Different Learning Scenarios

Supervised Learning
= A teacher provides the value for the target function for
all training examples (labeled examples)
= concept learning, classification, regression

/\

Reinforcement Learning

The teacher only provides feedback
but not example values

Semi-supervised Learning
Only a subset of the training examples
are labeled

Unsupervised Learning
= There is no information except the training examples
= clustering, subgroup discovery, association rule discovery

© J. Furnkranz

Clustering

e Given:
= a set of examples
= in some description language (e.g., attribute-value)
= no labels (-> unsupervised)
e Find:
= a grouping of the examples into meaningful clusters

= so that we have a high

e Intra-class similarity: similarity between objects in same cluster

e inter-class dissimilarity: dissimilarity between objects in
different clusters

2 © J. Furnkranz

Plat: iris_clustered

Class colour

clusterd

6 clusters on Iris dataset

clusterl

Instance number
Attribute sepallength
Attribute sepalwidth
Attribute petallength
Attribute petalwidth
Class Attribute
Clustering

clusterk

Clustering Algorithms

e k-means clustering
= given a similarity metric (like k-NN algorithms)
= |nitialize k cluster centers
= [teratively assign examples to closest neighbor
= until procedure converges
e bottom-up hierarchical clustering
= each example is a cluster
= jteratively merge clusters, similar to chi-merge
e Cobweb

= incrementally build up a tree structure

= each node/cluster can estimate a probability that an example
belongs to this cluster

= examples are sorted into the tree in a top-down way

4 © J. Furnkranz

Association Rule Discovery

e Association Rules describe frequent co-occurences in sets
= an itemset is a subset 4 of all possible items /

e Example Problems:
= \Which products are frequently bought together by customers?
(Basket Analysis)
e DataTable = Receipts x Products (or Customer x Products)

e Results could be used to change the placements of products in the
market

= \Which courses tend to be attended together?

e DataTable = Students x Courses
e Results could be used to avoid scheduling conflicts....

5 © J. Furnkranz

Association Rules

e General Form:
Al’ Az, cees An — Bl’ Bz, cees Bm
e |nterpretation:

= When items A; appear, items B. also appear with a certain
probability

e Examples:

= Bread, Cheese — RedW ne.
Customers that buy bread and cheese, also tend to buy red
wine.

= Machi neLearni ng — WebM ni ng, M.Praktikum

Students that take 'Machine Learning' also take "Web Mining'
and the 'Machine Learning Praktikum'

6 © J. Furnkranz

Basic Quality Measures

n(A U B) is the no.
of customers that

_n(AUB) <« bought all items in

° Support support(A— B)=support(AUB) . item sets Aand B.
= proportion of examples for which both the A and B are
head and the body of the rule are true interpreted as

logical conjuncts,
this should be AAB

= How many examples does this rule cover?

* Confidence confidence(4—B)=T Z) Zotif(jf)=”(nfzj)3)
= proportion of examples for which the head is true among

those for which the body is true
= How strong is the implication of the rule?

e Example:

= Bread, Cheese => RedW ne (S=0.01,C=0.8)
80% of all customers that bought bread and cheese also bought red wine.
1% of all customers bought all three items.

7 © J. Furnkranz

Learning Problem

Find all association rules with a given minimum support s,,;,
and a given minimum confidence c,,,,

= An itemset A is frequent if suppor f<A)ZSm,-n

e Key Observation ():

= Adding a condition (specializing the rule) may never increase
support/fregency of a rule (or of its itemset).
C < D= support(C)=support(D)
= Therefore:

e an itemset can only be frequent if all of its subsets are fregent
e all supersets of an infrequent itemset are also infrequent

8 © J. Furnkranz

Support/Confidence Filtering

e filter rules that

= cover not enough positive
examples (p < Suin)

= are not precise enough
(Mprec < Cmin)

o effects:

= all but a region around
(0,P) is filtered

Note: P = examples for which head is true
N = examples for which head is false

9 © J. Furnkranz

APRIORI Step1:
FreqSet: Find all Frequent ltemsets

1. k=1
2. C;=1 (all items)
3. whileC >0
(@ S =C \all infrequent itemsets in C_ «— check on data

(b) C ,, = all sets with k+1 elements that can be formed by
uniting of two itemsets in S

(c) C,,=C,, \itemsets that do not have all subsets of size kin S
(d)S=SuUS
(e) k++

4. return S

Candidate itemsets are stored in efficient data structures such as
hash trees or tries.

10 © J. Furnkranz

Efficient Candidate Generation

e Formation of C,,, (Step 3(b) of the algorithm):

= combines two frequent k-itemsets to a candidate for a
(k+1)-itemset

= can be performed efficiently:
Ck+l={<X11""Xk—l’Xk’Xk+1>|<XlJ""Xk—l’Xk>€Sk’<X1""’Xk—l’Xk+1’>ESk’Xk<Xk+l}

e assumes items are ordered in some way (e.g., alphabetically)
o will generate each itemset only once (sorted from X; to X,,4)

e no candidate will be missed (anti-monotonicity of support)
e Pruning of C,,; (Step 3(c) of the algorithm):

= testing all k-item subsets of a k+ 1-itemset
= generated by deleting each of the first k-1 conditions
= delete the candidate set if not all k-item subsets are frequent

(i.,e.,in §)

11 © J. Furnkranz

Example

beer chips pizza wine

customer 1 1 1 0 1
customer 2 1 1 0 0
customer 3 0 0 1 1
customer 4 0 1 1 0

e Find all itemsets with S = 0.25

s C, = { {beer}, {chips}, {pizza}, {wine} }

S, = { {beer}, {chips}, {pizza}, {wine} }
m C = { {beer, chips}, {beer, pizza}, {beer, wine}, {chips, pizzaj},

{chips, wine}, {pizza, wine} }

S, = { {beer, chips}, {beer, wine}, {chips, pizza}, {chips, wine}, {pizza, wine} }
n» C,={ {beer, chips, wine}, {chips, pizza, wine} }

S, = { {beer, chips, wine} }
= C,=0

12 © J. Furnkranz

Search Space and Border

e Search Space:

= The search space for frequent itemsets can be structured with
the subset relationship

e Border:

= The border are all itemsets for which

e all subsets are frequent
e no superset is frequent

e elements of the border that are frequent
= negative border:
e elements of the border that are infrequent

= Frequent itemsets = subsets of border + positive border

13 © J. Furnkranz

Search Space and Border

(] frequent itemset
/’m positive border
beer {chips} {pizza | {wine} [negative border]

{beer, chips} ", PIZZE [chips, pizza} [[chips. wine}| [pizza. wine}

1 frequent

| infrequent

{beer, chips, pizz:l]| r, chips, wine} |{heer. pIZZa, wine} ({chips. pizza, wlneD

{beer, chips, pizza, wine }

based on Bart Goethals, Survey on Frequent Pattern Mining, 2002
14 © J. Furnkranz

APRIORI Step 2:
Generate Association Rules

e Association rules can be generated from frequent item sets

e confidence of the rule can be computed efficiently from the support
of Y and Z, but generating all rules may be expensive

o for each frequent item set X there are 2™ possible association rules
oftheform Y—Z, withYuZ=X and YN Z={}

e Efficient generation of association rules:
e the generation of all subsets can be made much more efficient by
exploiting the anti-monotonicity property in the heads of the rules
e Confidence Anti-monotonicity:
m confidence(A— B,C) < confidence(A, B—C)
= \Why?

e Thus, rules can be generated with an algorithm similar to FreqSet
(starting with heads with length 1, etc.)

m if a rule with a head is unconfident, adding conditions from the body to
the head will also result in unconfident rules — need not be searched
15 © J. Furnkranz

Search space for itemset {beer, chips, wine}

{beer, chips, wine }=>{}

e

{chips, wine }=>{beer} {beer, wine }=>{chips} {beer, chips }=>{wine}

{wine}=>{beer, chips] =—fehipsl=sthopp—iined {beer}=>{chips, wine}

\W

H=>becrehipe=w ines)
not searched

Source: Bart Goethals, Survey on Frequent Pattern Mining, 2002

16

Example

All rules for Confidence > 0.5

Rule support | Frequency | Confidence
Ibeer} = {chips} 2 a0% 100%
Iheer = {wme 1 25% Sl
fchips} = {heer! 2 a0 B
lpizza}l = {chips} 1 255 S105
lpizzal = {wine} 1 25% Al
{wine} = {beer} 1 257 Al
{wme} = {chips} 1 255 S105
Iwine} = {pizzal 1 25% Sl
Ibeer, chips} = { wine! 1 257 Al
{beer, wine} = {chips} 1 255 1005
{chips, wine} = {heer} 1 25% 1007
{beer} = {chips, wine} 1 2550 ol
lwine} = {beer, chips} 1 25%% ST

© J. Furnkranz

Example 2

bread butter coffee milk sugar

customer 1 1 1 0 0 1
customer 2 0 0 1 1 1
customer 3 1 0 1 1 1
customer 4 0 0 1 1 0

e Find all association rules with s =0.5 and ¢, =1.0

1. find frequent itemsets:
= C ={ {bread}, { butter}, { coffee}, { milk}, {sugar} }
S, = { {bread}, { coffee}, { milk}, {sugar} }

= C,={ {bread, coffee}, {bread, milk}, { bread, sugar}, { coffee, milk},
{ coffee, sugar}, { milk, sugar} }
S, ={ {bread, sugar}, { coffee, milk}, { coffee, sugar}, { milk, sugar} }

= C,={ {coffee, milk, sugar} }
S, ={ { coffee, milk, sugar} }
o C4 =0

17 © J. Furnkranz

Example 2 (Ctd.)

2. Find all rules with Gmn = 1.0
= bread => sugar (0.5,1.0)
= ml|k => coffee (0.75,1.0)
= coffee => m |k (0.75,1.0)
= mlk, sugar => coffee (0.5 1.0)
= sugar, coffee => m| k (0.5, 1.0)

1
1
1

L O N §

0 1
1 1
0 0

o O o

e Other rules have

= too small frequency (filtered out by Step 1)
e butter => bread, sugar (0.25, 1.0)

= too small confidence (filtered out by Step 2)
e ml|k, coffee => sugar (0.5, 0.67)

18 © J. Furnkranz

Properties of APRIORI

e Efficiency
= only needs k passes through the database to find all association
rules of length &
e important if database is too big for memory
= bottleneck:
e large number of itemsets must be tested for each item
e Search space

= significant reduction of search space over searching all possible
rules (2''! different subsets)

e Results
= generates far too many rules for practical purposes

= further filtering of result sets is necessary

e e.g., sort rules by some measure of interestingness and report the
best n rules

19 © J. Furnkranz

Filtering Association Rules

e assumerulesR;:A,B—-Cand R,y A—C

e OpusMagnum (Webb, 2000) filters rule R4 if it is
= trivial:

Justification:

Adding Condition
= unproductive: B does not add

e R, has an equal or higher confidence ;ﬂ?:;nrgg?gt?r?gﬁé
= insignificant:

e R, covers the same examples

e R,'s confidence is not significantly worse (binomial test)
e |nterestingness Measures:

= sort rules by some numerical measure of interestingness
= return the n best rules (n set by user)
e itis hard to formalize the notion of ,interestingness”

20 © J. Furnkranz

Interestingness Measures

e Basic problem:

= support and confidence are not sufficient for capturing
whether a rule is interesting or not

= a rule may have high support and confidence, but still not be
interesting of surprising

e Example:
= di apers => beer (c=0.9)
90% of customers that buy diapers also buy beer.
= |ooks like an interesting finding

= BUT: if we know that 90% of all customers buy beer, the rule
IS not at all interesting

21 © J. Furnkranz

Lift & Leverage

o Lift:
= ratio of confidence over a priori expectaction for head
n(AUB)
n(A) _ confidence(A— B)_ support(A— B)
n(B) confidence(—B) support(A)support (B)
e |everage: n

= Difference between support and expected support if rule head
and body were independent

lift(A—B)=

leverage(A— B)=support (A — B)—support(A)support(B)

= |everage is a lower bound for support
e high leverage implies high support
e optimizing only leverage guarantees a certain minimum support
(contrary to optimizing only confidence or only lift)

22 © J. Furnkranz

Vertical Database Layout

e horizontal database * vertical database

= each transaction lists = each item lists the |
bought items transactions that bought it

beer | wine | chips | pizza beer wine chips pizza

100 1 1 1 0 100 1 1 1 0

200 1 0 1 0 200 1 0 1 0

300 0 1 0 1 300 0 1 0 1

400 0 0 1 1 400 0 0 1 1

e |f the vertical database fits into memory
= itemsets can be joined by computing the intersection of the
transactions that bought it
e eg., {beer}={1100} U{wine} ={1,0,10} = { beer, wine} ={1,0,0,0}
= transactions that appear in no k-item can be deleted
e will not appear in any (k+1)-item
= algorithm works only if database fits into memory!

23 © J. Furnkranz

Depth-First Search for
Frequent ltemsets

e Apriori searches for itemsets in a breadth-first fashion

e There are other algorithms that find frequent item sets
depth-first:
= Eclat (zaki, 2000)

e recursively generates all item-sets with the same prefix
e uses vertical database layout

m but data can be divided into smaller subsets based on common
prefixes

= FP-Growth (Han, Pei, Yin, 2000)

e quite similar to Eclat, but uses an elaborate data structure, a frequent
pattern tree (FP-tree)

e The Association rule growing phase is the same for these
algorithms

24 © J. Furnkranz

Best-First Search

e Frequent set based search (Apriori)

= typically far too many rules

= pruning is based on support/frequency, even if interesting
measure is different

= focus on minimizing the number of database scans
e OpusMagnum (Webb, KDD-2000)

= assumes examples fit in main memory

= directly searches for the n best rules in a best-first fashion
e rule quality can be based on a variety of criteria

= many pruning options

e optimistic pruning: prune a rule if the highest possible value of its
successors is too low to be of interest

= syntactic constraints really reduce search space
e for Apriori they only affect phase 2.

25 © J. Furnkranz

Representational Extensions

Nominal Attributes:

= each n-valued attribute can be transformed into » binary
attributes

= increased efficiency if the algorithm knows that only one of

these n values can appear in an item set
Abstraction Hierarchies:

= forming groups of items (e.qg., dairy products) and using them

as additional items
Sequences:

= efficient extension of FreqSet to find frequent subsequences

Rule Schemata:
= the user may restrict the pattern of rules of interest

(e.g., only rules with a certain set of attributes in the head)

26

© J. Furnkranz

Application: Telecommunication
Alarm Sequence Analyzer (TASA)

e Goal:

= find temporal dependencies in alarm sequences for

e recognizing redundant alarms
e detecting problems in the networks
e early warning of severe problems

e Data:

= temporal sequence of alarms in a finnish telecommunications
network

= 200-10000 alarms/day, 73679 alarms over 50 days, 287
different alarm types

e Find:
= associations in time sequences of a certain length
= |F alarm A and alarm B occur within 5 seconds THEN with
probability 0.7, alarm C will follow within 60 seconds

27 © J. Furnkranz

References

e Bart Goethals. Survey on Frequent Pattern Mining. Manuscript, 2003.
http://www.adrem.ua.ac.be/~goethals/publications/survey.pdf

e |an H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann, 2nd edition 2005.
(sections 3.4 and 4.5)

Software:

e Geoff Webb, Magnum Opus, Demo Version (limited to 1000
examples). http://www.csse.monash.edu.au/~webb/software.htm

e Other Association Rule Learning software is also available by
Mohammed Zaki, Bart Goethals, or Christian Borgelt, and a version of
APriori is implemented in Weka.

28 © J. Furnkranz

http://www.adrem.ua.ac.be/~goethals/publications/survey.pdf
http://www.csse.monash.edu.au/~webb/software.htm

Weiteres Programm

3.2. Ubung
5.2. Fragestunde

10.2. Vorlesung (Pre-Processing)
12.2. letzte Ubung

29 © J. Furnkranz

