The Relationship Between PR & ROC Curves

Instructor: Frederik Janssen Presenter: Wen Zhang

Outline

- Characters of ROC and PR curves
- The relationship between ROC and PR curves
 --- domination in ROC and PR space
 --- convex hull
 --- interpolation & AUC
 --- optimizing AUC

Evaluation of classifier performance

- Methods for evaluating the performance of classifiers
 - --- simply accuracy
 - ---- ROC (recommended)
 - ---- PR (alternative to ROC curves)

ROC Curve

- Receiver Operation Characteristics (ROC): a technique for visualizing, organizing and selecting classifiers based on their performance
- Confusion Matrix

Confusion Matrix

ROC Curve

- Class-decision Classify/ Probabilistic Classify
- Classifier (tpr, fpr) point in ROC
- Property: without regard to class distributions or error costs (columnar ratio)

ROC and PR Curve

- **Classifier**(classification model) : mapping from instances to predicted classes
- **ROC** (Receiver Operator Characteristic): *trade-off* between hit rates and false alarm rates
- **PR** (Precision-Recall): used in Information Retrieval, alternative to ROC, when difference are not apparent

ROC and PR Curve

- ROC : TPR/FPR
- **PR** : Precision/Recall
- **TPR=Recall**= TP/(TP+FN)

" total positives"

• FPR= FP/(TN+FP)

" total negatives"

• **Precision**= TP/(TP+FP)

"predicted positives"

ROC and PR Curve

(a) Comparison in ROC space

Domination in ROC & PR

One-to-one correspondence between a curve in ROC space and a curve in PR space, if Recall ≠ 0 (FN retrieval) (ROC Confusion Matrix PR)
 Under the fixed number of positive and negative examples, domination in ROC
 domination in PR

Proof.

Proof " Suppose: Curve I dominates curve II in ROC space but not in PR space point B on Curve I & point A on Curve II with $TPR_{A} = TPR_{B}$ Domination in ROC \implies FPR_A \geq FPR_B PR space, Rec(A)=Rec(B)Assumption: Prec(A) > Prec(B)

Domination in ROC space

(a) Case 1: FPR(A) > FPR(B)

(b) Case 2:
$$FPR(A) = FPR(B)$$

Proof.

- Domination in ROC \Longrightarrow FPR_A \ge FPR_B with fixed N \Longrightarrow FP_A \ge FP_B
- $TPR_A = TPR_B$ with fixed P $TP_A = TP_B$ Precision A = $TP_A/(FP_A + TP_A)$
 - $\frac{\text{Precision B} = \text{TP}_{\text{B}}/(\text{FP}_{\text{B}} + \text{TP}_{\text{B}})}{\text{Precision B} = \frac{\text{TP}_{\text{B}}}{\text{Precision B}}$

 $Prec(A) \leq Prec(B)$ **CONFLICT!!**

So Curve I should also dominate Curve II in PR space.

Proof.

Proof " — " : analog

So Curve I should also dominate Curve II in ROC space.

 A curve dominates in ROC space if and only if it dominates in PR space.

Convex Hull

- Convex Hull is a set of points in ROC with following three criteria:
- 2. Linear interpolation between adjacent points
- 3. No points above the final curve
- 4. Any points connection lines equal or under the C.H.

C.H. & achievable PR curve

"Convex Hull" in PR space

- Convex Hull in ROC curve
- Achievable PR curve: non-linear interpolation (FP replaces FN in the denominator of the Precision metric)

convex hull

- Method to build convex hull in Roc is on hand.
- How to construct an achievable PR curve?

Interpolation & AUC

- Linear interpolation by ROC curve, but nonlinear interpolation by PR curves
- Solution: interpolation in ROC space
 PR curve
 Infinitely unconstante?

infinitely many points?

Interpolation in PR curve (Goadrich 2004)

Example: two points, A and B => points between A and B **Method** : "1 positive vs. n negatives " with $n = (FP_B - FP_A)/(TP_B - TP_A)$ "local skew", $1 \le x \le TP_B - TP_A$

new points:

$$\left(\frac{TP_A + x}{\text{Total Pos}}, \frac{TP_A + x}{TP_A + x + FP_A + \frac{FP_B - FP_A}{TP_B - TP_A}x}\right)$$

Example

	ΤP	\mathbf{FP}	REC	PREC
Α	5	5	0.25	0.500
	6	10	0.30	0.375
	7	15	0.35	0.318
	8	20	0.40	0.286
	9	25	0.45	0.265
В	10	30	0.50	0.250

AUC-ROC & AUC-PR

• AUC-ROC

trapezoidal areas under curve

• AUC-PR

Optimizing AUC

Are those Algorithm for optimizing AUC-ROC also help to improve AUC-PR?

example

- 20 positives and 2000 negatives, result : AUC-ROC 0.813(I); 0.875(II) II wins AUC-PR 0.514(I); 0.038(II) I wins
 - A lower Recall rage with higher Precision is required by AUC in PR.

Conclusion

- Same points contained in ROC curve and PR curve (correspondent)
- Convex hull in ROC vs. achievable PR curve
- Non-linear interpolation in PR space
- Those algorithms to optimize AUC-ROC doesn't guarantee to optimize AUC-PR

Thanks for attention!

Questions?