Statistical Comparisons of Classifiers over Multiple Data Sets

Peiqian Li 23.01.2008

Outline

- Motivation
- Statistics and Tests for Comparison of Classifiers
 - Comparisons of Two Classifiers
 - Averaging over data sets
 - Paired t-test
 - Wilcoxon signed-ranks test
 - Comparisons of Multiple Classifiers
 - ANOVA
 - Friedman test
- Conclusion

Motivation

- comparing two learning algorithms on a single data set
- comparisons of more algorithms on multiple data sets
 - more essential to typical machine learning studies
- no established procedure over multiple data sets

Statistics and Tests for Comparison of Classifiers

- k learning algorithms on N data sets
- c^j: performance score of the *j*-th algorithm on the *i*-th data set
- statistically significantly different ?
- which are the particular algorithms that differ in performance
- fundamental difference
- sample size = number of data sets

Averaging over data sets

- "it is debatable whether error rates in different domains are commensurable, and hence whether averaging error rates across domains is very meaningful" -- Webb (2000)
- results not comparable → averages meaningless
- susceptible to outliers

Paired t-test

A common way to test whether the difference is non-random

•
$$d_i = c_i^1 - c_i^2$$

- *t* statistic $\overline{d} / \sigma_{\overline{d}}$
 - Student distribution with N –1 degrees of freedom
- Weaknesses
 - Commensurability
 - Differences distributed normally
 - affected by outliers

Wilcoxon signed-ranks test

- ranks the differences for each data set
- compares the ranks for the positive and the negative differences.

$$R^{+} = \sum_{d_{i}>0} rank(d_{i}) + \frac{1}{2} \sum_{d_{i}=0} rank(d_{i}), R^{-} = \sum_{d_{i}<0} rank(d_{i}) + \frac{1}{2} \sum_{d_{i}=0} rank(d_{i})$$
$$T = \min(R^{+}, R^{-})$$
$$Z = \frac{T - \frac{1}{4}N(N+1)}{\sqrt{\frac{1}{24}N(N+1)(2N+1)}}$$

23.01.2008 Statistics and Tests - Comparisons of two Classifiers

	C4.5	C4.5+m
adult (sample)	0.763	0.768
breast cancer	0.599	0.591
breast cancer wisconsin	0.954	0.971
стс	0.628	0.661
ionosphere	0.882	0.888
iris	0.936	0.931
liver disorders	0.661	0.668
lung cancer	0.583	0.583
lymphography	0.775	0.838
mushroom	1.000	1.000
primary tumor	0.940	0.962
rheum	0.619	0.666
voting	0.972	0.981
wine	0.957	0.978

d	rank				
0.000	1	15			
0.000	2	1.5			
-0.005	3	25			
+0.005	4	3.5			
+0.006	5	5			
+0.007	6	6			
-0.008	7	7			
+0.009	8	8			
+0.017	9	9			
+0.021	10	10			
+0.022	11	11			
+0.033	12	12			
+0.047	13	13			
+0.063	14	14			

 $R^+ = 91.5 + 1.5 = 93$ $R^- = 10.5 + 1.5 = 12$ T = 12 < 21

Wilcoxon signed-ranks test

more sensible than t-test

- commensurability: only qualitatively
- does not assume normal distributions: safer
- Outliers: less effect
- less powerful or more powerful
 - assumptions of the paired t-test

Comparisons of Multiple Classifiers

- well-known statistical problem
- control the *family-wise error*
 - probability of making at least one Type 1 error
- Statistics offers powerful specialized procedures
 - ANOVA
 - non-parametric counterpart: Friedman test

ANOVA

- repeated-measures ANOVA(within-subjects ANOVA)
 - common statistical method
 - between more than two related sample means

probably violated assumptions

- normal distributions
 - minor problem
- sphericity
 - homogeneity of variance
 - requires random variables have equal variance
 - Violations of these assumptions have an even greater effect on the post-hoc tests

Friedman test

ranks algorithms for each data set eparately

• average ranks of algorithms $R_j = \frac{1}{N} \sum_i r_i^j$

	C4.5	C4.5+m	C4.5+cf	C4.5+m+cf	
adult (sample)	0.763 (4)	0.768 (3)	0.771 (2)	0.798 (1)	1
breast cancer	0.599 (1)	0.591 (2)	0.590 (3)	0.569 (4)	-
breast cancer wisconsin	0.954 (4)	0.971 (1)	0.968 (2)	0.967 (3)	
cmc	0.628 (4)	0.661 (1)	0.654 (3)	0.657 (2)	
ionosphere	0.882 (4)	0.888 (2)	0.886 (3)	0.898 (1)	
iris	0.936 (1)	0.931 (2.5)	0.916 (4)	0.931 (2.5)	
liver disorders	0.661 (3)	0.668 (2)	0.609 (4)	0.685 (1)	
lung cancer	0.583 (2.5)	0.583 (2.5)	0.563 (4)	0.625 (1)	
lymphography	0.775 (4)	0.838 (3)	0.866 (2)	0.875 (1)	
mushroom	1.000 (2.5)	1.000 (2.5)	1.000 (2.5)	1.000 (2.5)	
primary tumor	0.940 (4)	0.962 (2.5)	0.965 (1)	0.962 (2.5)	
rheum	0.619 (3)	0.666 (2)	0.614 (4)	0.669 (1)	1
voting	0.972 (4)	0.981 (1)	0.975 (2)	0.975 (3)	A
wine	0.957 (3)	0.978 (1)	0.946 (4)	0.970 (2)	200
average rank	3.143	2.000	2.893	1.964	F.

23.01.2008 Statistics and Tests - Comparisons of Multiple Classifiers

12 / 17

Friedman test

$$\chi_F^2 = \frac{12N}{k(k+1)} \left[\sum_j R_j^2 - \frac{k(k+1)^2}{4} \right]$$

* according to χ^2_F with k–1 degrees of freedom

•
$$F_F = \frac{(N-1)\chi_F^2}{N(k-1)-\chi_F^2}$$

 according to the F-distribution with k−1 and (k−1)(N−1) degrees of freedom

Friedman test

14 / 17

post-hoc test

Nemenyi test (Nemenyi, 1963)

is used when all classifiers are compared to each other

•
$$CD = \mathbf{q}_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

	, v	011							
#classifiers	2	3	4	5	6	7	8	9	10
q _{0.05}	1.960	2.343	2.569	2.728	2.850	2.949	3.031	3.102	3.164
q _{0.10}	1.645	2.052	2.291	2.459	2.589	2.693	2.780	2.855	2.920

post-hoc test

- Bonferroni correction
 - all classifiers are compared with a control classifier
 - more powerful than the Nemenyi test

$$z = \left(R_i - R_j \right) / \sqrt{\frac{k(k+1)}{6N}}$$

- find the corresponding probability from the table of normal distribution
- * compared with an appropriate α

Conclusion

- Wilcoxon signed-ranks test & Friedman test
 - Appropriate
 - assume some, but limited commensurability
 - safer than parametric tests
 - do not assume normal distributions or homogeneity
 - stronger than the other tests studied

Danke für Ihre Aufmerksamkeit