Approximate Maximum Margin Algorithms with Rules Controlled by the Number of Mistakes

Seminar Maschinelles Lernen

VORTRAGENDER: SEBASTIAN STEINMETZ

BETREUT VON: ENELDO LOZA MENCÍA

Inhalt

- Vorbedingungen an die Daten
- * Perceptron-Like Large Margin Classifiers
- * Der Neue: MICRA
 - * Herleitung & Konvergenzbetrachtungen
 - * Effiziente Implementierung
- * Das Experiment: MICRA gegen den Rest der Welt
- # Zusammenfassung

Die Daten

* Linear separierbar

- * wenn nicht -> Transformation in einen h
 öheren Raum ("Considered Space")
- * Augmentierung des Raums um eine weitere Dimension.
 - * daraus folgt: Trennende Hyperebene verläuft durch den Ursprung.

Die Daten (II)

- # Fallunterscheidung (Positiv-/Negativbeispiel)
- * Punktspiegelung am Ursprung
- * Einheitliche Darstellung in den Formeln

Lineare Separierbarkeit

Was tun, wenn sie nicht gegeben ist?

Augmentierung des Raums

Wie sieht das aus, und welchen Vorteil hat man davon?

Inhalt

✓ Vorbedingungen an die Daten

- Perceptron-Like Large Margin Classifiers
- * Der Neue: MICRA
 - * Herleitung & Konvergenzbetrachtungen
 - * Effiziente Implementierung
- * Das Experiment: MICRA gegen den Rest der Welt
- # Zusammenfassung

Large Margin Klassifikation

* Gesucht: Die Lineare Hyperebene, welche genau zwischen den Clustern liegt bei maximalem Abstand.

* Beispiel: Support Vector Machines (SVM) oder Perceptron Like Algorithms (PLA)

PLAs - formal

Ý

- # Update-Regel, Aktiviertheit
- ***** Update-Regel, "Weight-Vectors"
- * u ist nur normiertes a
- # Effektive Lernrate:

$$\boldsymbol{a}_{t+1} = \left(\boldsymbol{a}_t + \eta_t f_t \boldsymbol{y}_k\right) N_{t+1}^{-1}$$

$$\boldsymbol{u}_{t+1} = \frac{\boldsymbol{u}_t + \eta_{\text{eff}\,t} f_t \boldsymbol{y}_k / R}{\|\boldsymbol{u}_t + \eta_{\text{eff}\,t} f_t \boldsymbol{y}_k / R\|}$$

$$oldsymbol{u}_t \equiv oldsymbol{a}_t / \left\|oldsymbol{a}_t
ight\|$$

$$\eta_{\text{eff}\,t} \equiv \eta_t R \|\boldsymbol{a}_t\|^{-1}$$

PLAs - formal (II)

Misclassification Condition

 $\boldsymbol{u}_t \cdot \boldsymbol{y}_k \le C(t)$

- * C(t) -> 0 für große t
- * Dann erhält man einen möglichst großen Korridor

$$\boldsymbol{u} \cdot \boldsymbol{y}_k \geq \gamma_{\mathrm{d}} \equiv \max_{\boldsymbol{u}': \|\boldsymbol{u}'\|=1} \min_{i} \{ \boldsymbol{u'} \cdot \boldsymbol{y}_i \} \quad \forall k$$

Inhalt

✓ Vorbedingungen an die Daten

Perceptron-Like Large Margin Classifiers (PLAs)

- Der Neue: MICRA
 - * Herleitung & Konvergenzbetrachtungen
 - # Effiziente Implementierung
- * Das Experiment: MICRA gegen den Rest der Welt
- # Zusammenfassung

MICRA^{ε,ζ}

***** Update-Rule:

 $\boldsymbol{u}_{t+1} = \frac{\boldsymbol{u}_t + \eta_{\text{eff}\,t} f_t \boldsymbol{y}_k / R}{\|\boldsymbol{u}_t + \eta_{\text{eff}\,t} f_t \boldsymbol{y}_k / R\|}$

$$oldsymbol{u}_{t+1} = rac{oldsymbol{u}_t + rac{\eta oldsymbol{\mathcal{g}}_k}{t^{\zeta}R}}{||oldsymbol{u}_t + rac{\eta oldsymbol{\mathcal{g}}_k}{t^{\zeta}R}||}$$

* Misclassification Condition:

 $egin{aligned} oldsymbol{u}_t \cdot oldsymbol{y}_k &\leq C(t) \ oldsymbol{u}_t \cdot oldsymbol{y}_k &\leq rac{eta}{t^\epsilon} \end{aligned}$

Konvergenz

* für $\zeta \leq 1$ Konvergenz in endlicher Schrittzahl

* wenn $\eta = \eta_0 (\beta/R)^{-\delta}$ konvergiert der "Margin" für $\beta/R \rightarrow \infty$ gegen den maximalen Margin γ_d vorausgesetzt $0 < \varepsilon \delta + \zeta < 1$

* Für $\zeta + 2\varepsilon = 1$ mit $\zeta > 1/2$

- untere Schranke f
 ür den Anteil, des Margins, den der Algorithmus erzielt (f_b)

$\mathrm{MICRA}^{\epsilon,\zeta}$ Algorithm 1 **Input:** A linearly separable augmented set with reflection assumed $S = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_k, \dots, \boldsymbol{y}_m)$ Fix: η , β **Define:** $R = \max_{k} \| \boldsymbol{y}_{k} \|, \ q_{k} = \| \boldsymbol{y}_{k} \|^{2}, \ \bar{\eta} = \eta/R$ **Initialise:** t = 1, $a_1 = y_1$, $||a_1|| = ||y_1||$, $\eta_1 = \| \boldsymbol{a}_1 \| \, \bar{\eta}, \ \beta_1 = \| \boldsymbol{a}_1 \| \, \beta$ repeat for k = 1 to m do $p_{tk} = \boldsymbol{a}_t \cdot \boldsymbol{y}_k$ • if $p_{tk} \leq \beta_t$ then $\bullet a_{t+1} = a_t + \eta_t y_k$ • $\|\boldsymbol{a}_{t+1}\| = \sqrt{\|\boldsymbol{a}_t\|^2 + \eta_t (2p_{tk} + \eta_t q_k)}$ • $t \leftarrow t+1$ $\eta_t = \|\boldsymbol{a}_t\| \, \bar{\eta} t^{-\zeta}, \ \beta_t = \|\boldsymbol{a}_t\| \, \beta t^{-\epsilon}$ end if end for until no update made within the for loop

misclassification condition update-rule gilt jetzt (Kommentar) t++

ALGORITHMUS MICRA \in, ζ IMPLEMENTIERUNG IN PSEUDOCODE

Weitere Optimierungmöglichkeiten

- * Epoche: einmal alle
 Traningsbeispiele dem
 Algorithmus zeigen
- * bilden eines reduzierten
 "active set"
- * enthält nur, in der aktuellen Epoche, falsch klassifizierte Beispiele
- # dieser Algorithmus wird
 red-MICRA genannt

Inhalt

✓ Vorbedingungen an die Daten

Perceptron-Like Large Margin Classifiers (PLAs)

✓ Der Neue: MICRA

Herleitung & Konvergenzbetrachtungen

Effiziente Implementierung

Das Experiment: MICRA gegen den Rest der Welt

Zusammenfassung

MICRA vs. PLAs

- * MICRA wird mit "sinnvoll gewählten" Parametern gegen agg-ROMMA und den normalen Perceptron-Algorithmus getestet.
- * ROMMA: Relaxed Online Maximum Margin Algorithm
- * Testdaten aus dem Machine Learning Repository der UCI (University of California - Irvine)

Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and Computer Science.

Experiment 1 (sonar classification prob.) linear

* Sonar-Signale von zylindrischen Metallgegenständen

VS.

* Sonar-Signale von **Zylindrischen Steinen**

Instanzen	208
Trainingsinstanzen	104
Attribute	60
Fehlerhafte Daten	0
Entfernte Daten	0
gewähltes p	1
→ R ≃	3,8121
$\rightarrow \gamma_d \simeq$	0,00841

Experiment 1 (sonar classification prob.) linear

Pe	rceptron	agg	ROMMA	MICRA ^{0.05,0.9}		▲ ▼
10 ³ γ' _d	upds	10 ³ γ' _d	upds	10 ³ γʻ _d	upds	
7,27	820.261	7,28	778.412	7,29	327.468	
7,85	5.930.214	7,85	1.546.595	7,86	706.274	
7,91	19.599.882	8,19	2.716.711	8,19	1.932.165	
7,93	97.717.549	8,37	14.079.715	8,37	11.610.899	E+005 1,00E+006 1,00E+007 1,00E+00

η = 50

Experiment 2.1 (wisconsin breast cancer)

Gutartiger Tumor

VS.

***** Bösartiger Tumor

 Zwecks linearer Separierbarkeit, entfernen von 11 Datenpunkten

Instanzen	699
Trainingsinstanzen	672
Attribute	9
Fehlerhafte Daten	16
Entfernte Daten	(11)
gewähltes p	30
\rightarrow R \simeq	41,4246
$\rightarrow \gamma_d \simeq$	0,0243

Experiment 2.1 (WBC-11) linear

Pe	rceptron	agg	-ROMMA	MICRA ^{0.1,0.8}		
10 ³ γ' _d	upds	10 ³ γ' _d	upds	10 ³ γ' _d	upds	
2,197	4.980.423	2,195	5.784.868	2,198	267.145	
2,321	10.761.773	2,318	13.931.792	2,324	467.369	
2,415	113.406.210	2,415	174.388.827	2,415	4.533.155	

η = 2,3

Experiment 2.2 (wisconsin breast cancer)

Gutartiger Tumor

VS.

***** Bösartiger Tumor

 Vollständiges WBC-Set (-> linear nicht separierbar)

Instanzen	699
Trainingsinstanzen	672
Attribute	9
Fehlerhafte Daten	16
Entfernte Daten	0
gewähltes p	10
→ R ≃	30,282
$\rightarrow \gamma_d \simeq$	0,13033

Experiment 2.2 (WBC) non-linear

η = 20

♦ Perceptron
 ▼ agg-ROMMA ▲ MICRA

MICRA vs. SVMs

* PLAs konvergieren in der n\u00e4he der optimalen Hyperebene extrem langsam

* Deswegen: Anforderung an γ lediglich 99% des maximalen margins

* Vergleich nur auf Prozessorzeit-Ebene, da SVMs nicht Epochen-Basiert arbeiten.

MICRA vs. SVMs

- * LIBSVM und SVM^{light}
- * SVMs erlauben weiche Ränder, feature space ist aber hart separierbar
- * Dekompositions-Basierte SVMs. Viel schneller als Standard-SVMs
- * MICRA wird vertreten durch red-MICRA, also Training mit Hilfe von Micro-Epochen
- * Stop von red-MICRA, wenn $\gamma_M > \gamma_{S<} \text{UND } \gamma_M > \gamma_{S>} \cdot 0,99$

data		L	LIBS	VM			SVM	light			rec	d – 1	MICRA	$A^{0.05,0.9}$	
set		$10^2\gamma'$ Se	ecs	$10^2\gamma'$	Secs	$10^2\gamma'$	Secs	$10^2\gamma'$	Secs	ρ	η	Ν	$10^5 \frac{\beta}{R}$	$10^2\gamma'$	Secs
sonar	0	0.8451 0.1	17	0.8405	0.10	0.8460	6.85	0.8388	4.84	1	45	80	462.2	0.8406	3.60*
ionosphere	1	10.554 0.0	06	10.389	0.05	10.551	0.30	10.448	0.19	1.5	10	10	2929	10.449	0.07
votes	1	16.846 0.0	02	16.708	0.02	16.841	0.18	16.690	0.11	1	5	20	6385	16.718	0.02
WBC	1	13.034 0.1	12	12.848	0.09	13.033	0.81	12.929	0.45	2	25	20	837.6	12.932	0.35
tic-tac-toe	1	10.300 0.4	47	10.183	0.27	10.295	3.35	10.185	1.35	0.5	8	20	5334	10.203	0.05
german	25	95.361 0.	62	94.055	0.45	95.332	2.96	94.217	1.82	8	30	50	908.9	94.415	0.36
mushroom	0	36.551 0.	58	35.988	0.33	36.538	0.17	36.103	0.11	0	4.5	50	12535	36.212	0.10

Margins der Algorithmen: $\epsilon = 0,001$; $\epsilon > 0,001$; anhalte-margin

EXPERIMENT

3: MICRA vs. SVMs Verschiedene uci-datensätze

Experiment 4 (subsets des Adult-Datensatzes)

Einkommen
< \$ 50k / Jahr</p>

VS.

Einkommen
> \$ 50k / Jahr

* Augmentierung nicht notwendig -> ρ=0

Instanzen	48842
Trainingsinstanzen	1.605-32.561
Attribute (binär)	14 (123)
Fehlerhafte Daten	0
Entfernte Daten	0
gewähltes p	0

subset	LIBSVM			SVM^{light}				$red - MICRA^{0.05,0.9}$				9	
size	$10^2\gamma'$	Secs	$10^2\gamma'$	Secs	$10^2\gamma'$	Secs	$10^2\gamma'$	Secs	η	Ν	$10^2 \frac{\beta}{R}$	$10^2\gamma'$	Secs
1605	3.9383	1.41	3.9022	1.07	3.9375	3.02	3.8877	1.58	20	100	1.918	3.9038	0.63
3185	2.7437	5.55	2.7187	4.29	2.7434	11.3	2.7093	6.23	25	100	1.400	2.7187	1.73
6414	1.9292	22.5	1.9094	17.6	1.9290	71.3	1.9097	37.7	45	300	1.025	1.9111	5.83
11220	1.4499	73.2	1.4348	58.6	1.4497	283.4	1.4342	141.7	65	300	0.798	1.4356	14.7
16100	1.2069	389.7	1.1927	312.3	1.2068	638.2	1.1923	318.6	80	500	0.673	1.1950	28.7
32561	0.8526	3902.3	0.8424	2484.5	0.8525	2733.8	0.8432	1439.4	105	600	0.492	0.8441	75.0

Margins der Algorithmen: $\epsilon = 0,03$; $\epsilon = 0,025$; anhalte-margin

4: MICRA vs. SVMs

ADULT-DATENSATZ

Experiment 5 (subsets des Web-Datensatzes)

* Fichten-/Tannenwald

VS.

- # Jede andere Art bewaldung
- * Linear nicht separierbar, $\Delta = 10$
- Für SVM^{light} genauigkeit: ε=0,01

data	SVN	\mathbf{I}^{light}	$red - MICRA^{0.05,0.9}$						
size	$10^3\gamma'$	Secs	η	Ν	$10^5 \frac{\beta}{R}$	$10^3\gamma'$	Secs		
581012	15.774	47987.7	70	400	336	15.789	4728.0		

Instanzen	581012
Trainingsinstanzen	581012
Attribute	54
Fehlerhafte Daten	0
Entfernte Daten	0
gewähltes p	2

Zusammenfassung

* MICRA ist ein schnell konvergierender Perceptron-Like-Large-Margin-Classifier

* Geringer Speicherbedarf

	Perceptron	MICRA	SVM
Genauigkeit	0	+	++
Geschwindigkeit	0	++	0+
Speicherbedarf	++	++	0

Vielen Dank für Ihre Aufmerksamkeit