Seminar "Maschinellem Lernen"

An Improved Model Selection Heuristic for AUC

Tutor: Jan-Nikolas Sulzmann Jiawei Du

Overview

- Evaluate Scoring Classifiers
- ROC & AUC
- sROC & sAUC
- Experimental Results
- Conclusions

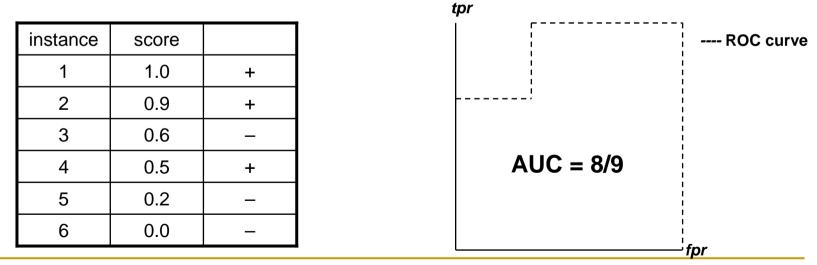
Evaluate Scoring Classifiers

Classification Models ≈ Class Decision or Score

- Classification performance
 - Accuracy = $\frac{tp+tn}{P+N}$
- Probability estimation performance
 - Brier score = $\sum_{x} (p'(x) p(x))^2$
- Ranking performance
 - ROC curve & AUC
 - Include all possible thresholds
 - estimates probability that randomly chosen positive example is ranked before randomly chosen negative example

ROC & AUC

- 1. Calculate score for each instance in the dataset
- 2. Rank instances on decreasing score
- 3. Draw ROC curve
 - 1. next instance is + : move 1/P up
 - 2. next instance is : move 1/N to the right
- 4. Calculate the area under the curve (AUC)



Calculate AUC without ROC

- Calculate AUC directly from the sorted test instances, without the need for drawing an ROC curve or calculating ranks
- P positive instances
- N negative instances
- $\{y_1, \dots, y_P\}$ is score for the positive instances
- $\{x_1, ..., x_N\}$ is score for the negative instances
- AUC counts the number of pairs of positives and negatives such that the former has higher score than the latter

Calculate AUC without ROC

•
$$\Psi_{ij}$$
 is 1 if $y_i - x_j > 0$, and 0 otherwise
 $AUC = \frac{1}{PN} \sum_{i=1}^{P} \sum_{j=1}^{N} \Psi_{ij}$

• Z be the sequence produced by sorting $\{y_1, \dots, y_P\} Y\{x_1, \dots, x_N\}$ in descending order

$$AUC = \frac{1}{PN} \sum_{j=1}^{N} (s_j - j) = \frac{1}{PN} \sum_{j=1}^{N} \sum_{t=1}^{s_j - j} 1$$

• S_j is the rank of x_j in Z, and $S_j - j$ is the number of positives before the j th negative in Z, namely the number of positives correctly ranked relative to each negative

An Example (AUC)

Classifier M1

instance	score	
1	1.0	+
2	0.7	+
3	0.6	+
4	0.5	_
5	0.4	_
6	0.0	_

$$\left| AUC = \frac{1}{3*3} (3+3+3) = \frac{9}{9} \right|$$

Classifier M2

instance	score		
1	1.0	+	
2	0.9	+	
3	0.6	_	
4	0.5	+	
5	0.2	_	
6	0.0	_	

$$AUC = \frac{1}{3*3}(2+3+3) = \frac{8}{9}$$

M1 gets the highest AUC

AUC Deteriorate

subtract 0.25 from the positive scores

<u>Classifie</u>	er <u>M1</u>		$\overline{}$				<u>Classifier M2</u>		
instance	score		instance	score		instance	score		
1	0.75	+	1	0.75	+	1	0.75	+	
2	0.45	+	4	0.5	-	2	0.65	+	
3	0.35	+	2	0.45	+	3	0.6	_	
4	0.5	-	5	0.4	-	4	0.25	+	
5	0.4	-	3	0.35	+	5	0.2	_	
6	0.0	_	6	0.0	_	6	0.0	_	
F									

$$AUC = \frac{1}{3*3}(1+2+3) = \frac{6}{9}$$

$$AUC = \frac{8}{9}$$

AUC deteriorates when positive scores are decreased

sROC & sAUC

 sROC curve study the relationship between AUC and differences in the score values

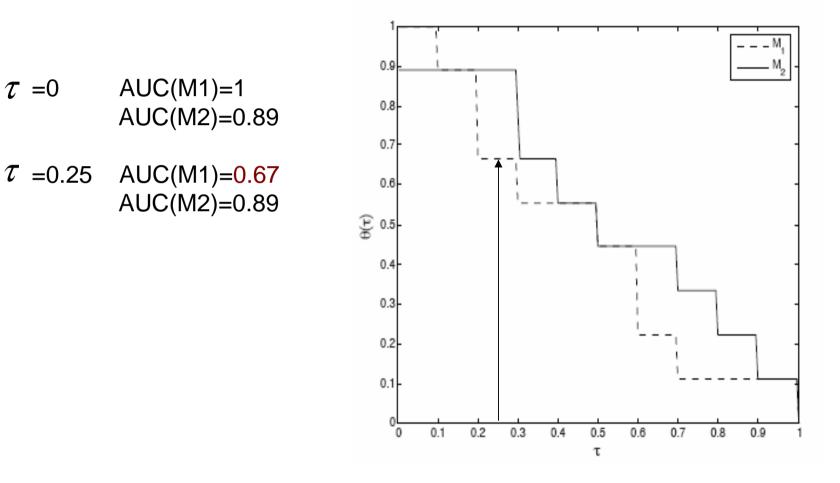
$$AUC = \frac{1}{PN} \sum_{i=1}^{P} \sum_{j=1}^{N} \Psi_{ij}(\tau)$$

•
$$\Psi_{ij}$$
 is 1 if $y_i - x_j > 0$, and 0 otherwise

•
$$\Psi_{ij}$$
 is 1 if $y_i - x_j > \tau$, and 0 otherwise

AUC counts the number of pairs of positives and negatives such that the former has higher score (at least τ)than the latter

Compare Classifiers in sROC Curve



Calculate sAUC without sROC

- SAUC is a measure of how rapidly the AUC deteriorates with increasing margin \mathcal{T} $SAUC = \int_0^1 \frac{1}{PN} \sum_{i=1}^P \sum_{j=1}^N \Psi_{ij}(\tau) d\tau$ $= \frac{1}{PN} (\sum_{i=1}^P \sum_{t=1}^{r_i - i} y_i - \sum_{j=1}^N \sum_{t=1}^{s_j - j} x_j)$
- The number of negative instances that correctly ranked relative to each positive instance * the score of this positive instance
- The number of positive instances that correctly ranked relative to each negative instance * the score of this negative instance

An Example (sAUC)

Classifier M1

instance	score	
1	1.0	+
2	0.7	+
3	0.6	+
4	0.5	_
5	0.4	_
6	0.0	_

$$sAUC = \frac{1}{3*3} (3*1.0 + 3*0.7 + 3*0.6)$$
$$-\frac{1}{3*3} (3*0.5 + 3*0.4 + 3*0.0) \approx 0.47$$

Classifier M2

instance	score	
1	1.0	+
2	0.9	+
3	0.6	_
4	0.5	+
5	0.2	_
6	0.0	_

$$sAUC = \frac{1}{3*3} (3*1.0 + 3*0.9 + 2*0.5)$$
$$-\frac{1}{3*3} (2*0.6 + 3*0.2 + 3*0.0) \approx 0.54$$

M2 is robust over a larger range of margins

Difference

- ROC Curve & AUC
 - ordinal comparison between the scores
 - only ranking information
 - overfitting the validation data
- sROC Curve & sAUC
 - not only ranking information
 - but also score information
 - (the difference between the scores)

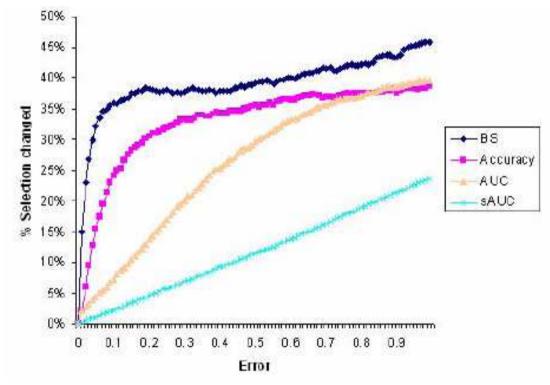
Experiment 1

- Goal: sAUC outperforms AUC and Brier score for selecting models, particularly when validation data is limited
- Two experiments:
 - artificial data
 - 1. Data set A & B (100 instances)
 - 2. Each instance gets a probability p in [0,1]
 - 3. Label instance (+ if $p \ge 0.5$)
 - 4. Swap 10 examples of data set *A*, 11 examples of data set *B*
 - 5. Construct "classifier model" Ma on data set A & Mb on data set B
 - 6. Record which one is better
 - 7. Add noise to obtain 'estimated' probabilities

$$p' = p + k * U(-0.5, 0.5)$$

8. Which one is better now

Experimental Result 1



- AUC, Brier score and Accuracy are more vulnerable to the existence of noise in the predicted probabilities
- the model selected by sAUC more reliable

Experiment 2

- 17 real data sets selected from the UCI repository
 - 11 small data sets
 - □ Training data 50%
 - Validation data 10%
 - Test data 40%
 - 6 larger data sets
 - □ Training data 50%
 - Validation data 25%
 - Test data 25%
- Train 10 different classifiers with the same learning technique (J48, Naive Bayes, and Logistic Regression) over the same training data, by randomly removing three attributes before training
- Model selected according to AUC, Brier Score and sAUC

Experimental Result 2

	J48			Naive Bayes			Logistic Regression			
#	sAUC	C AUC	BS	sAUC	AUC	BS	sAUC	AUC	BS	
1	86.34	83.76	6 85.81	70.80	67.98	69.96	70.07	67.28	69.23	
2	51.79	51.32	2 51.05	51.19	51.81	51.78	51.19	51.76	51.80	
3	95.92	93.20	95.47	95.47	92.21	94.96	95.98	92.65	95.58	
5	79.48	77.72	2 78.16	72.13	70.88	71.05	74.62	72.11	72.68	
6	90.16	89.25	5 89.56	89.70	89.06	89.61	91.12	90.62	90.55	
7	68.95	68.75	5 68.85	77.69	77.24	77.25	77.60	77.29	77.20	
9	98.11	97.81	97.98	96.90	96.74	96.81	98.36	98.24	98.28	
10	61.75	62.10	62.09	69.62	69.09	68.98	65.19	64.94	65.33	
11	97.68	97.6 4	97.67	98.01	97.94	98.00	99.24	99.18	99.22	
12	87.13	85.65	5 86.13	83.85	83.60	83.82	84.18	83.74	83.76	
13	83.42	83.56	5 83.45	88.69	88.68	88.49	89.24	89.12	89.13	
wins	5	9	9		10	10		10	9	
		J48		Nai	ive Bay	ves	Logist	ic Reg	ression	
#	sAUC		BS	sAUC		, 	sAUC	-		
4	99.92		99.91	95.88		96.45	99.59		99.57	
8	96.69	96.78	96.67	95.88	96.50		96.95	96.93		
14	98.70	98.67	98.65	91.85	92.00	91.62	93.68	93.78	93.59	
15	69.55		69.90	70.47	70.59		94.83		94.90	
16	96.73	97.28	96.59	98.00	97.99	97.90	96.91	97.01		
17	100	100	100	99.80	99.88	99.79	100	100	100	
wins		2	3		1	3		2	3	

The performance of each selected classifier model is accessed by AUC on the test data

 sAUC is a good classifier model selector when the validation data is limited

Conclusions

- When the validation data is limited, only ROC curve & AUC is not enough to evaluate the performance of scoring classification models due to overfitting the validation data
- This paper mainly studied "how quickly AUC deteriorates if the positive scores are decreased"
- The concept of sROC curve & sAUC is presented, which uses both ranking information and score information
- The problem of overfitting can be avoided effectively

Thank you