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tance ρ in that dimension we construct an embedding
of our data into the so-called augmented space (Duda
& Hart, 1973). The advantage of this embedding is
that the linear hypothesis in the augmented space be-
comes homogeneous. Throughout our discussion a re-
flection with respect to the origin in the augmented
space of the negatively labelled patterns is assumed in
order to allow for a uniform treatment of both cate-
gories of patterns. Also, R ≡ max

k
‖yk‖, with yk the

kth augmented pattern. Obviously, R ≥ ρ.

The relation characterising optimally correct classifi-
cation of the training patterns yk by a weight vector
u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u

′:‖u
′‖=1

min
i

{u′ · yi} ∀k . (1)

The quantity γd will be referred to as the maximum
directional margin. It coincides with the maximum
margin in the augmented space with respect to hy-
perplanes passing through the origin if no reflection
is assumed. Between γd and the maximum geometric
margin γ in the original space the inequality

1 ≤ γ/γd ≤ R/ρ (2)

holds. In the limit ρ → ∞, R/ρ → 1 and from (2)
γd → γ (Tsampouka & Shawe-Taylor, 2005).

We concentrate on algorithms that update the aug-
mented weight vector at by adding a suitable positive
amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The
general form of such an update rule is

at+1 = (at + ηtftyk)N−1
t+1 , (3)

where ηt is the learning rate which could depend (usu-
ally explicitly) on the number t of updates that took
place so far and ft an implicit positive and bounded
function of the current step (update) t, possibly involv-
ing at and/or yk. We also allow for a normalisation
of at+1 through a factor Nt+1. For the Perceptron
ηt = η is constant, ft = 1 and Nt+1 = 1. Each time
the misclassification condition is satisfied by a training
pattern, that is a mistake occurs, the algorithm pro-
ceeds to the update of at. We adopt the convention of
initialising t from 1.

A sufficiently general form of the misclassification con-
dition is

ut · yk ≤ C(t) , (4)

where ut ≡ at/ ‖at‖ and C(t) > 0 if we require that
the algorithm achieves a positive margin. If a1 = 0
we treat the first pattern in the sequence as misclassi-
fied. In the case that C(t) is bounded from above by a

strictly decreasing function of t which tends to zero the
minimum directional margin required by such a condi-
tion becomes lower than any fixed value provided t is
large enough. Such algorithms have the advantage of
achieving some fraction of the unknown margin pro-
vided they converge. An example is the Perceptron
with margin where C(t) = b/‖at‖ (b is a positive con-
stant) is suppressed due to the growth of ‖at‖.

Another important quantity characterising algorithms
with the perceptron-like update rule (3) is the “effec-
tive” learning rate

ηeff t ≡ ηtR‖at‖−1

which controls the impact that an update has on the
direction ut of the current weight vector

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖
. (5)

In the most well-known cases ηeff t is bounded from
above by a strictly decreasing function of t which tends
to zero like in the case of the Perceptron where ηt = η
and ηeff t is suppressed due to the growth of ‖at‖.

From the above discussion it becomes obvious that a
PLA with the additive update (3) is uniquely deter-
mined by the functions C(t), ηeff t and ft. In particu-
lar, it does not depend on ‖at‖ as long as the above
functions are ‖at‖-independent. If this is the case the
update (3) of at can be replaced by the update (5)
of ut. Our purpose here is to examine the sufficiently
large subclass of such algorithms with ft = 1 and C(t),
ηeff t inversely proportional to powers of the number of
mistakes t and determine sufficient conditions under
which algorithms in the above subclass converge as-
ymptotically to the optimal solution. The rather spe-
cial case of a constant ηeff is the CRAMMA algorithm
of (Tsampouka & Shawe-Taylor, 2006).

3. The Mistake-Controlled Rule
Algorithm MICRA

ε,ζ

We consider algorithms having an update rule given
by (5) with ft = 1, an effective learning rate

ηeff t = ηt−ζ (6)

and a misclassification condition

ut · yk ≤ βt−ε . (7)

Here η, ζ, β and ε are positive constants. We assume
that the initial value u1 of ut is in the direction of the
first pattern. Then,

ut · u > 0 . (8)
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Abbildung 5.1: Aufbau eines Perceptrons mit einer
Schicht variabler Verbindungen in verschiedenen An-
sichten. Die durchgezogene Gewichtsschicht in den un-
teren beiden Abbildungen ist trainierbar.
Oben: Am Beispiel der Informationsabtastung im Au-
ge.
Mitte: Skizze desselben mit eingezeichneter fester Ge-
wichtsschicht unter Verwendung der definierten funk-
tionsbeschreibenden Designs für Neurone.
Unten: Ohne eingezeichnete feste Gewichtsschicht,
mit Benennung der einzelnen Neuronen nach unserer
Konvention. Wir werden die feste Gewichtschicht im
weiteren Verlauf der Arbeit nicht mehr betrachten.

Neurone verarbeiten die eingegebene
Information auf irgendeine Weise, repräsen-
tieren also nicht die Identitätsfunktion. Ein
Binäres Neuron summiert alle Eingaben,
die es erhält, durch die gewichtete Summe
als Propagierungsfunktion auf, was wir mit
dem Summenzeichen Σ skizzieren wollen.
Die Aktivierungsfunktion des Neurons ist
dann die binäre Schwellenwertfunktion, die
mit skizziert werden kann. Dies bringt
uns insgesamt zu der Symboldarstellung)*+,-./0Σ . Analog werden andere Neurone mit

gewichteter Summe als Propagierungsfunk-
tion, jedoch den Aktivierungsfunktionen
Tangens Hyperbolicus, Fermifunktion oder
einer separat definierten Aktivierungsfunk-
tion fact als

)*+,-./0Σ
Tanh

)*+,-./0Σ
Fermi

9:;<=>?@Σ
fact

dargestellt. Diese Neurone bezeichnen wir
dann z.B. auch als Fermi-Neuron oder
Tanh-Neuron.

Bemerkung: Ausgabeneurone werden auch
oft Outputneuron genannt.

Nachdem wir nun die Bestandteile eines
Perceptrons kennen, können wir es auch de-
finieren.

Definition 5.3 (Perceptron): Das Per-
ceptron (Abb. 5.1) ist1 ein FeedForward-
Netz, in welchem es eine Retina gibt, die
der reinen Datenaufnahme dient und fest
gewichtete Verbindungen zur ersten Neu-
ronenschicht (Eingabeschicht) besitzt. Der
festen Gewichtsschicht folgt mindestens ei-
ne trainierbare Gewichtsschicht. Eine Neu-
ronenschicht ist zur jeweils nächsten vollver-
knüpft. Die erste Schicht des Perceptrons
besteht aus den oben definierten Eingabe-
neuronen.

1Es mag dem einen oder anderen Leser sauer auf-
stoßen, dass ich behaupte, es gäbe keine Definition für
ein Perceptron, das Perceptron aber im nächsten Ab-
satz definiere. Ich schlage daher vor, meine Definition
im Hinterkopf zu behalten, aber nur für diese Arbeit
als wirklich gegeben anzusehen.
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PLAs - formal (II)

Misclassification 
Condition

C(t) -> 0 für große t

Dann erhält man einen 
möglichst großen 
Korridor

Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes

tance ρ in that dimension we construct an embedding
of our data into the so-called augmented space (Duda
& Hart, 1973). The advantage of this embedding is
that the linear hypothesis in the augmented space be-
comes homogeneous. Throughout our discussion a re-
flection with respect to the origin in the augmented
space of the negatively labelled patterns is assumed in
order to allow for a uniform treatment of both cate-
gories of patterns. Also, R ≡ max

k
‖yk‖, with yk the

kth augmented pattern. Obviously, R ≥ ρ.

The relation characterising optimally correct classifi-
cation of the training patterns yk by a weight vector
u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u

′:‖u
′‖=1

min
i

{u′ · yi} ∀k . (1)

The quantity γd will be referred to as the maximum
directional margin. It coincides with the maximum
margin in the augmented space with respect to hy-
perplanes passing through the origin if no reflection
is assumed. Between γd and the maximum geometric
margin γ in the original space the inequality

1 ≤ γ/γd ≤ R/ρ (2)

holds. In the limit ρ → ∞, R/ρ → 1 and from (2)
γd → γ (Tsampouka & Shawe-Taylor, 2005).

We concentrate on algorithms that update the aug-
mented weight vector at by adding a suitable positive
amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The
general form of such an update rule is

at+1 = (at + ηtftyk)N−1
t+1 , (3)

where ηt is the learning rate which could depend (usu-
ally explicitly) on the number t of updates that took
place so far and ft an implicit positive and bounded
function of the current step (update) t, possibly involv-
ing at and/or yk. We also allow for a normalisation
of at+1 through a factor Nt+1. For the Perceptron
ηt = η is constant, ft = 1 and Nt+1 = 1. Each time
the misclassification condition is satisfied by a training
pattern, that is a mistake occurs, the algorithm pro-
ceeds to the update of at. We adopt the convention of
initialising t from 1.

A sufficiently general form of the misclassification con-
dition is

ut · yk ≤ C(t) , (4)

where ut ≡ at/ ‖at‖ and C(t) > 0 if we require that
the algorithm achieves a positive margin. If a1 = 0
we treat the first pattern in the sequence as misclassi-
fied. In the case that C(t) is bounded from above by a

strictly decreasing function of t which tends to zero the
minimum directional margin required by such a condi-
tion becomes lower than any fixed value provided t is
large enough. Such algorithms have the advantage of
achieving some fraction of the unknown margin pro-
vided they converge. An example is the Perceptron
with margin where C(t) = b/‖at‖ (b is a positive con-
stant) is suppressed due to the growth of ‖at‖.

Another important quantity characterising algorithms
with the perceptron-like update rule (3) is the “effec-
tive” learning rate

ηeff t ≡ ηtR‖at‖−1

which controls the impact that an update has on the
direction ut of the current weight vector

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖
. (5)

In the most well-known cases ηeff t is bounded from
above by a strictly decreasing function of t which tends
to zero like in the case of the Perceptron where ηt = η
and ηeff t is suppressed due to the growth of ‖at‖.

From the above discussion it becomes obvious that a
PLA with the additive update (3) is uniquely deter-
mined by the functions C(t), ηeff t and ft. In particu-
lar, it does not depend on ‖at‖ as long as the above
functions are ‖at‖-independent. If this is the case the
update (3) of at can be replaced by the update (5)
of ut. Our purpose here is to examine the sufficiently
large subclass of such algorithms with ft = 1 and C(t),
ηeff t inversely proportional to powers of the number of
mistakes t and determine sufficient conditions under
which algorithms in the above subclass converge as-
ymptotically to the optimal solution. The rather spe-
cial case of a constant ηeff is the CRAMMA algorithm
of (Tsampouka & Shawe-Taylor, 2006).

3. The Mistake-Controlled Rule
Algorithm MICRA

ε,ζ

We consider algorithms having an update rule given
by (5) with ft = 1, an effective learning rate

ηeff t = ηt−ζ (6)

and a misclassification condition

ut · yk ≤ βt−ε . (7)

Here η, ζ, β and ε are positive constants. We assume
that the initial value u1 of ut is in the direction of the
first pattern. Then,

ut · u > 0 . (8)
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tance ρ in that dimension we construct an embedding
of our data into the so-called augmented space (Duda
& Hart, 1973). The advantage of this embedding is
that the linear hypothesis in the augmented space be-
comes homogeneous. Throughout our discussion a re-
flection with respect to the origin in the augmented
space of the negatively labelled patterns is assumed in
order to allow for a uniform treatment of both cate-
gories of patterns. Also, R ≡ max

k
‖yk‖, with yk the

kth augmented pattern. Obviously, R ≥ ρ.

The relation characterising optimally correct classifi-
cation of the training patterns yk by a weight vector
u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u

′:‖u
′‖=1

min
i

{u′ · yi} ∀k . (1)

The quantity γd will be referred to as the maximum
directional margin. It coincides with the maximum
margin in the augmented space with respect to hy-
perplanes passing through the origin if no reflection
is assumed. Between γd and the maximum geometric
margin γ in the original space the inequality

1 ≤ γ/γd ≤ R/ρ (2)

holds. In the limit ρ → ∞, R/ρ → 1 and from (2)
γd → γ (Tsampouka & Shawe-Taylor, 2005).

We concentrate on algorithms that update the aug-
mented weight vector at by adding a suitable positive
amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The
general form of such an update rule is

at+1 = (at + ηtftyk)N−1
t+1 , (3)

where ηt is the learning rate which could depend (usu-
ally explicitly) on the number t of updates that took
place so far and ft an implicit positive and bounded
function of the current step (update) t, possibly involv-
ing at and/or yk. We also allow for a normalisation
of at+1 through a factor Nt+1. For the Perceptron
ηt = η is constant, ft = 1 and Nt+1 = 1. Each time
the misclassification condition is satisfied by a training
pattern, that is a mistake occurs, the algorithm pro-
ceeds to the update of at. We adopt the convention of
initialising t from 1.

A sufficiently general form of the misclassification con-
dition is

ut · yk ≤ C(t) , (4)

where ut ≡ at/ ‖at‖ and C(t) > 0 if we require that
the algorithm achieves a positive margin. If a1 = 0
we treat the first pattern in the sequence as misclassi-
fied. In the case that C(t) is bounded from above by a

strictly decreasing function of t which tends to zero the
minimum directional margin required by such a condi-
tion becomes lower than any fixed value provided t is
large enough. Such algorithms have the advantage of
achieving some fraction of the unknown margin pro-
vided they converge. An example is the Perceptron
with margin where C(t) = b/‖at‖ (b is a positive con-
stant) is suppressed due to the growth of ‖at‖.

Another important quantity characterising algorithms
with the perceptron-like update rule (3) is the “effec-
tive” learning rate

ηeff t ≡ ηtR‖at‖−1

which controls the impact that an update has on the
direction ut of the current weight vector

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖
. (5)

In the most well-known cases ηeff t is bounded from
above by a strictly decreasing function of t which tends
to zero like in the case of the Perceptron where ηt = η
and ηeff t is suppressed due to the growth of ‖at‖.

From the above discussion it becomes obvious that a
PLA with the additive update (3) is uniquely deter-
mined by the functions C(t), ηeff t and ft. In particu-
lar, it does not depend on ‖at‖ as long as the above
functions are ‖at‖-independent. If this is the case the
update (3) of at can be replaced by the update (5)
of ut. Our purpose here is to examine the sufficiently
large subclass of such algorithms with ft = 1 and C(t),
ηeff t inversely proportional to powers of the number of
mistakes t and determine sufficient conditions under
which algorithms in the above subclass converge as-
ymptotically to the optimal solution. The rather spe-
cial case of a constant ηeff is the CRAMMA algorithm
of (Tsampouka & Shawe-Taylor, 2006).

3. The Mistake-Controlled Rule
Algorithm MICRA

ε,ζ

We consider algorithms having an update rule given
by (5) with ft = 1, an effective learning rate

ηeff t = ηt−ζ (6)

and a misclassification condition

ut · yk ≤ βt−ε . (7)

Here η, ζ, β and ε are positive constants. We assume
that the initial value u1 of ut is in the direction of the
first pattern. Then,

ut · u > 0 . (8)



Inhalt

✓Vorbedingungen an die Daten

✓Perceptron-Like Large Margin Classifiers (PLAs)

‣ Der Neue: MICRA

Herleitung & Konvergenzbetrachtungen

Effiziente Implementierung

Das Experiment: MICRA gegen den Rest der Welt

Zusammenfassung



MICRAε,ζ

Update-Rule:

Misclassification Condition:
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Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes

tance ρ in that dimension we construct an embedding
of our data into the so-called augmented space (Duda
& Hart, 1973). The advantage of this embedding is
that the linear hypothesis in the augmented space be-
comes homogeneous. Throughout our discussion a re-
flection with respect to the origin in the augmented
space of the negatively labelled patterns is assumed in
order to allow for a uniform treatment of both cate-
gories of patterns. Also, R ≡ max

k
‖yk‖, with yk the

kth augmented pattern. Obviously, R ≥ ρ.

The relation characterising optimally correct classifi-
cation of the training patterns yk by a weight vector
u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u

′:‖u
′‖=1

min
i

{u′ · yi} ∀k . (1)

The quantity γd will be referred to as the maximum
directional margin. It coincides with the maximum
margin in the augmented space with respect to hy-
perplanes passing through the origin if no reflection
is assumed. Between γd and the maximum geometric
margin γ in the original space the inequality

1 ≤ γ/γd ≤ R/ρ (2)

holds. In the limit ρ → ∞, R/ρ → 1 and from (2)
γd → γ (Tsampouka & Shawe-Taylor, 2005).

We concentrate on algorithms that update the aug-
mented weight vector at by adding a suitable positive
amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The
general form of such an update rule is

at+1 = (at + ηtftyk)N−1
t+1 , (3)

where ηt is the learning rate which could depend (usu-
ally explicitly) on the number t of updates that took
place so far and ft an implicit positive and bounded
function of the current step (update) t, possibly involv-
ing at and/or yk. We also allow for a normalisation
of at+1 through a factor Nt+1. For the Perceptron
ηt = η is constant, ft = 1 and Nt+1 = 1. Each time
the misclassification condition is satisfied by a training
pattern, that is a mistake occurs, the algorithm pro-
ceeds to the update of at. We adopt the convention of
initialising t from 1.

A sufficiently general form of the misclassification con-
dition is

ut · yk ≤ C(t) , (4)

where ut ≡ at/ ‖at‖ and C(t) > 0 if we require that
the algorithm achieves a positive margin. If a1 = 0
we treat the first pattern in the sequence as misclassi-
fied. In the case that C(t) is bounded from above by a

strictly decreasing function of t which tends to zero the
minimum directional margin required by such a condi-
tion becomes lower than any fixed value provided t is
large enough. Such algorithms have the advantage of
achieving some fraction of the unknown margin pro-
vided they converge. An example is the Perceptron
with margin where C(t) = b/‖at‖ (b is a positive con-
stant) is suppressed due to the growth of ‖at‖.

Another important quantity characterising algorithms
with the perceptron-like update rule (3) is the “effec-
tive” learning rate

ηeff t ≡ ηtR‖at‖−1

which controls the impact that an update has on the
direction ut of the current weight vector

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖
. (5)

In the most well-known cases ηeff t is bounded from
above by a strictly decreasing function of t which tends
to zero like in the case of the Perceptron where ηt = η
and ηeff t is suppressed due to the growth of ‖at‖.

From the above discussion it becomes obvious that a
PLA with the additive update (3) is uniquely deter-
mined by the functions C(t), ηeff t and ft. In particu-
lar, it does not depend on ‖at‖ as long as the above
functions are ‖at‖-independent. If this is the case the
update (3) of at can be replaced by the update (5)
of ut. Our purpose here is to examine the sufficiently
large subclass of such algorithms with ft = 1 and C(t),
ηeff t inversely proportional to powers of the number of
mistakes t and determine sufficient conditions under
which algorithms in the above subclass converge as-
ymptotically to the optimal solution. The rather spe-
cial case of a constant ηeff is the CRAMMA algorithm
of (Tsampouka & Shawe-Taylor, 2006).

3. The Mistake-Controlled Rule
Algorithm MICRA

ε,ζ

We consider algorithms having an update rule given
by (5) with ft = 1, an effective learning rate

ηeff t = ηt−ζ (6)

and a misclassification condition

ut · yk ≤ βt−ε . (7)

Here η, ζ, β and ε are positive constants. We assume
that the initial value u1 of ut is in the direction of the
first pattern. Then,

ut · u > 0 . (8)
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directional margin. It coincides with the maximum
margin in the augmented space with respect to hy-
perplanes passing through the origin if no reflection
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to an appropriate condition) training pattern yk. The
general form of such an update rule is
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vided they converge. An example is the Perceptron
with margin where C(t) = b/‖at‖ (b is a positive con-
stant) is suppressed due to the growth of ‖at‖.
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with the perceptron-like update rule (3) is the “effec-
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which controls the impact that an update has on the
direction ut of the current weight vector
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In the most well-known cases ηeff t is bounded from
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to zero like in the case of the Perceptron where ηt = η
and ηeff t is suppressed due to the growth of ‖at‖.

From the above discussion it becomes obvious that a
PLA with the additive update (3) is uniquely deter-
mined by the functions C(t), ηeff t and ft. In particu-
lar, it does not depend on ‖at‖ as long as the above
functions are ‖at‖-independent. If this is the case the
update (3) of at can be replaced by the update (5)
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which algorithms in the above subclass converge as-
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cial case of a constant ηeff is the CRAMMA algorithm
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Konvergenz
für ζ ≤ 1 Konvergenz 
in endlicher Schrittzahl

wenn η = η0(β/R)-δ 
konvergiert der 
„Margin“ für β/R → ∞ 
gegen den maximalen 
Margin γd 
vorausgesetzt 
0 < εδ+ζ < 1

Für ζ + 2ε = 1 mit 
ζ > 1/2

obere Schranke für die 
Anzahl der benötigten 
Updates (tb)

untere Schranke für den 
Anteil, des Margins, den 
der Algorithmus erzielt (fb)



ALGORITHMUS

MICRAε,ζ
IMPLEMENTIERUNG IN PSEUDOCODE

Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes

since (1 + τ)ζg′(τ) = 1 − (1 + τ)−ε > 0. Obviously,
(11) holds as an equality only for τ = 0. Therefore,

τb → τmin → 0 as β/R → ∞ . (14)

Combining (13) with (14) and noticing that t−1
0 → 0

as β/R → ∞ we conclude that f → 1 or

γ′
d → γd as β/R → ∞ .

Remark 1 In the case that ζ + 2ε = 1 with ζ > 1/2
we may obtain explicitly an upper bound tb on the
number of updates and a lower bound fb on the frac-
tion f of the margin that the algorithm achieves. First
we observe that since 1 − 2ζ, 1 − 3ζ and 1 − (2ζ + ε)
are negative it is allowed to set the terms (1 + τ)1−2ζ ,
(1 + τ)1−3ζ and (1 + τ)1−(2ζ+ε) to zero in the r.h.s. of
(11). Then, the resulting inequality with ζ = 1 − 2ε
becomes

A2 ≥ ((1 + τ)ε − 1)2 (15)

where

A2 =
2ε

η

(

Rγd

β2

)

(1 + ω) +
εη

1 − 4ε

(

R

β

)(

γd

β

)
1
ε −3

+
εη2

2 − 6ε

(

R

β

)(

γd

β

)
2
ε −5

+
2εη

1 − 3ε

(

γd

β

)
1
ε −2

.

Notice that ε < 1/4 if ζ > 1/2. By solving (15) as
an equation we obtain explicitly the bounds tb and fb.
They are the ones of (12) and (13), respectively with

τb = (1 + |A|)
1
ε − 1 .

Here 0 < εδ + ζ < 1 is equivalent to 2 − 1
ε < δ < 2.

Then, with η = η0 (β/R)−δ as β/R → ∞ we get |A| →
0 leading to τb → 0. This demonstrates explicitly
the statement of Theorem 1. It is worth emphasising,
however, that |A| may be small even if β/R is not large
if γd/R and ε are sufficiently small.

Example 1 If ε = ζ = 1/2 and moreover δ = 0, i.e.
η is β-independent, εδ + ζ = 1/2 and the condition of
Theorem 1 is satisfied. Therefore, such an algorithm
attains asymptotically as β/R → ∞ the maximum di-
rectional margin. The above algorithm is a version of
ALMA2 in which the weight vector instead of being
confined within a ball centered at the origin is nor-
malised to a constant length which remains fixed dur-
ing the asymptotic procedure. Thus, ALMA2 can be
thought of as belonging to the MICRA family. Then,
the analysis of (Gentile, 2001) confirms our conclusion
regarding asymptotic convergence to the optimal so-
lution hyperplane in this special case. In the case, in-
stead, that ε = ζ = 1/2 but δ = 1, i.e. η = η0 (β/R)−1,

εδ + ζ = 1 and the condition of Theorem 1 is violated.
This case would correspond to a version of ALMA2

with the function C(t) entering the misclassification
condition (4) given by C(t) = β2/

(

‖at‖
√

t
)

and the
weight vector normalised to the constant length β
which, however, does not remain fixed during the as-
ymptotic procedure β/R → ∞. Since the condition of
Theorem 1 is violated we are unable to prove asymp-
totic convergence of such an algorithm to the maximal
margin solution. The same conclusion is reached if the
technique of (Gentile, 2001) is employed which gives

the lower bound fb =
(

1 + η0
−1 + 2η0(R/β)2

)−1
on

the fraction of γd achieved. As β/R → ∞ we get
fb → η0/(1 + η0) < 1. We see that a “slight” modifi-
cation of the asymptotic procedure is able to affect the
ability of a PLA to attain the solution with maximum
margin. We believe that the inability in some cases of
the Perceptron algorithm with margin, in contrast to
ALMA2, to approach the maximal margin solution is
due to such “slight” differences between the two algo-
rithms regarding the asymptotic procedure.

Efficient Implementation: A completely equivalent
formulation of MICRA is obtained if the update rule
(3) with ft = Nt+1 = 1 and ηt = ‖at‖ ηeff t/R is em-
ployed and the misclassification condition (7) is reex-
pressed as at · yk ≤ ‖at‖βt−ε. Such a formulation
apart from bearing a close resemblance to the Percep-
tron algorithm has the additional advantage of being
computationally more efficient. A pseudocode imple-
menting this formulation is given below.

Algorithm 1 MICRAε,ζ

Input: A linearly separable augmented set with
reflection assumed S =(y1, . . . , yk, . . . , ym)
Fix: η, β
Define: R = max

k
‖yk‖ , qk = ‖yk‖

2 , η̄ = η/R

Initialise: t = 1, a1 = y1, ‖a1‖ = ‖y1‖ ,
η1 = ‖a1‖ η̄, β1 = ‖a1‖ β
repeat

for k = 1 to m do
ptk = at · yk

if ptk ≤ βt then

at+1 = at + ηtyk

‖at+1‖ =
√

‖at‖2 + ηt (2ptk + ηtqk)
t ← t + 1
ηt = ‖at‖ η̄t−ζ , βt = ‖at‖βt−ε

end if

end for
until no update made within the for loop

In order to further reduce the computational cost we
may form a reduced “active set” of patterns consist-
ing of the ones found misclassified during each epoch

misclassification condition
update-rule
gilt jetzt (Kommentar)
t++



Weitere Optimierung-
möglichkeiten
Epoche: einmal alle 
Traningsbeispiele dem 
Algorithmus zeigen

bilden eines reduzierten 
„active set“

enthält nur, in der 
aktuellen Epoche, falsch 
klassifizierte Beispiele

dieser Algorithmus wird 
red-MICRA genannt

TRAININGS-DATEN

FALSCH

FALSCH
Epoche Mini-

Epoche
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MICRA vs. PLAs
MICRA wird mit „sinnvoll gewählten“ Parametern gegen agg-
ROMMA und den normalen Perceptron-Algorithmus 
getestet.

ROMMA: Relaxed Online Maximum Margin Algorithm

Testdaten aus dem Machine Learning Repository der UCI 
(University of California - Irvine)

Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/~mlearn/MLRepository.html]. 
Irvine, CA: University of California, School of Information and Computer Science.

http://www.ics.uci.edu/~mlearn/MLRepository.html%5D
http://www.ics.uci.edu/~mlearn/MLRepository.html%5D


Experiment 1 (sonar classification prob.) linear

Sonar-Signale von 
zylindrischen Metall-
gegenständen

vs.

Sonar-Signale von 
Zylindrischen Steinen

Instanzen

Trainingsinstanzen

Attribute

Fehlerhafte Daten

Entfernte Daten

gewähltes ρ
➞ R ≃
➞ γd ≃

208

104

60

0

0

1

3,8121

0,00841



Experiment 1 (sonar classification prob.) linear

Perceptron agg-ROMMA MICRA0.05,0.9

103γ‘d upds 103γ‘d upds 103γ‘d upds

7,27 820.261 7,28 778.412 7,29 327.468

7,85 5.930.214 7,85 1.546.595 7,86 706.274

7,91 19.599.882 8,19 2.716.711 8,19 1.932.165

7,93 97.717.549 8,37 14.079.715 8,37 11.610.899

η = 50



Experiment 2.1 (wisconsin breast cancer)

Gutartiger Tumor

vs.

Bösartiger Tumor

Zwecks linearer Separierbarkeit, 
entfernen von 11 Datenpunkten

Instanzen

Trainingsinstanzen

Attribute

Fehlerhafte Daten

Entfernte Daten

gewähltes ρ
➞ R ≃
➞ γd ≃

699

672

9

16

(11)

30

41,4246

0,0243



Experiment 2.1 (WBC-11) linear

Perceptron agg-ROMMA MICRA0.1,0.8

103γ‘d upds 103γ‘d upds 103γ‘d upds

2,197 4.980.423 2,195 5.784.868 2,198 267.145

2,321 10.761.773 2,318 13.931.792 2,324 467.369

2,415 113.406.210 2,415 174.388.827 2,415 4.533.155

η = 2,3



Experiment 2.2 (wisconsin breast cancer)

Gutartiger Tumor

vs.

Bösartiger Tumor

Vollständiges WBC-Set (-> linear 
nicht separierbar)

Instanzen

Trainingsinstanzen

Attribute

Fehlerhafte Daten

Entfernte Daten

gewähltes ρ
➞ R ≃
➞ γd ≃

699

672

9

16

0

10

30,282

0,13033



Experiment 2.2 (WBC) non-linear

Perceptron agg-ROMMA MICRA0.05,0.9

103γ‘d upds 103γ‘d upds 103γ‘d upds

11,905 206.469 11,916 169.588 11,957 105.964

12,462 457.334 12,468 409.956 12,47 183.643

12,837 38.336.601 12,928 1.554.492 12,949 734.629

η = 20



MICRA vs. SVMs

PLAs konvergieren in der nähe der optimalen 
Hyperebene extrem langsam

Deswegen: Anforderung an γ lediglich 99% des 
maximalen margins

Vergleich nur auf Prozessorzeit-Ebene, da SVMs 
nicht Epochen-Basiert arbeiten.



MICRA vs. SVMs

LIBSVM und SVMlight

SVMs erlauben weiche Ränder, feature space ist 
aber hart separierbar

Dekompositions-Basierte SVMs. Viel schneller als 
Standard-SVMs

MICRA wird vertreten durch red-MICRA, also 
Training mit Hilfe von Micro-Epochen

Stop von red-MICRA, wenn 

 γM > γS< UND γM > γS>⋅0,99



EXPERIMENT

3: MICRA vs. SVMs
VERSCHIEDENE UCI-DATENSÄTZE

Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes

Table 5. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several UCI datasets.

data ∆
LIBSVM SVMlight red − MICRA0.05,0.9

set 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs ρ η N 105 β
R 102γ′ Secs

sonar 0 0.8451 0.17 0.8405 0.10 0.8460 6.85 0.8388 4.84 1 45 80 462.2 0.8406 3.60"

ionosphere 1 10.554 0.06 10.389 0.05 10.551 0.30 10.448 0.19 1.5 10 10 2929 10.449 0.07

votes 1 16.846 0.02 16.708 0.02 16.841 0.18 16.690 0.11 1 5 20 6385 16.718 0.02

WBC 1 13.034 0.12 12.848 0.09 13.033 0.81 12.929 0.45 2 25 20 837.6 12.932 0.35

tic-tac-toe 1 10.300 0.47 10.183 0.27 10.295 3.35 10.185 1.35 0.5 8 20 5334 10.203 0.05

german 25 95.361 0.62 94.055 0.45 95.332 2.96 94.217 1.82 8 30 50 908.9 94.415 0.36

mushroom 0 36.551 0.58 35.988 0.33 36.538 0.17 36.103 0.11 0 4.5 50 12535 36.212 0.10

Table 6. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several subsets of the Adult dataset.

subset LIBSVM SVMlight red − MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R 102γ′ Secs

1605 3.9383 1.41 3.9022 1.07 3.9375 3.02 3.8877 1.58 20 100 1.918 3.9038 0.63

3185 2.7437 5.55 2.7187 4.29 2.7434 11.3 2.7093 6.23 25 100 1.400 2.7187 1.73

6414 1.9292 22.5 1.9094 17.6 1.9290 71.3 1.9097 37.7 45 300 1.025 1.9111 5.83

11220 1.4499 73.2 1.4348 58.6 1.4497 283.4 1.4342 141.7 65 300 0.798 1.4356 14.7

16100 1.2069 389.7 1.1927 312.3 1.2068 638.2 1.1923 318.6 80 500 0.673 1.1950 28.7

32561 0.8526 3902.3 0.8424 2484.5 0.8525 2733.8 0.8432 1439.4 105 600 0.492 0.8441 75.0

Visual C++ 5.0 compiler.

Table 5 contains the results of our comparative study
of LIBSVM, SVMlight and red-MICRA on several UCI
datasets with I/O excluded from the CPU-times re-
ported. The value of the accuracy parameter ε cor-
responding to the lower value of the margin is set to
ε = 0.03 for LIBSVM and ε = 0.015 for SVMlight. The
sonar and WBC datasets are described already. The
ionosphere dataset consists of 351 instances each with
34 attributes. The House votes dataset consists of 435
instances each with 16 attributes taking values from
the set {y,n, ?} represented here as {1,−1, 0}. The
tic-tac-toe dataset consists of 958 instances each with
9 attributes taking values from the set {x, o,b} rep-
resented as {1,−1, 0}. The german dataset consists
of 1000 instances each with 24 attributes. Finally,
the linearly separable mushroom dataset consists of
5644 instances after removing the ones with missing
attributes. Each instance has 22 categorical attributes
replaced here by 125 binary ones out of which exactly
22 are true. We believe that from Table 5 it is fair
to conclude that, roughly speaking, red-MICRA is of
speed comparable to that of decomposition SVMs.

We also analysed several subsets of the Adult (32561
instances, 123 binary attributes) and of the Web

∗Value obtained using the dual space formulation.

(49749 instances, 300 binary attributes) datasets in
the version of (Platt, 1998) with results presented in
Tables 6 and 7, respectively. Here ∆ = 1. Also, in
both tables the lower value of the margin for LIBSVM
corresponds to ε = 0.03. For the Adult dataset no aug-
mentation is required and the lower value of the margin
for SVMlight corresponds to ε = 0.025. For the Web
dataset, instead, we do perform an augmentation for
red-MICRA with parameter ρ = 0.25. Also, the lower
value of the margin for SVMlight in Table 7 is obtained
with ε = 0.02. We observe that the CPU-time required
for red-MICRA to converge is shorter and exhibits a
better scaling behaviour with the size of the dataset.
Moreover, the shortage of memory as the dataset size
grows apparently slows down LIBSVM. In contrast,
SVMlight and red-MICRA are not affected.

Finally, we conducted an experiment with the mul-
ticlass Covertype dataset (581012 instances, 54 at-
tributes) obtainable from UCI and studied the binary
classification problem of the first class versus all the
others using again the whole dataset for training. Due
to the memory difficulties encountered by LIBSVM we
compared red-MICRA only with SVMlight for which
we obtained only one margin value corresponding to
an accuracy parameter ε = 0.01. Such a value of ε is
sufficiently small to guarantee a margin γ′ larger than
0.99γ. The dataset was rescaled by multiplying all the

Margins der Algorithmen:
 ε = 0,001;
ε > 0,001;
anhalte-margin
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Table 5. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several UCI datasets.

data ∆
LIBSVM SVMlight red − MICRA0.05,0.9

set 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs ρ η N 105 β
R 102γ′ Secs

sonar 0 0.8451 0.17 0.8405 0.10 0.8460 6.85 0.8388 4.84 1 45 80 462.2 0.8406 3.60"

ionosphere 1 10.554 0.06 10.389 0.05 10.551 0.30 10.448 0.19 1.5 10 10 2929 10.449 0.07

votes 1 16.846 0.02 16.708 0.02 16.841 0.18 16.690 0.11 1 5 20 6385 16.718 0.02

WBC 1 13.034 0.12 12.848 0.09 13.033 0.81 12.929 0.45 2 25 20 837.6 12.932 0.35

tic-tac-toe 1 10.300 0.47 10.183 0.27 10.295 3.35 10.185 1.35 0.5 8 20 5334 10.203 0.05

german 25 95.361 0.62 94.055 0.45 95.332 2.96 94.217 1.82 8 30 50 908.9 94.415 0.36

mushroom 0 36.551 0.58 35.988 0.33 36.538 0.17 36.103 0.11 0 4.5 50 12535 36.212 0.10

Table 6. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several subsets of the Adult dataset.

subset LIBSVM SVMlight red − MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R 102γ′ Secs

1605 3.9383 1.41 3.9022 1.07 3.9375 3.02 3.8877 1.58 20 100 1.918 3.9038 0.63

3185 2.7437 5.55 2.7187 4.29 2.7434 11.3 2.7093 6.23 25 100 1.400 2.7187 1.73

6414 1.9292 22.5 1.9094 17.6 1.9290 71.3 1.9097 37.7 45 300 1.025 1.9111 5.83

11220 1.4499 73.2 1.4348 58.6 1.4497 283.4 1.4342 141.7 65 300 0.798 1.4356 14.7

16100 1.2069 389.7 1.1927 312.3 1.2068 638.2 1.1923 318.6 80 500 0.673 1.1950 28.7

32561 0.8526 3902.3 0.8424 2484.5 0.8525 2733.8 0.8432 1439.4 105 600 0.492 0.8441 75.0

Visual C++ 5.0 compiler.

Table 5 contains the results of our comparative study
of LIBSVM, SVMlight and red-MICRA on several UCI
datasets with I/O excluded from the CPU-times re-
ported. The value of the accuracy parameter ε cor-
responding to the lower value of the margin is set to
ε = 0.03 for LIBSVM and ε = 0.015 for SVMlight. The
sonar and WBC datasets are described already. The
ionosphere dataset consists of 351 instances each with
34 attributes. The House votes dataset consists of 435
instances each with 16 attributes taking values from
the set {y,n, ?} represented here as {1,−1, 0}. The
tic-tac-toe dataset consists of 958 instances each with
9 attributes taking values from the set {x, o,b} rep-
resented as {1,−1, 0}. The german dataset consists
of 1000 instances each with 24 attributes. Finally,
the linearly separable mushroom dataset consists of
5644 instances after removing the ones with missing
attributes. Each instance has 22 categorical attributes
replaced here by 125 binary ones out of which exactly
22 are true. We believe that from Table 5 it is fair
to conclude that, roughly speaking, red-MICRA is of
speed comparable to that of decomposition SVMs.

We also analysed several subsets of the Adult (32561
instances, 123 binary attributes) and of the Web

∗Value obtained using the dual space formulation.

(49749 instances, 300 binary attributes) datasets in
the version of (Platt, 1998) with results presented in
Tables 6 and 7, respectively. Here ∆ = 1. Also, in
both tables the lower value of the margin for LIBSVM
corresponds to ε = 0.03. For the Adult dataset no aug-
mentation is required and the lower value of the margin
for SVMlight corresponds to ε = 0.025. For the Web
dataset, instead, we do perform an augmentation for
red-MICRA with parameter ρ = 0.25. Also, the lower
value of the margin for SVMlight in Table 7 is obtained
with ε = 0.02. We observe that the CPU-time required
for red-MICRA to converge is shorter and exhibits a
better scaling behaviour with the size of the dataset.
Moreover, the shortage of memory as the dataset size
grows apparently slows down LIBSVM. In contrast,
SVMlight and red-MICRA are not affected.

Finally, we conducted an experiment with the mul-
ticlass Covertype dataset (581012 instances, 54 at-
tributes) obtainable from UCI and studied the binary
classification problem of the first class versus all the
others using again the whole dataset for training. Due
to the memory difficulties encountered by LIBSVM we
compared red-MICRA only with SVMlight for which
we obtained only one margin value corresponding to
an accuracy parameter ε = 0.01. Such a value of ε is
sufficiently small to guarantee a margin γ′ larger than
0.99γ. The dataset was rescaled by multiplying all the
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Table 7. Results of a comparative study of LIBSVM, SVMlight and red-MICRA on several subsets of the Web dataset.

subset LIBSVM SVMlight red − MICRA0.05,0.9

size 102γ′ Secs 102γ′ Secs 102γ′ Secs 102γ′ Secs η N 102 β
R 102γ′ Secs

2477 10.448 0.57 10.292 0.51 10.445 0.30 10.312 0.18 25 10 1.681 10.344 0.07

4912 7.0079 2.07 6.8967 1.83 7.0067 1.10 6.8909 0.61 25 10 1.212 6.9393 0.20

9888 4.8784 8.95 4.7970 7.82 4.8772 5.45 4.8072 3.22 30 10 0.868 4.8316 0.86

24692 2.9555 115.5 2.9066 90.2 2.9549 66.9 2.9111 32.1 50 10 0.535 2.9265 4.82

49749 2.1094 725.0 2.0723 635.8 2.1089 360.2 2.0771 176.4 70 10 0.405 2.0894 18.3

Table 8. Results of a comparative study of SVMlight and
red-MICRA on the Covertype dataset.

data SVMlight red − MICRA0.05,0.9

size 103γ′ Secs η N 105 β
R 103γ′ Secs

581012 15.774 47987.7 70 400 336 15.789 4728.0

attributes with 0.001 and their sparsity was fully ex-
ploited. Moreover, for the rescaled data the parameter
values ∆ = 10 and ρ = 2 were chosen. From the re-
sults desplayed in Table 8 red-MICRA appears about
10 times faster.

Very recently SVM-Perf, a cutting-plane algorithm for
training linear SVMs, was presented and empirically
proved much faster than SVMlight (Joachims, 2006).
From the results reported, however, no direct mean-
ingful comparison with red-MICRA is possible since
SVM-Perf implements the 1-norm soft margin.

5. Conclusions

We presented MICRA, a family of Perceptron-like
large margin classifiers completely independent of the
length of the weight vector. Our theoretical approach
proved sufficiently powerful in establishing asymptotic
convergence to the optimal hyperplane for a whole
class of such algorithms in which the misclassification
condition and the effective learning rate ηeff t are en-
tirely controlled by rules involving arbitrary powers of
the number of mistakes. Moreover, we provided exper-
imental evidence in support of our theoretical analysis.
The experimental results also suggest that algorithms
belonging to the MICRA family with slow relaxation of
the misclassification condition and relatively fast sup-
pression of ηeff t with the number of mistakes are very
powerful tools in the hands of a skillful practitioner.
Of course, this does not diminish at all the value and
usefulness of established algorithms like LIBSVM or
SVMlight which only need fixing the accuracy parame-
ter ε. It is remarkable, however, that simple extensions
of the old Perceptron algorithm can be so competitive.
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Zusammenfassung
MICRA ist ein schnell konvergierender Perceptron-
Like-Large-Margin-Classifier
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