TDIDT: Top-Down Induction of Decision Trees

● ID3
 Attribute selection
 Entropy, Information, Information Gain
 Gain Ratio

● C4.5
 Numeric Values
 Missing Values
 Pruning

● Regression and Model Trees
Acknowledgements:

Many slides based on Frank & Witten,
a few on Kan, Steinbach & Kumar
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Decision TreesDecision Trees
● a decision tree consists of

 Nodes: 
● test for the value of a certain attribute

 Edges: 
● correspond to the outcome of a test
● connect to the next node or leaf

 Leaves:
● terminal nodes that predict the outcome

to classifiy an example:
1. start at the root
2. perform the test
3. follow the edge corresponding to outcome
4. goto 2. unless leaf
5. predict that outcome associated with the leaf
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Decision Tree LearningDecision Tree Learning

Training

Classification

?

New Example

In Decision Tree 
Learning, a new example 

is classified by 
submitting it to a series 

of tests that determine the 
class label of the 

example.These tests are 
organized in a 

hierarchical structure 
called a decision tree.

The training examples 
are used for choosing
appropriate tests in the

 decision tree. Typically, 
a  tree is built from top to 
bottom, where tests that 

maximize the information 
gain about

the classification are 
selected first.
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A Sample TaskA Sample Task

Day Temperature  Outlook  Humidity  Windy Play Golf?
07-05 hot  sunny  high false  no 
07-06 hot  sunny  high true  no 
07-07 hot  overcast  high false  yes 
07-09 cool  rain  normal false  yes 
07-10 cool  overcast  normal true  yes 
07-12 mild  sunny  high false  no 
07-14 cool  sunny  normal false  yes 
07-15 mild  rain  normal false  yes 
07-20 mild  sunny  normal true  yes 
07-21 mild  overcast  high true  yes 
07-22 hot  overcast  normal false  yes 
07-23 mild  rain  high true  no 
07-26 cool  rain  normal true  no 
07-30 mild  rain  high false  yes 

today cool sunny normal false ?

tomorrow mild sunny normal false ?
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Decision Tree LearningDecision Tree Learning

tomorrow mild sunny normal false ?



6 © J. Fürnkranz

Divide-And-Conquer AlgorithmsDivide-And-Conquer Algorithms

● Family of decision tree learning algorithms
 TDIDT: Top-Down Induction of Decision Trees

● Learn trees in a Top-Down fashion:
 divide the problem in subproblems
 solve each problem

Basic Divide-And-Conquer Algorithm:
1. select a test for root node

Create branch for each possible outcome of the test
2. split instances into subsets

One for each branch extending from the node
3. repeat recursively for each branch, using only instances that reach 

the branch
4. stop recursion for a branch if all its instances have the same class



7 © J. Fürnkranz

ID3 AlgorithmID3 Algorithm

Function ID3 
 Input:    Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c
 return a new leaf and label it with c

 Else
i. Select an attribute A according to some heuristic function
ii. Generate a new node DT with A as test
iii.For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi
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A Different Decision TreeA Different Decision Tree

● also explains all of the training data
● will it generalize well to new data?
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Which attribute to select as the root?Which attribute to select as the root?
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What is a good Attribute?What is a good Attribute?

● We want to grow a simple tree
→ a good attribute prefers attributes that split the data so that 

each successor node is as pure as posssible
 i.e., the distribution of examples in each node is so that it mostly 

contains examples of a single class

● In other words:
 We want a measure that prefers attributes that have a high degree 

of „order“:
● Maximum order: All examples are of the same class
● Minimum order: All classes are equally likely

→ Entropy is a measure for (un-)orderedness
 Another interpretation:

● Entropy is the amount of information that is contained
● all examples of the same class → no information
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Entropy Entropy (for two classes)(for two classes)

● S is a set of examples
● p⊕ is the proportion of

examples in class ⊕
● p⊖ = 1 − p⊕ is the

proportion of examples 
in class ⊖

Entropy:

● Interpretation:
 amount of unorderedness in 

the class distribution of S

E S =−p⊕⋅log2 p⊕− p⊖⋅log2 p⊖

maximal value at equal
class distribution

minimal value if only 
one class left in S
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Example: Attribute Example: Attribute OutlookOutlook

● Outlook = sunny: 3 examples yes, 2 examples no

● Outlook = overcast: 4 examples yes, 0 examples no

● Outlook = rainy : 2 examples yes, 3 examples no

E Outlook=rainy=−3
5

log  3
5 − 2

5
log  2

5 =0.971

E Outlook=overcast=−1 log1−0 log 0=0

E Outlook=sunny=−2
5

log  25 −3
5

log  3
5 =0.971

Note: this
is normally
undefined.
Here: = 0
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Entropy Entropy (for more classes)(for more classes)

E S =− p1 log p1− p2 log p2 ...− pn log pn=−∑i=1

n
pi log pi

● Entropy can be easily generalized for n > 2 classes
 p

i
 is the proportion of examples in S that belong to the i-th class
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Average Entropy / InformationAverage Entropy / Information

● Problem:
 Entropy only computes the quality of a single (sub-)set of examples

● corresponds to a single value
 How can we compute the quality of the entire split?

● corresponds to an entire attribute
● Solution:

 Compute the weighted average over all sets resulting from the split
● weighted by their size

● Example:
 Average entropy for attribute Outlook:

I S , A=∑
i

∣S i∣
∣S∣

⋅E S i

I Outlook = 5
14⋅0.971 4

14⋅0 5
14⋅0.971=0.693
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Information GainInformation Gain

● When an attribute A splits the set S into subsets Si
 we compute the average entropy
 and compare the sum to the entropy of the original set S

Information Gain for Attribute A

● The attribute that maximizes the difference is selected
 i.e., the attribute that reduces the unorderedness most!

● Note:
 maximizing information gain is equivalent to minimizing average 

entropy, because E(S) is constant for all attributes A

Gain S , A=E S − I S , A=E S −∑
i

∣S i∣
∣S∣

⋅E S i
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ExampleExample

GainS , Outlook=0.246 GainS ,Temperature =0.029
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Example (Ctd.)Example (Ctd.)

? ?

Outlook is selected
as the root note

 Outlook = overcast
contains only

examples of class yes

further splitting
necessary
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Example (Ctd.)Example (Ctd.)

Gain(Temperature ) = 0.571 bits
Gain(Humidity )      = 0.971 bits
Gain(Windy ) = 0.020 bits

Humidity is selected
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Example (Ctd.)Example (Ctd.)

?

Humidity is selected

further splitting
necessary

Pure leaves
→ No further expansion necessary
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Final decision treeFinal decision tree
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Properties of EntropyProperties of Entropy

● Entropy is the only function that satisfies all of the following three 
properties
 When node is pure, measure should be zero
 When impurity is maximal (i.e. all classes equally likely), measure 

should be maximal
 Measure should obey multistage property:

● p, q, r are classes in set S, and T are examples of class t = q ˅ r 

→ decisions can be made in several stages

● Simplification of computation of average entropy (information):

E p , q , r S =E p , t S 
∣T∣
∣S∣

⋅Eq ,r T 

I S ,[2,3 ,4]=− 2
9⋅log 2

9 −
3
9⋅log  3

9 −
4
9⋅log 4

9 

=− 1
9 2⋅log23⋅log34⋅log4−9⋅log 9
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Highly-branching attributesHighly-branching attributes

● Problematic: attributes with a large number of values 
 extreme case: each example has its own value

● e.g. example ID;  Day attribute in weather data

● Subsets are more likely to be pure if there is a large number of 
different attribute values
 Information gain is biased towards choosing attributes with a 

large number of values

● This may cause several problems:
 Overfitting 

● selection of an attribute that is non-optimal for prediction
 Fragmentation

● data are fragmented into (too) many small sets
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Decision Tree for Decision Tree for DayDay attribute attribute

I Day = 1
14  E [0,1]E [0,1]...E [0,1] =0

● Entropy of split:

 Information gain is maximal for Day (0.940 bits)

   Day   

07-05 07-06 07-07 07-26 07-30
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Intrinsic Information of an AttributeIntrinsic Information of an Attribute

● Intrinsic information of a split
 entropy of distribution of instances into branches 
 i.e. how much information do we need to tell which branch an 

instance belongs to

● Example:
 Intrinsic information of Day attribute:

● Observation:
 Attributes with higher intrinsic information are less useful

IntI Day =14×− 1
14⋅log  1

14 =3.807

IntI S , A=−∑
i

∣S i∣
∣S∣

log ∣S i∣
∣S∣ 
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Gain RatioGain Ratio

● modification of the information gain that reduces its bias towards 
multi-valued attributes

● takes number and size of branches into account when choosing 
an attribute
 corrects the information gain by taking the intrinsic information of a 

split into account
● Definition of Gain Ratio:

● Example:
 Gain Ratio of Day attribute

GRS , A=Gain S , A
IntI S , A

GR Day =0.940
3,807

=0.246
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Gain ratios for weather dataGain ratios for weather data

0.019Gain ratio: 0.029/1.5570.157Gain ratio: 0.247/1.577

1.557Split info: info([4,6,4])1.577  Split info: info([5,4,5])

0.029Gain: 0.940-0.911 0.247 Gain: 0.940-0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/0.9850.152Gain ratio: 0.152/1

0.985Split info: info([8,6])1.000  Split info: info([7,7])

0.048Gain: 0.940-0.892 0.152Gain: 0.940-0.788

0.892Info:0.788Info:

WindyHumidity

● Day attribute would still win...  
 one has to be careful which attributes to add...

● Nevertheless: Gain ratio is more reliable than Information Gain
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Gini IndexGini Index

● Many alternative measures to Information Gain
● Most popular altermative: Gini index

 used in e.g., in CART (Classification And Regression Trees)
 impurity measure (instead of entropy)

 average Gini index (instead of average entropy / information)

 Gini Gain
● could be defined analogously to information gain
● but typically avg. Gini index is minimized instead of maximizing 

Gini gain

Gini S =1−∑
i

pi
2

Gini S , A=∑
i

∣S i∣
∣S∣

⋅Gini S i
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Comparison among Splitting CriteriaComparison among Splitting Criteria

For a 2-class problem:
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Industrial-strength algorithmsIndustrial-strength algorithms

● For an algorithm to be useful in a wide range of real-world 
applications it must:
 Permit numeric attributes
 Allow missing values
 Be robust in the presence of noise
 Be able to approximate arbitrary concept descriptions (at least in 

principle) 
→ ID3 needs to be extended to be able to deal with real-world data
● Result: C4.5

 Best-known and (probably) most widely-used learning algorith
● original C-implementation at http://www.rulequest.com/Personal/

 Re-implementation of C4.5 Release 8 in Weka: J4.8
 Commercial successor: C5.0
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Numeric attributesNumeric attributes

● Standard method: binary splits
 E.g. temp < 45

● Unlike nominal attributes, every attribute has many possible split 
points

● Solution is straightforward extension: 
 Evaluate info gain (or other measure)

for every possible split point of attribute
 Choose “best” split point
 Info gain for best split point is info gain for attribute

● Computationally more demanding
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ExampleExample

● Assume a numerical attribute for Temperature
● First step: 

 Sort all examples according to the value of this attribute
 Could look like this:

● One split between each pair of values
 E.g. Temperature < 71.5: yes/4, no/2

      Temperature ≥ 71.5: yes/5, no/3

● Split points can be placed between values or directly at values

 64     65     68      69      70     71    72     72       75     75      80     81     83      85
Yes  No  Yes  Yes  Yes  No  No  Yes  Yes  Yes  No  Yes  Yes  No

I Temperature @ 71.5= 6
14

⋅E Temperature71.5 8
14

E Temperature≥71.5=0.939
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Efficient ComputationEfficient Computation

● Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count 

matrix and computing the evaluation measure
 Choose the split position that has the best value

Cheat No No No Yes Yes Yes No No No No 

Taxable Income  

60 70 75 85 90 95 100 120 125 220 

55 65 72 80 87 92 97 110 122 172 230  

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 
 

Split Positions
Sorted Values
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Binary Binary vs.vs. Multiway Splits Multiway Splits

● Splitting (multi-way) on a nominal attribute exhausts all 
information in that attribute
 Nominal attribute is tested (at most) once on any path in the tree

● Not so for binary splits on numeric attributes!
 Numeric attribute may be tested several times along a path in the 

tree
● Disadvantage: tree is hard to read
● Remedy:

 pre-discretize numeric attributes (→ discretization), or 
 use multi-way splits instead of binary ones

● can, e.g., be computed by building a subtree using a single 
numerical attribute.

● subtree can be flattened into a multiway split
● other methods possible (dynamic programming, greedy...)
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Missing valuesMissing values

● Examples are classified as usual
 if we are lucky, attributes with missing values are not tested by the 

tree
● If an attribute with a missing value needs to be tested:

 split the instance into fractional instances (pieces)
 one piece for each outgoing branch of the node
 a piece going down a branch receives a weight proportional to the 

popularity of the branch
 weights sum to 1

● Info gain or gain ratio work with fractional instances
 use sums of weights instead of counts

● during classification, split the instance in the same way
 Merge probability distribution using weights of fractional instances
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Overfitting and PruningOverfitting and Pruning

● The smaller the complexity of a concept, the less danger that it 
overfits the data
 A polynomial of degree n can always fit n+1 points

● Thus, learning algorithms try to keep the learned concepts simple 
 Note a „perfect“ fit on the training data can always be found for a 

decision tree! (except when data are contradictory)

Pre-Pruning:
 stop growing a branch when information becomes unreliable

Post-Pruning:
 grow a decision tree that correctly classifies all training data
 simplify it later by replacing some nodes with leafs

● Postpruning preferred in practice—prepruning can “stop early”
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PrepruningPrepruning

● Based on statistical significance test
 Stop growing the tree when there is no statistically significant 

association between any attribute and the class at a particular node
● Most popular test: chi-squared test
● ID3 used chi-squared test in addition to information gain

 Only statistically significant attributes were allowed to be selected 
by information gain procedure



37 © J. Fürnkranz

Early stoppingEarly stopping

● Pre-pruning may stop the growth
process prematurely: early stopping

● Classic example: XOR/Parity-problem
 No individual attribute exhibits any 

significant association to the class
→ In a dataset that contains XOR attributes a and b, and several 

irrelevant (e.g., random) attributes, ID3 can not distinguish 
between relevant and irrelevant attributes

→ Prepruning won’t expand the root node
 Structure is only visible in fully expanded tree

● But: 
 XOR-type problems rare in practice
 prepruning is faster than postpruning

0001

1102

1

1

a

014

103

classb
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Post-Pruning Post-Pruning 

● basic idea
 first grow a full tree to capture all possible attribute interactions
 later remove those that are due to chance

1.learn a complete and consistent decision tree that classifies all 
examples in the training set correctly 

2.as long as the performance increases

● try simplification operators on the tree
● evaluate the resulting trees
● make the replacement the results in the best estimated 

performance

3.return the resulting decision tree
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PostpruningPostpruning

● Two subtree simplification operators
 Subtree replacement
 Subtree raising

● Possible performance evaluation strategies
 error estimation

● on separate pruning set („reduced error pruning“)
● with confidence intervals (C4.5's method)

 significance testing
 MDL principle
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Subtree replacementSubtree replacement

● Bottom-up
● Consider replacing a tree only 

after considering all its subtrees
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Subtree raisingSubtree raising

● Delete node B
● Redistribute instances of 

leaves 4 and 5 into C
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Estimating Error RatesEstimating Error Rates

● Prune only if it does not increase the estimated error
 Error on the training data is NOT a useful estimator

(would result in almost no pruning)
● Reduced Error Pruning

 Use hold-out set for pruning
 Essentially the same as in rule learning

● only pruning operators differ (subtree replacement)
● C4.5’s method

 Derive confidence interval from training data
● with a user-provided confidence level

 Assume that the true error is on the upper bound of this confidence 
interval (pessimistic error estimate)
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Pessimistic Error RatesPessimistic Error Rates

),( NEUCF

● Consider classifying E examples incorrectly out of N examples 
as observing E events in N trials in the binomial distribution. 

● For a given confidence level CF, the upper limit on the error rate 
over the whole population is                 with CF% confidence.

● Example:
 100 examples in a leaf
 6 examples misclassified
 How large is the true error

assuming a pessimistic 
estimate with a confidence
of 25%?

● Note:
 this is only a heuristic!
 but one that works well U0.25(100,6)L0.25(100,6)

6

Possibility(%)

2 10

75% confidence interval
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C4.5’s methodC4.5’s method

● Pessimistic error estimate for a node

 z is derived from the desired confidence value
● If c = 25% then z = 0.69 (from normal distribution)

 f is the error on the training data
 N is the number of instances covered by the leaf

● Error estimate for subtree is weighted sum of error estimates for 
all its leaves

→A node is pruned if error estimate of subtree is lower than error 
estimate of the node

e=
f  z 2

2N z  f
N −

f 2

N  z2

4N2

1 z2

N
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ExampleExample

f=0.33 e=0.47 f=0.5 e=0.72 f=0.33 e=0.47

f = 5/14 
e = 0.46
e < 0.51
so prune!

Combined using ratios 6:2:6 gives 0.51
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Reduced Error Pruning Reduced Error Pruning 

● basic idea
 optimize the accuracy of a decision tree on a separate pruning set

1.split training data into a growing and a pruning set

2.learn a complete and consistent decision tree that classifies all 
examples in the growing set correctly 

3.as long as the error on the pruning set does not increase

● try to replace each node by a leaf (predicting the majority class)
● evaluate the resulting (sub-)tree on the pruning set
● make the replacement the results in the maximum error 

reduction

4.return the resulting decision tree
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Complexity of tree inductionComplexity of tree induction

● Assume
● m attributes
● n training instances
● tree depth O (log n)

● Building a tree O (m n log n)
● Subtree replacement O (n)
● Subtree raising O (n (log n)2)

● Every instance may have to be redistributed at every node 
between its leaf and the root

● Cost for redistribution (on average): O (log n)
● Total cost: O (m n log n) + O (n (log n)2)
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From trees to rulesFrom trees to rules

● Simple way: one rule for each leaf
● C4.5rules: greedily prune conditions from each rule if this 

reduces its estimated error
 Can produce duplicate rules
 Check for this at the end

● Then
 look at each class in turn
 consider the rules for that class
 find a “good” subset (guided by MDL)

● Then rank the subsets to avoid conflicts
● Finally, remove rules (greedily) if this decreases error on the 

training data
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Decision Lists and Decision GraphsDecision Lists and Decision Graphs

● Decision Lists
 An ordered list of rules
 the first rule that fires makes the prediction
 can be learned with a covering approach

● Decision Graphs
 Similar to decision trees, but nodes may have multiple 

predecessors
 DAGs: Directed, acyclic graphs
 there are a few algorithms that can learn DAGs

● learn much smaller structures
● but in general not very successful

● Special case:
 a decision list may be viewed as a special case of a DAG
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ExampleExample

● A decision list for a rule set with rules
 with 4, 2, 2, 1 conditions, respectively
 drawn as a decision graph

Rule 1

Rule 2

Rule 3 Rule 4
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C4.5: choices and optionsC4.5: choices and options

● C4.5rules slow for large and noisy datasets
● Commercial version C5.0rules uses a different technique

 Much faster and a bit more accurate

● C4.5 has several parameters
 -c Confidence value (default 25%):

lower values incur heavier pruning
 -m Minimum number of instances in the two most popular 

branches (default 2)
 Others for, e.g., having only two-way splits (also on symbolic 

attributes), etc.
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Sample Experimental EvaluationSample Experimental Evaluation

Typical behavior with 
growing m and decreasing c
● tree size and training 

accuracy (= purity)
 always decrease

● predictive accuracy
 first increases

(overfitting 
avoidance)

 then decreases
(over-generalization)

● ideal value on this data 
set near
 m = 30
 c  = 10
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Rules vs. Trees Rules vs. Trees 

● Each decision tree can be converted into a rule set
→ Rule sets are at least as expressive as decision trees

 a decision tree can be viewed as a set of non-overlapping rules
 typically learned via divide-and-conquer algorithms (recursive 

partitioning)
● Transformation of rule sets / decision lists into trees is less trivial

 Many concepts have a shorter description as a rule set
 low complexity decision lists are more expressive than low 

complexity decision trees (Rivest, 1987)
 exceptions: if one or more attributes are relevant for the 

classification of all examples (e.g., parity)
● Learning strategies:

 Separate-and-Conquer vs. Divide-and-Conquer
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Discussion TDIDTDiscussion TDIDT

● The most extensively studied method of machine learning used 
in data mining

● Different criteria for attribute/test selection rarely make a large 
difference

● Different pruning methods mainly change the size of the 
resulting pruned tree

● C4.5 builds univariate decision trees
● Some TDITDT systems can build multivariate trees (e.g. CART)

 multi-variate: a split is not based on a single attribute but on a 
function defined on multiple attributes
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Regression ProblemsRegression Problems

● Regression Task
 the target variable is numerical instead of discrete

● Two principal approaches
 Discretize the numerical target variable

 e.g., equal-with intervals, or equal-frequency
● and use a classification learning algorithm

 Adapt the classification algorithm to regression data
→ Regression Trees and Model Trees
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Regression TreesRegression Trees

Differences to Decision Trees (Classification Trees)
 Leaf Nodes:

● Predict the average value of all instances in this leaf
 Splitting criterion:

● Minimize the variance of the values in each subset Si
● Standard deviation reduction

 Termination criteria:
Very important! (otherwise only single points in each leaf)
● lower bound on standard deviation in a node
● lower bound on number of examples in a node

 Pruning criterion:
● Numeric error measures, e.g. Mean-Squared Error

SDR A ,S =SD S −∑
i

∣S i∣
∣S∣

SD S i
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Model TreesModel Trees

● In a Leaf node
 Classification Trees predict a class value
 Regression Trees predict the average value of all instances in the 

model
 Model Trees use a linear model for making the predictions 

● growing of the tree is as with Regression Trees
● Linear Model:

                                  where vi(x) is the value of attribute Ai 
for example x and wi is a weight 

 The attributes that have been used in the path of the tree can be 
ignored

● Weights can be fitted with standard math packages
 Minimize the Mean Squared Error

LM x=∑
i

wi vi x

MSE=∑
j
 y j−r j

2
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SummarySummary

● Classification Problems require the prediction of a discrete target 
value
 can be solved using decision tree learning
 iteratively select the best attribute and split up the values according 

to this attribute
● Regression Problems require the prediction of a numerical target 

value
 can be solved with regression trees and model trees
 difference is in the models that are used at the leafs
 are grown like decision trees, but with different splitting criteria

● Overfitting is a serious problem!
 simpler, seemingly less accurate trees are often preferable
 evaluation has to be done on separate test sets


