Margin trees for high dimensional classification

Authors: Robert Tibshirani Trevor Hastie

Presentation: Marian Wieczorek

Picture: www.ruhr-uni-bochum.de

Motivation

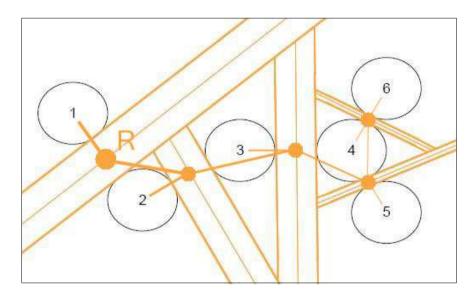
- Classifying elements, described by high dimensional features (more than 10,000)
- Organisation of classes lack interpretability
- High quality methods are slow for more than two classes
- Popular application areas like cancer classification

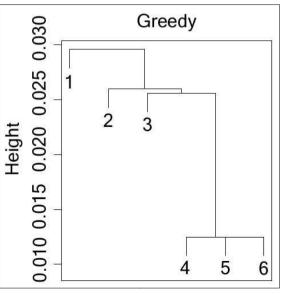
Margin trees

- Approach of creating meaningful abstractions
- Increase performance of the accurate SVM by divide and conquer
 - · Combine classes into two groups
 - · Calculate classifier for chosen partition
 - · Apply procedure on each group

Linkage constraints

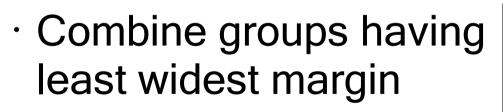
- Greedy
 - \cdot Top down
 - Choose partition which provides widest margin
 - Requires computation of O($\sum_{k=1}^{n-1} \binom{n}{k}$) classifiers (own estimation)
 - · 14 classes [] 16,382
 possible classifiers



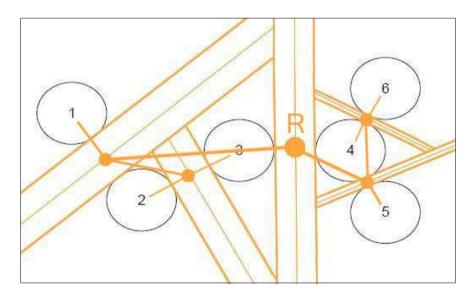


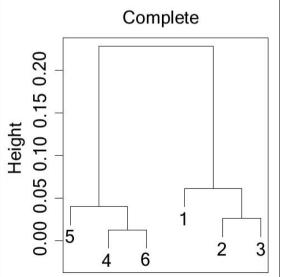
Linkage constraints

- Complete linkage
 - \cdot Bottom up
 - At first each class is in its own group



 Requires computation of only O(n²) classifiers





Organisation of classes

- Greedy does not care about distances between classes in the same group
 - Produces stringy trees by splitting off single classes
- Complete linkage produces groups having same size but differs in shapes (Brian T. Luke)
 - Might be more interpretable because of balanced hierarchy

Kill two birds with one stone?

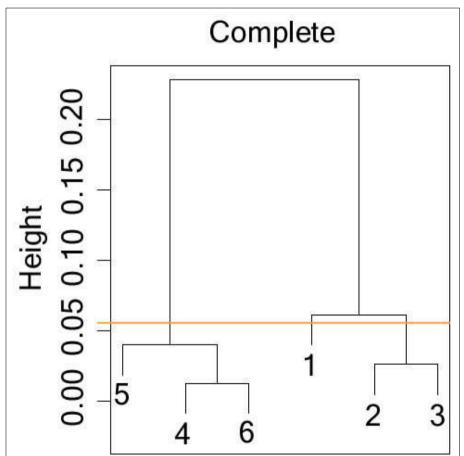
- Complete linkage trees turn out to be competitive to the greedy tree's robustness
- Construced computationally fast

and

• Yields an exact algorithm for the greedy criterion

Base of exact algorithm for greedy criterion

- Margin between elements of different groups is greater or equal than margin between those groups
- Cut in complete linkage tree at height M implies less margins in subtrees

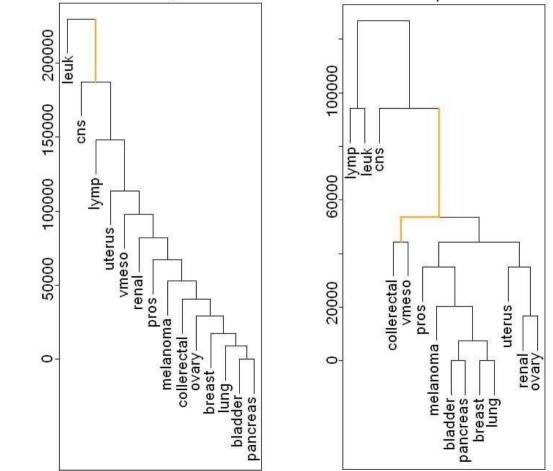


Exact algorithm for greedy criterion

- Greedy criterion according to a monoton decreasing sequence of margins
 - · Build complete linkage tree
 - Determine the widest margin achieved by one versus the rest classifiers and the margin of complete linkage tree
 - Cut tree at found height, collapse nodes and proceed with subtrees
- Terminates in $O(n^2+n\cdot n+n)$ [$O(n^2)$ (own estimation)

- Microarray cancer data set of Ramaswamy
 - Samples: 198 tumours (144 for training and 54 for testing)
 - · Features: 16,063 genes
 - · Classes: 14 types
- Comparison of all-pairs SVM, exact greedy, complete linkage and nearest centroid classifiers

• Approximation of greedy tree can fail performing wide margins!

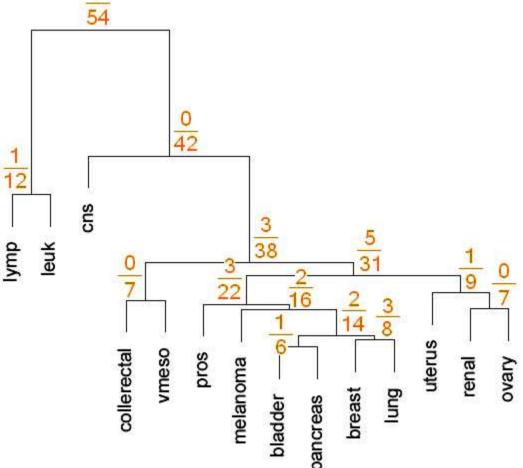


• Similar error rates 20, 18, 18 and 35 (for nearest centroids)

	Margin Trees	
	Greedy	Complete
SVM	10	10
Greedy	0	2

- Table shows the number of times each classifier disagreed on the test set
- 90% overlap in true-positives and disagreement almost only on false-positives

 It emerges that the error rate increases close to the leafs



Feature selection

- Nodes at the top seem to be less arbitrative
- Some features might have no effect on classification
- Reducing features would be beneficial, because
 - · groups would be more interpretable
 - \cdot classification could become faster

Hard thresholding

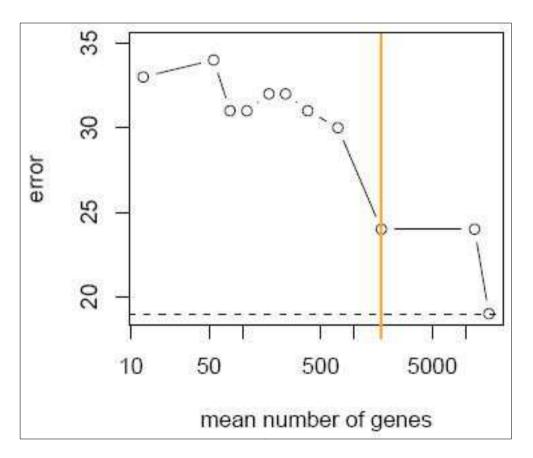
- Sort coefficients of weight vector which defines orientation of a margin in descending order
- Choose a number n_k for the k-th split
- Set first nk coefficients to zero
- Adjust only position of reduced margin
- How to choose n_k?

Limit of deviation

- Introduce a new variable α
- α is limit of deviation between unmodified and trimmed weight vector
- At each level nk is chosen individually
 - \cdot Fewer features at the top
 - \cdot More features close to the leafs
- Use tenfold cross-validation to estimate α

Quality of hard thresholding

- Experiments point out that features can be reduced to < 12.5% without too much loss of accuracy
- Recursive feature elimination only small advantage for already little number of features



Quality of hard thresholding

- Preserves interpretability
 - Remaining coefficients are subset of total featurevector
 - Usually reduced coefficients not easily predictable with common methods

Discussion

- Experiments show that margin trees are competitive to accurate methods like
 - Multiclass support vector machine
 - · Nearest centroid methods
- Provide meaningful hierarchy and interpretable feature reduction
- Leave the door open for other classification strategies

Discussion

- Nonlinear separable class distribution impede feature reduction
- Number of training samples is supposed to be less than number of features. Else:
 - · Not linearly separable
 - \cdot One class might be splitted in to leaves
- There are several related methods to their work with asserts and drawbacks

Further reading

• Sources of paper:

stat.stanford.edu/~hastie/Papers/margintree.pdf

- Agglomerative clustering: fconyx.ncifcrf.gov/~lukeb/agclust.html
- Nonlinear support vector machines:

www2.tuebingen.mpg.de/agbs/sc06/wiki/slides_nonlinear_svms.pdf

Authors: Robert Tibshirani Trevor Hastie

Presentation: Marian Wieczorek