Maschinelles Lernen: Symbolische Ansätze

Übungsblatt für den 28.11.2006

Aufgabe 1

Gegeben sei eine Beispielmenge mit folgenden Eigenschaften:

- Jedes Beispiel ist durch 10 nominale Attribute A_1, \ldots, A_{10} beschrieben.
- Jedes dieser Attribute hat 2 Werte.
- a) Wie viele Entscheidungsbäume müßten bei vollständiger Suche untersucht werden (es genügt eine grobe Abschätzung der Größenordnung)?
 (Hinweis: Dies ist analog zu der Frage: Wie viele Entscheidungsbäume gibt es ungefähr für diese Daten?)
- b) Wie viele (partielle) Entscheidungsbäume müssen maximal beim Verfahren des TDIDT untersucht werden?
- c) Angenommen die Datenmenge bestünde aus 1000 Beispielen. Wie oft würde jedes Beispiel bei der TDIDT im Worst-Case angefaßt?
- d) Was würde sich bei a) und b) ändern, wenn
 - jedes Attribut nicht 2, sondern 10 Attributwerte hätte?
 - die Attribute nicht nominal, sondern numerisch wären?

In beiden Fällen bleiben die sonstigen Annahmen gleich.

Aufgabe 2

Gegeben sei folgende Beispielmenge:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
D15	Sunny	Mild	Normal	Weak	No

a) Erzeugen Sie einen Entscheidungsbaum mittels des Verfahrens ID3 (TDIDT mit Maß Gain).

Anmerkung: Hier bietet es sich an, in Gruppen zu arbeiten.

- b) Wiederholen Sie die Berechnungen für die Auswahl des Tests in der Wurzel mit den Maßen Information-Gain-Ratio und Gini-Index. Ändert sich etwas?
- c) Ersetzen Sie das Beispiel D1 durch:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	?	Hot	High	Weak	No

[?] steht hier für einen unbekannten/fehlenden Attributwert.

Überlegen Sie sich, wie man unbekannte/fehlende Attributwerte behandeln könnte.