Nightmare at Test Time: Robust Learning by Feature Deletion

Präsentieren: Yang yang 17.11.07

Outline

Introduction

- FDROP:tractable quadratic program for training robust classifiers
- Experiments

Handwritten Digit ClassificationSpam Filtering

Summary

Introduction

Testing comes after training extoo much weight to any single input feature with nonstationary feature distribution with input sensor failure A common approach Regularization which spreads the weight Very generic and cannot iduce robustness

Introduction

Solution New algorithm *avoiding single feature over-weighting Using quadratic programming The application of our methodes on Handwritten digit recongnition Spam filtering

Worst Case Deletion

Input:

- Labeled Sample (xi, yi) (i = 1,...., n),
- ♦ Feature vektor $\mathbf{x}_i \in \Re^d, y_i \in \{\pm 1\}$

Number of features deleted from each sample point X: K

output:

* a linear classifier: $y(\mathbf{x}) = \operatorname{Sign}(\mathbf{w} \cdot \mathbf{x})$

Worst Case Deletion

Output:

* Performance Measure: Regularized hinge $\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} h^{wc}(\mathbf{w}, y_i \mathbf{x}_i)$

Hinge loss:

$$egin{aligned} h^{wc}(\mathbf{w},y_i\mathbf{x}_i) &= &\max & [1-y_i\mathbf{w}\cdot(\mathbf{x}_i\circ(1-lpha_i))]_+\ &s.t. & oldsymbol{lpha}_i \in \{0,1\}\ & \sum_j lpha_{ij} = K \end{aligned}$$

07.11.2007

Hinge loss * a convex upper bound on the zero

 $l_{zo}(\mathbf{w}, y, \mathbf{x}) \leq \sum_{i} [1 - y_i \mathbf{w} \cdot \mathbf{x}_i]_+$

Find w which minimizes the worst case hinge loss

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_i h^{wc}(\mathbf{w}, y_i \mathbf{x}_i)$$

♦ Minimizing hinge loss → minimizing on the training error

The FDROP

 $\begin{array}{ll} \text{How can people Solving the minimax} \\ h^{wc}(\mathbf{w}, y_i \mathbf{x}_i) &= & \left[1 - y_i \mathbf{w}^T \mathbf{x}_i + s_i \right]_+ \\ s_i &= & \max_{\substack{\mathbf{x}_i \in \{0, 1\}\\ \sum_j \alpha_{ij} = K}} y_i \mathbf{w} \cdot (\mathbf{x}_i \circ \boldsymbol{\alpha}_i) \end{array}$

Si is the maximum contribution of K features to the margin of sample xi

$$egin{array}{rcl} s_i = & \max & y_i \left(\mathbf{w} \circ \mathbf{x}_i
ight) \cdot oldsymbol{lpha}_i \ & s.t. & 0 \leq oldsymbol{lpha}_i \leq 1 \ & \sum_j lpha_{ij} = K \end{array}$$

The FDROP

The maximization problem for si has an LP

 $s_i = \min K z_i + \sum_j v_{ij}$ $s.t. \quad z_i + \mathbf{v}_i \ge (y_i \mathbf{x}_i \circ \mathbf{w}), \mathbf{v}_i \ge 0$

Linear in all variables

 $\begin{array}{ll} \underline{\mathrm{FDROP:}}\\ \min & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \left[1 - y_i \mathbf{w}^T \mathbf{x}_i + t_i\right]_+\\ \mathrm{s.t.} & t_i \geq K z_i + \sum_j v_{ij}\\ & z_i + \mathbf{v}_i \geq \left(y_i \mathbf{x}_i \circ \mathbf{w}\right) \quad , \quad \mathbf{v}_i \geq 0 \end{array}$

FDROP VS SVM

FDROP is variant of SVM
 Inear classifier
 the training objektiv is measured using a
 regularized hinge loss

FDROP VS SVM

★ FDROP is variant of SVM
 ∞ differently error term compare to FDROP
 min ¹/₂ ||w||² - ∑_i α_i min ¹/₂ ||w||² - ∑_i α_i
 s.t. w = ∑_i y_iα_ix_i s.t. w = ∑_i y_iα_ix_i ∘ (1 - λ_i)
 0 ≤ α ≤ C
 0 ≤ λ_i ≤ 1

 $\sum_{j} \lambda_{ij} = K$

Handwritten Digit Classfication

- investigated the application of FDROP to classifying handwritten digits
- robustness to pixel deletion in these images
- Binary problems
- Small training sets of 50 samples per digit

Handwritten Digit classification

- visual representation of the feature deletion process
- K destructive featuredeleted(K=50)
- maximize the resemblance between the given digit and the digit in the other class

FDROP Adversary

confuse with "three"

FDROP Adversary

confuse with "five"

FDROP Adversary

confuse with "seven"

Handwritten Digit Classification

- Classification error for the digit pair (4; 7)
 K=50
- dependence on K
- e.g
 Book and exam
 howmuch book read in order to better point

Handwritten Digit Classification

- the dependence of classification error on the number of deleted features
- FDROP suffers less degradation in error when compared to SVM
- optimal K grows monotonously
- features dropped randomly

Summary

 Presented a new classification algorithm that is robust to worst case feature deletion
 ROP

- Handwritten Digit classifiation

Discussion Thanks for you attention