Learning to Rank: From Pairwise Approach to Listwise Approach

Seminar Machine Learning
Buu Kieu Lam
Supervisor: Sang-Hyeun Park

Overview

- Motivation
- Definition
 - Ranking
 - Listwise approach
- Probability Model
 - Top one probability
- Learning method: ListNet
 - Learning Algorithm
- Experiments
- Conclusions

Motivation

Example: Document retrieval

- Pairwise approach:
 - Instances: document pairs
 - □ the problem of learning to rank ≈ classification
 - + existing methodologies on classification can be directly applied.
 - E.g.: Ranking SVM, RankBoost, RankNet
 - + training instances of document pairs can be easily obtained
 - minimize errors in classification of document pairs rather than in ranking
 - number of document pairs is very large → training process costly
 - □ n*(n-1)/2 document pairs
 - the number of generated document pairs varies largely from query to query
 - → result in training a model biased toward queries with more document pairs.
- Listwise approach
 - Instances in learning: document lists

Ranking

Learning to rank: construct a model or a function for ranking objects.

- In learning
 - Given are a number of queries

In evalutation (i.e. ranking):

 Ranking order represents relative relevance of documents with respect to the query

Listwise approach

- Set of queries $Q = \{q^{(i)}\}, i=1,2,...,m$
 - □ List of documents $d^{(i)} = \{d^{(i)}_{i}\}$
 - List of judgments (scores) $y^{(i)} = \{y^{(i)}_i\}$
 - Feature vector $\mathbf{x}^{(i)}_{i} = \psi(q^{(i)}, d^{(i)}_{i})$ for each query-document pair
- Instance
 - \Box (feature list, judgment list) = $(x^{(i)}, y^{(i)})$
 - \Box Training set $\{(x^{(i)}, y^{(i)})\}$
- Ranking function f
 - Ranking list: $z^{(i)} = (f(x^{(i)}))$
- - L is a listwise loss function

■ Ranking list:
$$z^{(i)} = (f(x^{(i)}_{j}))$$
■ The objective of learning: $\min \sum_{i=1}^{m} L(y^{(i)}, z^{(i)})$
■ L is a listwise loss function

Listwise approach abstract

Listwise approach abstract

Top One Probability

- The probability of an object j being ranked on the top
- Given:
 - \square scores of all the objects $s = (s_1, s_2, ..., s_n)$
 - \Box an increasing and strictly positive function $\Phi(.)$
- Define:

$$P_{s}(j) = \frac{\phi(s_{j})}{\sum_{k=1}^{n} \phi(s_{k})}, \quad s_{j} : \text{score of object } j, j = 1,2,\Lambda, n$$

 Given 2 lists of scores: use any metric to represent the distance (listwise loss function) between the two score lists: e.g. Cross Entropy as metric:

$$L(y^{(i)}, z^{(i)}) = -\sum_{j=1}^{n} P_{y^{(i)}}(j) \log(P_{z^{(i)}}(j))$$

ListNet: Learning Algorithm

ranking function based on Neural Network model ω as f_{ω}

- **Input:** training data $\{(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$
- Parameter: number of iterations T and learning rate η
- Initialize parameter ω
- For t = 1 to T do
 - \Box For i = 1 to m do
 - Input x⁽ⁱ⁾ of query q⁽ⁱ⁾ to Neural Network and compute score list z⁽ⁱ⁾(f_ω) with current ω
 - Compute gradient Δω

$$\Delta \omega = \frac{\partial L(y^{(i)}, z^{(i)}(f_{\omega}))}{\partial \omega}$$

- update $\omega = \omega \eta * \Delta \omega$
- end for
- end for
- Output: Neural Network model ω

Experiments Data Collections

	TREC 2003 Web pages from .gov domain	OHSHUMED Documents, queries in medicine	CSearch Data set from a commercial web search engine
Volume	1,053,110 pages 11,164,829 hyperlinks	348,566 documents	
Number of queries	50	106	25,000 Each query: 1,000 associated documents
Number of features Extracted from each query- document pair	20	30 (16,140 query-document pairs)	600 Query-dependent/ independent features
Relevance judgments	Relevant or irrelevant	Definitely relevant, possibly relevant, or not relevant	5 levels: 4 (perfect match) → 0 (bad match)
Using of 2 common IR evaluation measures	NDCG & MAP	NDCG & MAP	NDCG

Ranking performance evaluation - measure ranking accuracy: Normalized Discounted Cumulative Gain (NDCG) (for >=2 levels of relevance judgment) & Mean Avarage Precision (MAP) (for relevance judgment with 2 levels)

Experiments Ranking Accuracy (1)

TREC & OSHUMED:

 \square Divide data set into 5 subsets \rightarrow 5-fold cross-validation

Experiments

Ranking Accuracy (2)

TREC

Figure 1. Ranking accuracies in terms of NDCG@n on TREC

Table 1. Ranking accuracies in terms of MAP

	Algorithms	LISTNET	RANKBOOST	RANKSVM	RANKNET
	TREC	0.216	0.174	0.193	0.197
-	OHSUMED	0.305	0.297	0.297	0.303

ListNet outperforms RankNet, RankingSVM and RankBoost.

Experiments

Ranking Accuracy (3)

OSHUMED

Figure 2. Ranking accuracies in terms of NDCG@n on OHSUMED

Table 1. Ranking accuracies in terms of MAP

Algorithms	ListNet	RankBoost	RankSVM	RANKNET
TREC	0.216	0.174	0.193	0.197
 OHSUMED 	0.305	0.297	0.297	0.303

 ListNet outperforms RankNet and RankBoost and better than RankingSVM in terms of MAP and partition in terms of NDCG.

Experiments Ranking Accuracy (4)

CSearch:

Randomly select

Figure 3. Ranking accuracies in terms of NDCG@n on CSearch

- ListNet outperforms RankNet and RankBoost
- □ Size of training data too large: → impossibly run RankingSVM with the SVMlight tool.

Experiments Discussion (1)

- Pairwise loss function too loose as an approximation of the performance measures of NDCG and MAP.
- Pairwise loss does not inversely correlate with NDCG
- Listwise loss function can more properly represent the performance measures.
- Listwise loss inversely correlates with NDCG

Experiments

Discussion (2) - evaluation measure NDCG@5 on TREC

Figure 4. Pairwise loss v.s. NDCG@5 in RankNet Figure 5. Listwise loss v.s. NDCG@5 in ListNet

- Pairwise loss converges more slowly than listwise loss
- → RankNet needs more iterations in training than ListNet.

Conclusions

- In learning to rank: listwise approach better.
 - List of objects: instances in learning
 - Listwise loss function:
 - permutation probability and top one probability ranking scores into probability distribution
 - any metric between probability distributions (e.g. cross entropy) as the listwise loss function
 - Develop a learning method based on the approach
 - Neural Network as model
 - Gradient Descent as algorithm
- Experiment results → proved!
- Future work: explore
 - The performance of other objective function besides cross entropy
 - The performance of other ranking model instead of linear Neural Network model
 - NDCG and MAP performance measures with listwise loss function

Any Questions?