Maschinelles Lernen: Symbolische Ansätze

Übungsblatt für den 19.12.2006

Aufgabe 1

Ein Patient weiß folgendes über einen bestimmten Krebstest: Falls jemand Krebs hat, ist der Test in 98% der Fälle korrekt. Falls jemand keinen Krebs hat, ist der Test in 97% der Fälle korrekt. Insgesamt haben 0,8% der gesamten Bevölkerung Krebs.

Der Patient erhält nun die Nachricht, daß sein Test positiv ist. Was sagt ihm das?

Aufgabe 2

Gegeben sei folgende Beispielmenge:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
D15	Sunny	Mild	Normal	Weak	No

a) Berechnen Sie die Tabelle der bedingten Wahrscheinlichkeiten, wie sie Naïve Bayes erzeugt.

- b) Welchen Klassifikationswert gibt Naïve Bayes für die folgenden Instanzen aus?
 - 1. Outlook=Sunny, Temperature=Mild, Humidity=High, Wind=Strong
 - 2. Outlook=Rain, Humidity=Normal
 - 3. Temperature=High
- c) Wie würden Sie mit fehlenden Attributwerten umgehen?

Aufgabe 3Gegeben sei folgende Beispielmenge:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	26	High		No
D2	Sunny	28	High	Strong	No
D3	Overcast	29	High	Weak	Yes
D4	Rain	23	High	Weak	Yes
D5	Rain		Normal	Weak	Yes
D6	Rain	12	Normal	Strong	No
D7	Overcast	8		Strong	Yes
D8	Sunny	25	High	Weak	No
D9	Sunny	18	Normal	Weak	Yes
D10	Rain	20	Normal	Weak	Yes
D11	Sunny	20	Normal	Strong	
D12	Overcast	21	High	Strong	Yes
D13		26	Normal	Weak	Yes
D14	Rain	24	High	Strong	No
D15	Sunny	23	Normal	Weak	No
D16	Sunny	21	Normal	Weak	Yes

Überlegen Sie sich, wie Sie diesen Datensatz, der numerische Werte enthält, mit Naïve Bayes behandeln würde.

Aufgabe 4

Betrachten sie folgende Regeln:

- 1. Outlook = Sunny \rightarrow Yes else No
- 2. Wind = Weak \rightarrow No else Yes
- 3. Humidity = Normal and $16 < Temperature < 25 \rightarrow Yes$ else No
- 4. Temperature $> 28 \rightarrow Yes$ else No

 $\it Ohne$ auf die Daten zu schauen, schätzen Sie bitte die Plausibilität jeder einzelnen Regel ein. Weisen Sie jeder Regel diesen Wert als a priori-Wahrscheinlichkeit p(h) zu.

Betrachten Sie nun den Datensatz aus Aufgabe 3:

- a) Welche der Regeln ist h_{MAP} , welche h_{ML} ?
- b) Wie lautet die Bayes'sche optimale Klassifikation für die Instanz Outlook = Sunny, Temperature=22, Humidity=High, Wind=Normal?