Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet Tutor: Eneldo Loza Mencía 28/11/2007

Seminar aus Maschinellem Lernen

WS07/08

Overview

- Online algorithms
- Online Binary Classification Problem
 - Perceptron Algorithm
 - 3 versions of the Passive-Aggressive Algorithm
 - Loss bounds, Comparison with the Perceptron
- Other learning problems
- Experiments
- Conclusion

Online Algorithms

- Sequence of rounds t:
 - Instance x_{t} as input
 - Predicts \hat{y}_{t} as output
 - Receives correct output y₁
 - Updates prediction mechanism

Online Binary Classification: Perceptron Algorithm

- Round t:
 - instance $x_t \in \mathbb{R}^n$ with label $y_t \in \{-1, 1\}$
 - classification fonction based on weight vector $w_t \in \mathbb{R}^n \rightarrow$ defines hyperplane separating the 2 classes
 - prediction: $\hat{y}_t = sign((w_t, x_t) + b)$
 - signed margin: $y_t((w_t, x_t)+b)$
 - correct if margin > 0
- Goal: incrementally learn w_t
 (incrementally modify hyperplane)

Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet

 x_{2} x_{1} margin (w.x) + b = 0

Online Binary Classification: Perceptron Algorithm (2)

- Start with random hyperplane (random w_0)
- At each round t of the algorithm:

- receives x_{t} and predicts $\hat{y}_{t} = sign(w_{t}.x_{t} + b_{t})$

- receives correct y_{t} and updates the hyperplane
- Update minimizes the distance of misclassified exemples to the boundary

 $w_{t+1} = w_t + \rho (y_t - \hat{y}_t) x_t$ with $\rho > 0$ learning rate (the hyperplane is updated when an error occurs)

Passive-Aggressive Algorithm for binary classification

- Want: $margin \ge 1$ as often as possible (not only correctly classified exemples)
- Hinge-loss fonction:

$$\ell(\mathbf{w}; (\mathbf{x}, y)) = \begin{cases} 0 & y(\mathbf{w} \cdot \mathbf{x}) \ge 1\\ 1 - y(\mathbf{w} \cdot \mathbf{x}) & \text{otherwise} \end{cases}$$

- Loss suffered at round t: $\ell_t = \ell(\mathbf{w}_t; (\mathbf{x}_t, y_t))$
- Number of prediction mistakes $\leq \sum l_t^2$

Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet

Passive-Aggressive Algorithm for binary classification (2)

- Initialization: $w_1 = (0, ..., 0)$
- Update:

 $-w_{t+1} \text{ solution of constrained optimization problem:}$ $w_{t+1} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 \quad \text{s.t.} \quad \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) = 0$

- w_{t+1} has the form: $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$ where $\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2}$

Passive-Aggressive Algorithm for binary classification (3)

• Trade-off:

- w_{t+1} required to have no loss on current exemple
- w_{t+1} as close as possible to w_t
- "Passive-Aggressive ":
 - "passive "when $l_t = 0$
 - "aggressive " otherwise: w_{t+1} forced to satisfy the constraint $l_t = 0$ on the current exemple

Two variations of the PA algorithm

- Problem of aggressiveness in case of noise
- PA-I: $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{w} \mathbf{w}_t\|^2 + C\xi$ s.t. $\ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \le \xi$ and $\xi \ge 0$
- **PA-II:** $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{w} \mathbf{w}_t\|^2 + C\xi^2 \quad \text{s.t.} \quad \ell(\mathbf{w}; (\mathbf{x}_t, y_t)) \le \xi$

with C aggressiveness parameter

• same update form as for PA: $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

$$\tau_t = \min\left\{ C, \frac{\ell_t}{\|\mathbf{x}_t\|^2} \right\} \quad \text{for PA-I} \quad \tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}} \quad \text{for PA-II}$$

Relative loss bounds

- Number of prediction mistakes $\leq \sum l_t^2$
- Comparison of the loss attained by PA with the loss attained by a fixed classifier *sign(u.x)*

$$\ell_t = \ell \left(\mathbf{w}_t; (\mathbf{x}_t, y_t) \right) \qquad \qquad \ell_t^* = \ell \left(\mathbf{u}; (\mathbf{x}_t, y_t) \right)$$

• For the original PA algorithm:

$$\ell_t^2 \leq \|\mathbf{u}\|^2 R^2 \qquad \forall t \quad \|x_t\| \leq R \quad and \quad l_t^* = 0$$

Relative loss bounds (2)

• For the original PA algorithm:

 $\sum_{t=1}^{T} \ell_t^2 \leq \left(\|\mathbf{u}\| + 2\sqrt{\sum_{t=1}^{T} (\ell_t^{\star})^2} \right)^2$

$$\forall t ||x_t|| = 1$$
, $\forall u \in \mathbb{R}^n$

• For PA-I:

$$M \le \max\left\{R^2, 1/C\right\} \left(\|\mathbf{u}\|^2 + 2C\sum_{t=1}^T \ell_t^* \right) \qquad \forall t \quad \|x_t\| \le R \quad , \quad \forall u \in \mathbb{R}^n$$

• For PA-II:

$$\sum_{t=1}^{T} \ell_t^2 \leq \left(R^2 + \frac{1}{2C} \right) \left(\|\mathbf{u}\|^2 + 2C \sum_{t=1}^{T} (\ell_t^*)^2 \right)$$

Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet

 $\forall t \mid ||x_t^2|| \leq R^2$, $\forall u \in \mathbb{R}^n$

Comparison with the Perceptron Algorithm

Passive-Aggressive Algorithms

INPUT: aggressiveness parameter C > 0INITIALIZE: $\mathbf{w}_1 = (0, ..., 0)$ For t = 1, 2, ...

- receive instance: $\mathbf{x}_t \in \mathbb{R}^n$
- predict: $\hat{y}_t = \operatorname{sign}(\mathbf{w}_t \cdot \mathbf{x}_t)$
- receive correct label: $y_t \in \{-1, +1\}$
- suffer loss: $\ell_t = \max\{0, 1 y_t(\mathbf{w}_t \cdot \mathbf{x}_t)\}$
- update:

1. set:

$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2}$$
(PA)
$$\tau_t = \min\left\{C, \frac{\ell_t}{\|\mathbf{x}_t\|^2}\right\}$$
(PA-I)
$$\tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}}$$
(PA-II)

2. update: $\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t y_t \mathbf{x}_t$

Perceptron Algorithm

INPUT: learning rate $\rho > 0$ INITIALIZE: **W**₁ random For t = 1, 2, ...

- receive instance: $\mathbf{x}_t \in \mathbb{R}^n$
- predict: $\hat{y}_t = \operatorname{sign}(\mathbf{w}_t \cdot \mathbf{x}_t)$
- receive correct label: $y_t \in \{-1, +1\}$
- update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \rho \left(y_t - \hat{y}_t \right) \mathbf{x}_t$$

Bounds are comparable both in separable (PA) and non-separable (PA-I, PA-II) cases

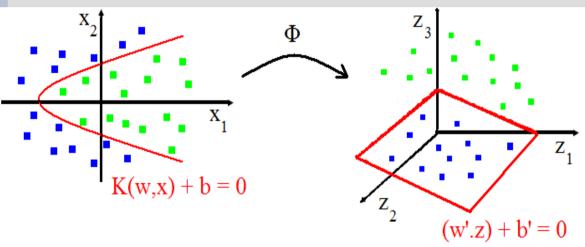
Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet

28/11/2007

Generalization to the non-linear case: Principle

 map the data space into a feature space where the data is now linearly separable



• feature map $\Phi: \chi \to H$

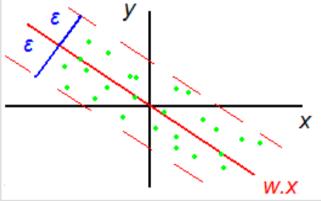
- replace (w.x) by Mercer Kernel K(w,x) (non-linear function)
- K(w,x) is the inner product of the vectors $\Phi(w)$ and $\Phi(x)$
- algorithm learns w'_{t} (weight vector in feature space *H*) and predicts $\hat{y}_{t} = sign(w'_{t}^{T} \cdot \Phi(x_{t}))$

Other problems

- Regression
- Uniclass prediction
- Multiclass problems

Regression

- main difference with the binary problem: $v \notin \{-1,1\}, v \in \mathbb{R}$
- instance $x_t \in \mathbb{R}^n$ \rightarrow prediction $\hat{y}_t = (w_t, x_t)$



• *ɛ*-sensitive hinge loss function:

$$\ell_{\varepsilon}(\mathbf{w}; (\mathbf{x}, y)) = \begin{cases} 0 & |\mathbf{w} \cdot \mathbf{x} - y| \le \varepsilon \\ |\mathbf{w} \cdot \mathbf{x} - y| - \varepsilon & \text{otherwise} \end{cases}$$

Regression: PA algorithms

- Initialization:
 - $w_1 = (0, ..., 0)$

- Update:
 - w_{t+1} solution of constrained optimization problem: $\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 \quad \text{s.t.} \quad \ell_{\varepsilon} \big(\mathbf{w}; (\mathbf{x}_t, y_t) \big) = 0$
 - w_{t+1} has the form: $\mathbf{w}_{t+1} = \mathbf{w}_t + \operatorname{sign}(y_t - \hat{y}_t) \mathbf{\tau}_t \mathbf{x}_t$

$$\tau_t = \ell_t / \|\mathbf{x}_t\|^2 \quad (PA) \qquad \tau_t = \min\left\{ C, \frac{\ell_t}{\|\mathbf{x}_t\|^2} \right\} \quad (PA-I) \qquad \tau_t = \frac{\ell_t}{\|\mathbf{x}_t\|^2 + \frac{1}{2C}} \quad (PA-II)$$

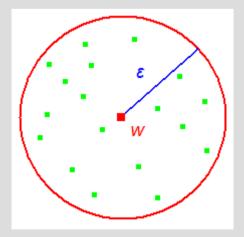
Same loss bounds as for binary classification

Jean-Baptiste Behuet

Uniclass prediction

- Principle of a round:
 - no input x_{r}
 - predicts the next element of the sequence to be w_{t}
 - receives y_{t} and suffers loss:

$$\ell_{\epsilon}(\mathbf{w}; \mathbf{y}) = \begin{cases} 0 & \|\mathbf{w} - \mathbf{y}\| \leq \epsilon \\ \|\mathbf{w} - \mathbf{y}\| - \epsilon & \text{otherwise} \end{cases}$$

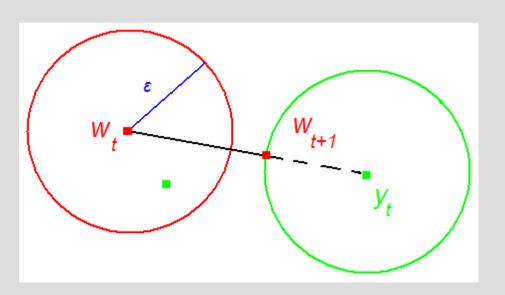


- Equivalent:
 - find the center \rightarrow elements are within a radius of ε

Uniclass prediction: PA algorithms

• Update: w_{t+1} solution of optimization problem:

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}\in\mathbb{R}^n} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 \quad \text{s.t.} \quad \ell_{\varepsilon}(\mathbf{w}; \mathbf{y}_t) = 0$$



 w_{t+1} has the form:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \tau_t \frac{\mathbf{y}_t - \mathbf{w}_t}{\|\mathbf{y}_t - \mathbf{w}_t\|}$$
$$\tau_t = \ell_t \text{ (PA)}$$
$$\tau_t = \min\{C, \ell_t\} \text{ (PA-I)}$$
$$\tau_t = \frac{\ell_t}{1 + \frac{1}{2C}} \text{ (PA-II)}$$

Multiclass multilabel classification

- Principle:
 - set of all possible labels $Y = \{1, ..., k\}$
 - receives instance x_{r} (associated with relevant labels)
 - outputs a score for each of the k labels
 - prediction vector $\in \mathbb{R}^k$
 - receives the set of " relevant " labels Y_{t} for x_{t}
 - " relevant " must be ranked higher than " irrelevant "
 - updates the prediction mechanism

Multiclass multilabel: Problem settings

• feature vector: $\Phi(x,y) = (\Phi_{I}(x,y), ..., \Phi_{d}(x,y))$

(set of features: $\Phi_{l}, ..., \Phi_{d}$)

• Prediction vector:

$$((\mathbf{w}_t \cdot \Phi(\mathbf{x}_t, 1)), \dots, (\mathbf{w}_t \cdot \Phi(\mathbf{x}_t, k)))$$
 $w_t \in \mathbb{R}^d$

• Margin of the exemple (x, Y):

$$\gamma(\mathbf{w}_t;(\mathbf{x}_t,Y_t)) = \min_{r \in Y_t} \mathbf{w}_t \cdot \Phi(\mathbf{x}_t,r) - \max_{s \notin Y_t} \mathbf{w}_t \cdot \Phi(\mathbf{x}_t,s)$$

Multiclass multilabel: Problem settings (2)

- Margin: difference between
 - score of the lowest ranked relevant label
 - score of the highest ranked irrelevant label

$$r_t = \operatorname*{argmin}_{r \in Y_t} \mathbf{w}_t \cdot \Phi(\mathbf{x}_t, r)$$
 and $s_t = \operatorname*{argmax}_{s \notin Y_t} \mathbf{w}_t \cdot \Phi(\mathbf{x}_t, s)$

Hinge-loss function:

$$\ell_{MC}(\mathbf{w}; (\mathbf{x}, Y)) = \begin{cases} 0 & \gamma(\mathbf{w}; (\mathbf{x}, Y)) \ge 1\\ 1 - \gamma(\mathbf{w}; (\mathbf{x}, Y)) & \text{otherwise} \end{cases}$$

Multiclass multilabel: PA algorithms

- Equivalence: $\ell_{MC}(\mathbf{w}_t; (\mathbf{x}_t, Y_t)) = \ell(\mathbf{w}_t; (\Phi(\mathbf{x}_t, r_t) \Phi(\mathbf{x}_t, s_t), +1))$
- w_{t+1} solution of optimization problem:

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}_t\|^2 \quad \text{s.t.} \quad \mathbf{w} \cdot (\Phi(\mathbf{x}_t, r_t) - \Phi(\mathbf{x}_t, s_t)) \geq 1$$

• w_{t+1} has the form: $w_{t+1} = w_t + \tau_t (\Phi(\mathbf{x}_t, r_t) - \Phi(\mathbf{x}_t, s_t))$

$$\begin{aligned} \tau_t &= \frac{\ell_t}{\|\Phi(\mathbf{x}_t, r_t) - \Phi(\mathbf{x}_t, s_t)\|^2} \quad \text{(PA)} \quad \tau_t &= \min\left\{ C , \ \frac{\ell_t}{\|\Phi(\mathbf{x}_t, r_t) - \Phi(\mathbf{x}_t, s_t)\|^2} \right\} \quad \text{(PA-I)} \\ \tau_t &= \frac{\ell_t}{\|\Phi(\mathbf{x}_t, r_t) - \Phi(\mathbf{x}_t, s_t)\|^2 + \frac{1}{2C}} \quad \text{(PA-II)}. \end{aligned}$$

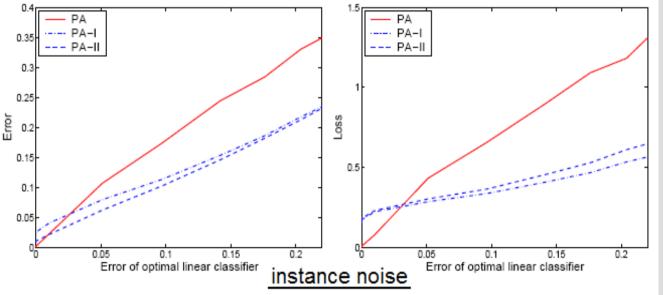
Experiments

- 1. Robustness to noise
- 2. Effect of the aggressiveness parameter C
- 3. Multiclass problems:

comparison with other online algorithms

Experiment 1: Robustness to noise

 Binary classification, 4000 generated exemples (results averaged on 10 repetitions)



- Instance noise label noise
- Find optimal fixed linear classifier (brute force)
- C = 0.001

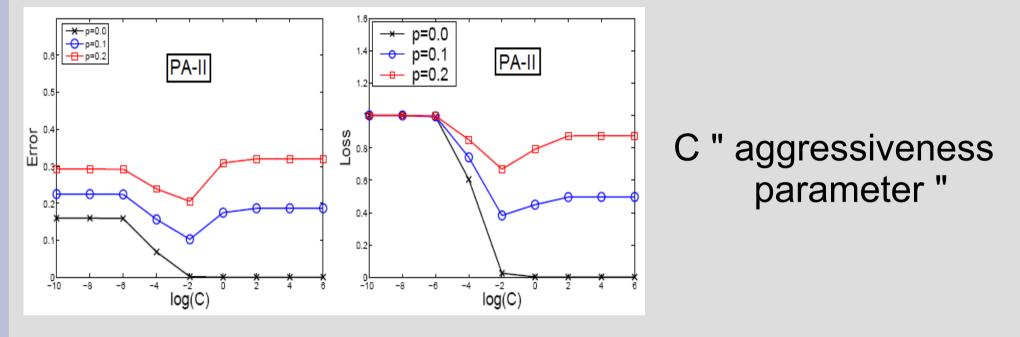
→ Low noise level: 3 make similar number of errors
 → High noise level: PA-I and PA-II outperform PA

Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet

28/11/2007

Experiment 2: Effect of C



 Results meet the theoretic loss bounds

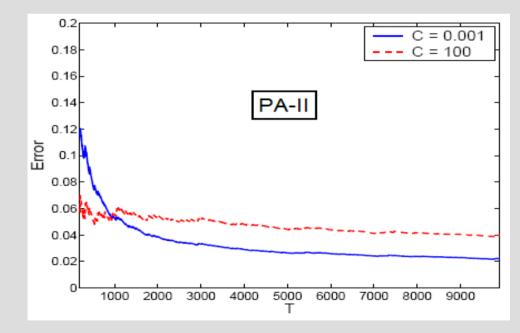
$$\sum_{t=1}^{T} \ell_t^2 \leq \left(R^2 + \frac{1}{2C} \right) \left(\|\mathbf{u}\|^2 + 2C \sum_{t=1}^{T} (\ell_t^*)^2 \right)$$

• Rule: when there is noise in data, C should be small

Jean-Baptiste Behuet

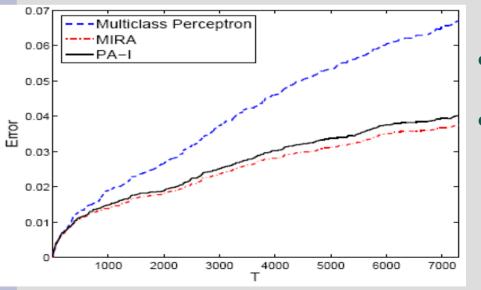
Experiment 2: Effect of C (2)

 Evolution of error rate with the number of exemples



Experiment 3: Multiclass problems

- Use standard multiclass datasets: USPS, MNIST
- Comparison of the multiclass PA algorithms with:
 - multiclass versions of the Perceptron algorithm
 - MIRA (Margin Infused Relaxed Algorithm)



- PA-I and MIRA comparable
- but MIRA solves a complex
 optimisation problem for each
 update
 ≠ PA: simple expression

Conclusion

- Further research:
 - extension to other problems
 - conversion to batch algorithms
 - PA with bounded memory constraints (memory requirements imposed when using Mercer Kernels)

References

- Crammer, Koby. Dekel, Ofer. Keshet, Joseph. Shalev-Shwartz, Shai. Singer, Yoram. "Online Passive-Aggressive Algorithms ". Jerusalem, 2006 http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf (20 Oct. 2007)
- Schiele, Bernt. "Maschinelles Lernen Statistische Verfahren". Darmstadt: Technische Universität Darmstadt, 18. Mai 2007
 http://www.mis.informatik.tu-darmstadt.de/Education/Courses/ml/slides/ ml-2007-0518-svm2-v1.pdf
 (16 Nov. 2007)
- Rojas, Raul. "Perceptron Learning". Neural Networks A Systematic Introduction. Springer-Verlag, Berlin, 1996
 http://page.mi.fu-berlin.de/rojas/neural/chapter/K4.pdf (22 Nov. 2007)
- Rodriguez, Carlos C. "The Kernel Trick". October 25, 2004 <omega.albany.edu:8008/machine-learning-dir/notes-dir/ker1/ ker1.pdf> (26 Nov. 2007)

Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet

Thank you for your attention Questions?

Online Passive-Aggressive Algorithms

Jean-Baptiste Behuet