
1 © J. Fürnkranz

Decision-Tree LearningDecision-Tree Learning

● Introduction
 Decision Trees
 TDIDT: Top-Down Induction of Decision Trees

● ID3
 Attribute selection
 Entropy, Information, Information Gain
 Gain Ratio

● C4.5
 Numeric Values
 Missing Values
 Pruning

● Regression and Model Trees
Acknowledgements:

Many slides based on Frank & Witten,
a few on Kan, Steinbach & Kumar

2 © J. Fürnkranz

Decision TreesDecision Trees
● a decision tree consists of

 Nodes:
● test for the value of a certain attribute

 Edges:
● correspond to the outcome of a test
● connect to the next node or leaf

 Leaves:
● terminal nodes that predict the outcome

to classifiy an example:
1. start at the root
2. perform the test
3. follow the edge corresponding to outcome
4. goto 2. unless leaf
5. predict that outcome associated with the leaf

3 © J. Fürnkranz

Decision Tree LearningDecision Tree Learning

Training

Classification

?

New Example

In Decision Tree
Learning, a new example

is classified by
submitting it to a series

of tests that determine the
class label of the

example.These tests are
organized in a

hierarchical structure
called a decision tree.

The training examples
are used for choosing
appropriate tests in the

 decision tree. Typically,
a tree is built from top to
bottom, where tests that

maximize the information
gain about

the classification are
selected first.

4 © J. Fürnkranz

A Sample TaskA Sample Task

Day Temperature Outlook Humidity Windy Play Golf?
07-05 hot sunny high false no
07-06 hot sunny high true no
07-07 hot overcast high false yes
07-09 cool rain normal false yes
07-10 cool overcast normal true yes
07-12 mild sunny high false no
07-14 cool sunny normal false yes
07-15 mild rain normal false yes
07-20 mild sunny normal true yes
07-21 mild overcast high true yes
07-22 hot overcast normal false yes
07-23 mild rain high true no
07-26 cool rain normal true no
07-30 mild rain high false yes

today cool sunny normal false ?

tomorrow mild sunny normal false ?

5 © J. Fürnkranz

Decision Tree LearningDecision Tree Learning

tomorrow mild sunny normal false ?

6 © J. Fürnkranz

Divide-And-Conquer AlgorithmsDivide-And-Conquer Algorithms

● Family of decision tree learning algorithms
 TDIDT: Top-Down Induction of Decision Trees

● Learn trees in a Top-Down fashion:
 divide the problem in subproblems
 solve each problem

Basic Divide-And-Conquer Algorithm:
1. select a test for root node

Create branch for each possible outcome of the test
2. split instances into subsets

One for each branch extending from the node
3. repeat recursively for each branch, using only instances that reach

the branch
4. stop recursion for a branch if all its instances have the same class

7 © J. Fürnkranz

ID3 AlgorithmID3 Algorithm

Function ID3
 Input: Example set S
 Output: Decision Tree DT

 If all examples in S belong to the same class c
 return a new leaf and label it with c

 Else
i. Select an attribute A according to some heuristic function
ii. Generate a new node DT with A as test
iii.For each Value vi of A

(a) Let Si = all examples in S with A = vi

(b) Use ID3 to construct a decision tree DTi for example set Si

(c) Generate an edge that connects DT and DTi

8 © J. Fürnkranz

A Different Decision TreeA Different Decision Tree

● also explains all of the training data
● will it generalize well to new data?

9 © J. Fürnkranz

Which attribute to select as the root?Which attribute to select as the root?

10 © J. Fürnkranz

What is a good Attribute?What is a good Attribute?

● We want to grow a simple tree
→ a good attribute prefers attributes that split the data so that

each successor node is as pure as posssible
 i.e., the distribution of examples in each node is so that it mostly

contains examples of a single class

● In other words:
 We want a measure that prefers attributes that have a high degree

of „order“:
● Maximum order: All examples are of the same class
● Minimum order: All classes are equally likely

→ Entropy is a measure for (un-)orderedness
 Another interpretation:

● Entropy is the amount of information that is contained
● all examples of the same class → no information

11 © J. Fürnkranz

Entropy Entropy (for two classes)(for two classes)

● S is a set of examples
● p⊕ is the proportion of

examples in class ⊕
● p⊖ = 1 − p⊕ is the

proportion of examples
in class ⊖

Entropy:

● Interpretation:
 amount of unorderedness in

the class distribution of S

E S =−p⊕⋅log2 p⊕− p⊖⋅log2 p⊖

maximal value at equal
class distribution

minimal value if only
one class left in S

12 © J. Fürnkranz

Example: Attribute Example: Attribute OutlookOutlook

● Outlook = sunny: 3 examples yes, 2 examples no

● Outlook = overcast: 4 examples yes, 0 examples no

● Outlook = rainy : 2 examples yes, 3 examples no

E Outlook=rainy=−3
5

log  3
5 − 2

5
log  2

5 =0.971

E Outlook=overcast=−1 log1−0 log 0=0

E Outlook=sunny=−2
5

log  25 −3
5

log  3
5 =0.971

Note: this
is normally
undefined.
Here: = 0

13 © J. Fürnkranz

Entropy Entropy (for more classes)(for more classes)

E S =− p1 log p1− p2 log p2 ...− pn log pn=−∑i=1

n
pi log pi

● Entropy can be easily generalized for n > 2 classes
 p

i
 is the proportion of examples in S that belong to the i-th class

14 © J. Fürnkranz

Average Entropy / InformationAverage Entropy / Information

● Problem:
 Entropy only computes the quality of a single (sub-)set of examples

● corresponds to a single value
 How can we compute the quality of the entire split?

● corresponds to an entire attribute
● Solution:

 Compute the weighted average over all sets resulting from the split
● weighted by their size

● Example:
 Average entropy for attribute Outlook:

I S , A=∑
i

∣S i∣
∣S∣

⋅E S i

I Outlook = 5
14⋅0.971 4

14⋅0 5
14⋅0.971=0.693

15 © J. Fürnkranz

Information GainInformation Gain

● When an attribute A splits the set S into subsets Si
 we compute the average entropy
 and compare the sum to the entropy of the original set S

Information Gain for Attribute A

● The attribute that maximizes the difference is selected
 i.e., the attribute that reduces the unorderedness most!

● Note:
 maximizing information gain is equivalent to minimizing average

entropy, because E(S) is constant for all attributes A

Gain S , A=E S − I S , A=E S −∑
i

∣S i∣
∣S∣

⋅E S i

16 © J. Fürnkranz

ExampleExample

GainS , Outlook=0.246 GainS ,Temperature =0.029

17 © J. Fürnkranz

Example (Ctd.)Example (Ctd.)

? ?

Outlook is selected
as the root note

 Outlook = overcast
contains only

examples of class yes

further splitting
necessary

18 © J. Fürnkranz

Example (Ctd.)Example (Ctd.)

Gain(Temperature) = 0.571 bits
Gain(Humidity) = 0.971 bits
Gain(Windy) = 0.020 bits

Humidity is selected

19 © J. Fürnkranz

Example (Ctd.)Example (Ctd.)

?

Humidity is selected

further splitting
necessary

Pure leaves
→ No further expansion necessary

20 © J. Fürnkranz

Final decision treeFinal decision tree

21 © J. Fürnkranz

Properties of EntropyProperties of Entropy

● Entropy is the only function that satisfies all of the following three
properties
 When node is pure, measure should be zero
 When impurity is maximal (i.e. all classes equally likely), measure

should be maximal
 Measure should obey multistage property:

● p, q, r are classes in set S, and T are examples of class t = q ˅ r

→ decisions can be made in several stages

● Simplification of computation of average entropy (information):

E p , q , r S =E p , t S 
∣T∣
∣S∣

⋅Eq ,r T 

I S ,[2,3 ,4]=− 2
9⋅log 2

9 −
3
9⋅log  3

9 −
4
9⋅log 4

9 

=− 1
9 2⋅log23⋅log34⋅log4−9⋅log 9

22 © J. Fürnkranz

Highly-branching attributesHighly-branching attributes

● Problematic: attributes with a large number of values
 extreme case: each example has its own value

● e.g. example ID; Day attribute in weather data

● Subsets are more likely to be pure if there is a large number of
different attribute values
 Information gain is biased towards choosing attributes with a

large number of values

● This may cause several problems:
 Overfitting

● selection of an attribute that is non-optimal for prediction
 Fragmentation

● data are fragmented into (too) many small sets

23 © J. Fürnkranz

Decision Tree for Decision Tree for DayDay attribute attribute

I Day = 1
14  E [0,1]E [0,1]...E [0,1] =0

● Entropy of split:

 Information gain is maximal for Day (0.940 bits)

 Day

07-05 07-06 07-07 07-26 07-30

24 © J. Fürnkranz

Intrinsic Information of an AttributeIntrinsic Information of an Attribute

● Intrinsic information of a split
 entropy of distribution of instances into branches
 i.e. how much information do we need to tell which branch an

instance belongs to

● Example:
 Intrinsic information of Day attribute:

● Observation:
 Attributes with higher intrinsic information are less useful

IntI Day =14×− 1
14⋅log  1

14 =3.807

IntI S , A=−∑
i

∣S i∣
∣S∣

log ∣S i∣
∣S∣ 

25 © J. Fürnkranz

Gain RatioGain Ratio

● modification of the information gain that reduces its bias towards
multi-valued attributes

● takes number and size of branches into account when choosing
an attribute
 corrects the information gain by taking the intrinsic information of a

split into account
● Definition of Gain Ratio:

● Example:
 Gain Ratio of Day attribute

GRS , A=Gain S , A
IntI S , A

GR Day =0.940
3,807

=0.246

26 © J. Fürnkranz

Gain ratios for weather dataGain ratios for weather data

0.019Gain ratio: 0.029/1.5570.157Gain ratio: 0.247/1.577

1.557Split info: info([4,6,4])1.577 Split info: info([5,4,5])

0.029Gain: 0.940-0.911 0.247 Gain: 0.940-0.693

0.911Info:0.693Info:

TemperatureOutlook

0.049Gain ratio: 0.048/0.9850.152Gain ratio: 0.152/1

0.985Split info: info([8,6])1.000 Split info: info([7,7])

0.048Gain: 0.940-0.892 0.152Gain: 0.940-0.788

0.892Info:0.788Info:

WindyHumidity

● Day attribute would still win...
 one has to be careful which attributes to add...

● Nevertheless: Gain ratio is more reliable than Information Gain

27 © J. Fürnkranz

Gini IndexGini Index

● Many alternative measures to Information Gain
● Most popular altermative: Gini index

 used in e.g., in CART (Classification And Regression Trees)
 impurity measure (instead of entropy)

 average Gini index (instead of average entropy / information)

 Gini Gain
● could be defined analogously to information gain
● but typically avg. Gini index is minimized instead of maximizing

Gini gain

Gini S =1−∑
i

pi
2

Gini S , A=∑
i

∣S i∣
∣S∣

⋅Gini S i

28 © J. Fürnkranz

Comparison among Splitting CriteriaComparison among Splitting Criteria

For a 2-class problem:

29 © J. Fürnkranz

Industrial-strength algorithmsIndustrial-strength algorithms

● For an algorithm to be useful in a wide range of real-world
applications it must:
 Permit numeric attributes
 Allow missing values
 Be robust in the presence of noise
 Be able to approximate arbitrary concept descriptions (at least in

principle)
→ ID3 needs to be extended to be able to deal with real-world data
● Result: C4.5

 Best-known and (probably) most widely-used learning algorith
● original C-implementation at http://www.rulequest.com/Personal/

 Re-implementation of C4.5 Release 8 in Weka: J4.8
 Commercial successor: C5.0

30 © J. Fürnkranz

Numeric attributesNumeric attributes

● Standard method: binary splits
 E.g. temp < 45

● Unlike nominal attributes, every attribute has many possible split
points

● Solution is straightforward extension:
 Evaluate info gain (or other measure)

for every possible split point of attribute
 Choose “best” split point
 Info gain for best split point is info gain for attribute

● Computationally more demanding

31 © J. Fürnkranz

ExampleExample

● Assume a numerical attribute for Temperature
● First step:

 Sort all examples according to the value of this attribute
 Could look like this:

● One split between each pair of values
 E.g. Temperature < 71.5: yes/4, no/2

 Temperature ≥ 71.5: yes/5, no/3

● Split points can be placed between values or directly at values

 64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

I Temperature @ 71.5= 6
14

⋅E Temperature71.5 8
14

E Temperature≥71.5=0.939

32 © J. Fürnkranz

Efficient ComputationEfficient Computation

● Efficient computation needs only one scan through the values!
 Linearly scan the sorted values, each time updating the count

matrix and computing the evaluation measure
 Choose the split position that has the best value

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values

33 © J. Fürnkranz

Binary Binary vs.vs. Multiway Splits Multiway Splits

● Splitting (multi-way) on a nominal attribute exhausts all
information in that attribute
 Nominal attribute is tested (at most) once on any path in the tree

● Not so for binary splits on numeric attributes!
 Numeric attribute may be tested several times along a path in the

tree
● Disadvantage: tree is hard to read
● Remedy:

 pre-discretize numeric attributes (→ discretization), or
 use multi-way splits instead of binary ones

● can, e.g., be computed by building a subtree using a single
numerical attribute.

● subtree can be flattened into a multiway split
● other methods possible (dynamic programming, greedy...)

34 © J. Fürnkranz

Missing valuesMissing values

● Examples are classified as usual
 if we are lucky, attributes with missing values are not tested by the

tree
● If an attribute with a missing value needs to be tested:

 split the instance into fractional instances (pieces)
 one piece for each outgoing branch of the node
 a piece going down a branch receives a weight proportional to the

popularity of the branch
 weights sum to 1

● Info gain or gain ratio work with fractional instances
 use sums of weights instead of counts

● during classification, split the instance in the same way
 Merge probability distribution using weights of fractional instances

35 © J. Fürnkranz

Overfitting and PruningOverfitting and Pruning

● The smaller the complexity of a concept, the less danger that it
overfits the data
 A polynomial of degree n can always fit n+1 points

● Thus, learning algorithms try to keep the learned concepts simple
 Note a „perfect“ fit on the training data can always be found for a

decision tree! (except when data are contradictory)

Pre-Pruning:
 stop growing a branch when information becomes unreliable

Post-Pruning:
 grow a decision tree that correctly classifies all training data
 simplify it later by replacing some nodes with leafs

● Postpruning preferred in practice—prepruning can “stop early”

36 © J. Fürnkranz

PrepruningPrepruning

● Based on statistical significance test
 Stop growing the tree when there is no statistically significant

association between any attribute and the class at a particular node
● Most popular test: chi-squared test
● ID3 used chi-squared test in addition to information gain

 Only statistically significant attributes were allowed to be selected
by information gain procedure

37 © J. Fürnkranz

Early stoppingEarly stopping

● Pre-pruning may stop the growth
process prematurely: early stopping

● Classic example: XOR/Parity-problem
 No individual attribute exhibits any

significant association to the class
→ In a dataset that contains XOR attributes a and b, and several

irrelevant (e.g., random) attributes, ID3 can not distinguish
between relevant and irrelevant attributes

→ Prepruning won’t expand the root node
 Structure is only visible in fully expanded tree

● But:
 XOR-type problems rare in practice
 prepruning is faster than postpruning

0001

1102

1

1

a

014

103

classb

38 © J. Fürnkranz

Post-Pruning Post-Pruning

● basic idea
 first grow a full tree to capture all possible attribute interactions
 later remove those that are due to chance

1.learn a complete and consistent decision tree that classifies all
examples in the training set correctly

2.as long as the performance increases

● try simplification operators on the tree
● evaluate the resulting trees
● make the replacement the results in the best estimated

performance

3.return the resulting decision tree

39 © J. Fürnkranz

PostpruningPostpruning

● Two subtree simplification operators
 Subtree replacement
 Subtree raising

● Possible performance evaluation strategies
 error estimation

● on separate pruning set („reduced error pruning“)
● with confidence intervals (C4.5's method)

 significance testing
 MDL principle

40 © J. Fürnkranz

Subtree replacementSubtree replacement

● Bottom-up
● Consider replacing a tree only

after considering all its subtrees

41 © J. Fürnkranz

Subtree raisingSubtree raising

● Delete node B
● Redistribute instances of

leaves 4 and 5 into C

42 © J. Fürnkranz

Estimating Error RatesEstimating Error Rates

● Prune only if it does not increase the estimated error
 Error on the training data is NOT a useful estimator

(would result in almost no pruning)
● Reduced Error Pruning

 Use hold-out set for pruning
 Essentially the same as in rule learning

● only pruning operators differ (subtree replacement)
● C4.5’s method

 Derive confidence interval from training data
● with a user-provided confidence level

 Assume that the true error is on the upper bound of this confidence
interval (pessimistic error estimate)

43 © J. Fürnkranz

Pessimistic Error RatesPessimistic Error Rates

),(NEUCF

● Consider classifying E examples incorrectly out of N examples
as observing E events in N trials in the binomial distribution.

● For a given confidence level CF, the upper limit on the error rate
over the whole population is with CF% confidence.

● Example:
 100 examples in a leaf
 6 examples misclassified
 How large is the true error

assuming a pessimistic
estimate with a confidence
of 25%?

● Note:
 this is only a heuristic!
 but one that works well U0.25(100,6)L0.25(100,6)

6

Possibility(%)

2 10

75% confidence interval

44 © J. Fürnkranz

C4.5’s methodC4.5’s method

● Pessimistic error estimate for a node

 z is derived from the desired confidence value
● If c = 25% then z = 0.69 (from normal distribution)

 f is the error on the training data
 N is the number of instances covered by the leaf

● Error estimate for subtree is weighted sum of error estimates for
all its leaves

→A node is pruned if error estimate of subtree is lower than error
estimate of the node

e=
f  z 2

2N z  f
N −

f 2

N  z2

4N2

1 z2

N

45 © J. Fürnkranz

ExampleExample

f=0.33 e=0.47 f=0.5 e=0.72 f=0.33 e=0.47

f = 5/14
e = 0.46
e < 0.51
so prune!

Combined using ratios 6:2:6 gives 0.51

46 © J. Fürnkranz

Reduced Error Pruning Reduced Error Pruning

● basic idea
 optimize the accuracy of a decision tree on a separate pruning set

1.split training data into a growing and a pruning set

2.learn a complete and consistent decision tree that classifies all
examples in the growing set correctly

3.as long as the error on the pruning set does not increase

● try to replace each node by a leaf (predicting the majority class)
● evaluate the resulting (sub-)tree on the pruning set
● make the replacement the results in the maximum error

reduction

4.return the resulting decision tree

47 © J. Fürnkranz

Complexity of tree inductionComplexity of tree induction

● Assume
● m attributes
● n training instances
● tree depth O (log n)

● Building a tree O (m n log n)
● Subtree replacement O (n)
● Subtree raising O (n (log n)2)

● Every instance may have to be redistributed at every node
between its leaf and the root

● Cost for redistribution (on average): O (log n)
● Total cost: O (m n log n) + O (n (log n)2)

48 © J. Fürnkranz

From trees to rulesFrom trees to rules

● Simple way: one rule for each leaf
● C4.5rules: greedily prune conditions from each rule if this

reduces its estimated error
 Can produce duplicate rules
 Check for this at the end

● Then
 look at each class in turn
 consider the rules for that class
 find a “good” subset (guided by MDL)

● Then rank the subsets to avoid conflicts
● Finally, remove rules (greedily) if this decreases error on the

training data

49 © J. Fürnkranz

Decision Lists and Decision GraphsDecision Lists and Decision Graphs

● Decision Lists
 An ordered list of rules
 the first rule that fires makes the prediction
 can be learned with a covering approach

● Decision Graphs
 Similar to decision trees, but nodes may have multiple

predecessors
 DAGs: Directed, acyclic graphs
 there are a few algorithms that can learn DAGs

● learn much smaller structures
● but in general not very successful

● Special case:
 a decision list may be viewed as a special case of a DAG

50 © J. Fürnkranz

ExampleExample

● A decision list for a rule set with rules
 with 4, 2, 2, 1 conditions, respectively
 drawn as a decision graph

Rule 1

Rule 2

Rule 3 Rule 4

51 © J. Fürnkranz

C4.5: choices and optionsC4.5: choices and options

● C4.5rules slow for large and noisy datasets
● Commercial version C5.0rules uses a different technique

 Much faster and a bit more accurate

● C4.5 has several parameters
 -c Confidence value (default 25%):

lower values incur heavier pruning
 -m Minimum number of instances in the two most popular

branches (default 2)
 Others for, e.g., having only two-way splits (also on symbolic

attributes), etc.

52 © J. Fürnkranz

Sample Experimental EvaluationSample Experimental Evaluation

Typical behavior with
growing m and decreasing c
● tree size and training

accuracy (= purity)
 always decrease

● predictive accuracy
 first increases

(overfitting
avoidance)

 then decreases
(over-generalization)

● ideal value on this data
set near
 m = 30
 c = 10

53 © J. Fürnkranz

Rules vs. Trees Rules vs. Trees

● Each decision tree can be converted into a rule set
→ Rule sets are at least as expressive as decision trees

 a decision tree can be viewed as a set of non-overlapping rules
 typically learned via divide-and-conquer algorithms (recursive

partitioning)
● Transformation of rule sets / decision lists into trees is less trivial

 Many concepts have a shorter description as a rule set
 low complexity decision lists are more expressive than low

complexity decision trees (Rivest, 1987)
 exceptions: if one or more attributes are relevant for the

classification of all examples (e.g., parity)
● Learning strategies:

 Separate-and-Conquer vs. Divide-and-Conquer

54 © J. Fürnkranz

Discussion TDIDTDiscussion TDIDT

● The most extensively studied method of machine learning used
in data mining

● Different criteria for attribute/test selection rarely make a large
difference

● Different pruning methods mainly change the size of the
resulting pruned tree

● C4.5 builds univariate decision trees
● Some TDITDT systems can build multivariate trees (e.g. CART)

 multi-variate: a split is not based on a single attribute but on a
function defined on multiple attributes

55 © J. Fürnkranz

Regression ProblemsRegression Problems

● Regression Task
 the target variable is numerical instead of discrete

● Two principal approaches
 Discretize the numerical target variable

 e.g., equal-with intervals, or equal-frequency
● and use a classification learning algorithm

 Adapt the classification algorithm to regression data
→ Regression Trees and Model Trees

56 © J. Fürnkranz

Regression TreesRegression Trees

Differences to Decision Trees (Classification Trees)
 Leaf Nodes:

● Predict the average value of all instances in this leaf
 Splitting criterion:

● Minimize the variance of the values in each subset Si
● Standard deviation reduction

 Termination criteria:
Very important! (otherwise only single points in each leaf)
● lower bound on standard deviation in a node
● lower bound on number of examples in a node

 Pruning criterion:
● Numeric error measures, e.g. Mean-Squared Error

SDR A ,S =SD S −∑
i

∣S i∣
∣S∣

SD S i

57 © J. Fürnkranz

Model TreesModel Trees

● In a Leaf node
 Classification Trees predict a class value
 Regression Trees predict the average value of all instances in the

model
 Model Trees use a linear model for making the predictions

● growing of the tree is as with Regression Trees
● Linear Model:

 where vi(x) is the value of attribute Ai
for example x and wi is a weight

 The attributes that have been used in the path of the tree can be
ignored

● Weights can be fitted with standard math packages
 Minimize the Mean Squared Error

LM x=∑
i

wi vi x

MSE=∑
j
 y j−r j

2

58 © J. Fürnkranz

SummarySummary

● Classification Problems require the prediction of a discrete target
value
 can be solved using decision tree learning
 iteratively select the best attribute and split up the values according

to this attribute
● Regression Problems require the prediction of a numerical target

value
 can be solved with regression trees and model trees
 difference is in the models that are used at the leafs
 are grown like decision trees, but with different splitting criteria

● Overfitting is a serious problem!
 simpler, seemingly less accurate trees are often preferable
 evaluation has to be done on separate test sets

