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Concept

Attribute-Value Representation

= each object is represented with a finite number of attributes

Concept
= A concept is a subset of all possible objects

Example 1:

® objects are points in a 2-d plane

® a concept can be any subarea in the plane
m can have many disconnected components
® # objects and # concepts is infinite

Example 2:

e all attributes are Boolean, objects are Boolean vectors
® a concept can be any subset of the set of possible objects
® # concepts and # objects is finite
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Concept Learning

® Given:
= Positive Examples E*

e examples for the concept to learn (e.g., days with golf)
= Negative Examples E-

® counter-examples for the concept (e.g., days without golf)
= Hypothesis Space H

® a (possibly infinite) set of candidate hypotheses

® e.g., rules, rule sets, decision trees, linear functions, neural
networks, ...

® Find:
= Find the target hypothesishe H

= the target hypothesis is the concept that was used (or could
have been used) to generate the training examples
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Correctness

What is a good rule?

= Obviously, a correct rule would be good

= Other criteria: interpretability, simplicity, efficiency, ...
Problem:

= \We cannot compare the learned hypothesis to the target
hypothesis because we don't know the target

e Otherwise we wouldn't have to learn...
Correctness on training examples

2 . Each positive example should be covered by

the target hypothesis

= consistency: No negative example should be covered by the

target hypothesis

But what we want is correctness on all possible examples!
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Conjunctive Rule

if (att;=val;) and (att;=val;) then +

\- / A
of the rule (IF-part) Head of the rule (THEN-part)
= contains a conjunction of = contains a prediction
conditions = typically + if object
= a condition typically consists of belongs to concept,
comparison of attribute values — otherwise
® Coverage

= Arule is said to cover an example if the example satisfies
the conditions of the rule.

® Prediction

= |f arule covers an example, the rule's head is predicted for
this example.
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Propositional Logic

® simple logic of propositions p—yq
= combination of simple facts % ffw ﬁpqu
= No variables, no functions, no relations T F| F
(— predicate calculus) § g $

= Operators:
® conjunction A, disjunction Vv, negation —, implication —, ...
® rules with attribute/value tests may be viewed as statements
In propositional logic
® pbecause all statements in the rule implicitly refer to the same object
® each attribute/value pair is one possible condition

e Example:

e if windy =false and outlook = sunny then golf
® |n propositional logic: = windy A sunny_outlook — golf
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Generality Relation

® [ntuitively:

= A statement is more general than another statement if it refers
to a superset of its objects

® Examples:

All students are good.

All students are good in Machine Learning.

All students who took a course in Machine Learning and Data
Mining are good in Machine Learning

All students who took course ML&DM at the TU Darmstadt are
good in Machine Learning

All students who took course ML&DM at the TU Darmstadt and
passed with 2 or better are good in Machine Learning.

o1j108ds alow

-
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Generality Relation for Rules

e Ruleryis than r, r=r

= if it covers all examples that are covered by r..
e Rule ry Is more specific than r, r=r,

= If r, IS more general than r.
e Rule rq Is equivalentto r, FW=r,

= if it Is more specific and more general than r,.

Examples:
if size>5 then + if animal = mammal then +
if size>3 then + if feeds children =milk then +

*if outlook = sunny then +
if outlook =sunny and windy =false then +
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Special Rules

e Most general rule T

= typically the rule that covers all examples

® the rule with the body true

e |f disjunctions are allowed: the rule that allows all possible values
for all attributes

® Most specific rule L

= typically the rule that covers no examples

® the rule with the body false

® the conjunction of all possible values of each attribute
m evaluates to false (only one value per attribute is possible)

e Each training example can be interpreted as a rule
= pody: all attribute-value tests that appear inside the example
= the resulting rule is an immediate generalization of L
® covers only a single example
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Structured Hypothesis Space

= The availability of a generality relation allows to structure the
hypothesis space:

B
SNANNTEL
e e

J_
Structured Hypothesis Space Instance Space

arrows represent ,,is more general than*
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Testing for Generality

In general, we cannot check the generality of hypotheses

= \We do not have all examples of the domain available (and it
would be too expensive to generate them)

For single rules, we can approximate generality via a
syntactic generality check:

= Example: Rulerq is than r, Iif the set of
conditions of r; forms a of the set of conditions of ..

= \Why is this only an approximation?

For the general case, computable generality relations will
rarely be available

= E.g., rule sets

Structured hypothesis spaces and version spaces are also
a theoretical model for learning
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Refinement Operators

A refinement operator modifies a hypothesis
= can be used to search for good hypotheses

= Modify a hypothesis so that it becomes more general
® e.g.. remove a condition from the body of a rule

= necessary when a positive example is uncovered
Specialization Operator:

= Modify a hypothesis so that it becomes more specific
® e.g., add a condition to the body of a rule
= necessary when a negative examples is covered

Other Refinement Operators:

= |n some cases, the hypothesis is modified in a way that
neither generalizes nor specializes

® e.g., stochastic or genetic search
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Generalization Operators
for Symbolic Attributes

There are different ways to generalize a rule, e.q.:

® Subset Generalization
= g condition I1s removed

= used by most rule learning
algorithms

® Disjunctive Generalization

= another option is added
to the test

® Hierarchical Generalization

= a generalization hierarchy
IS exploited

shape = square & color = blue — +
—

color = blue — +

shape = square & color = blue — +
—

shape = (square V rectangle)
& color =blue — +

shape = square & color = blue — +
—

shape = quadrangle & color = blue — +

13 © J. Furnkranz



Minimal Refinement Operators

® |[n many cases it is desirable, to only make minimal
changes to a hypothesis

= specialize only so much as is necessary to uncover a
previously covered negative example

= generalize only so much as is necessary to cover a previously
uncovered positive example

e Minimal Generalization relative to an example:

= Find a generalization g of a rule » and an example e so that

® gcovers example e (r did not cover g)
® thereis nootherrule g sothate<g'<gandg' 2r

= need not be unique

* Minimal Specialization relative to an example:
= analogously
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Minimal Generalization/Specialization

® |east general generalization
(Igg) of two rules /\
= for Subset Generalization:
the intersection of the / \ / \ / \
conditions of the rules
(or a rule and an example) /\
® most general specialization Rl
(mgs) of two rules \

= for Subset Generalization:
the union of the conditions mgS(Rl ,R2)
of the rules

= minimal specialization relative to a rule/example

® may be viewed as the Igg of the rule and the negation of the example
® note that the negation of a conjunctive rule turns into a
disjunction of several rules with one negated condition
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Algorithm Find-S

l. h = most specific hypothesis in H

. The hypothesis (covering no examples)
if false then + o
.for each training example e

a)if els negative
* do nothing
b)if elis positive
e for each condition cinh
e if cdoes not cover e }
generalization

e delete c from h (ofh lizat
other genera 1IZations
[ll.return A possible

Minimal Subset

Note: when the first positive example is encountered, step I1.b)

amounts to converting the example into a rule
(Recall that the most specific hypothesis can be written as a conjunction
of all possible values of each attribute.)
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Example

. Temperature Humidity Forecast

1 sunny hot normal strong warm same yes

2 sunny hot high strong warm same yes

3 rainy cool high strong warm change no

4 sunny hot high strong cool change yes
Hy: if false then +

if (sky =sunny & sky =rainy & ... & forecast = same & forecaset = change) then +

{ <0,0,0,0,0,0> | =

H,: { <sunny, hot, normal, strong, warm, same> }

H,: { <sunny, hot, ?, strong, warm, same> }

H;: { <sunny, hot, ?, strong, warm, same> }

H,: { <sunny, hot, ?, strong, ?, ? > }
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Short-hand notation:

* only body (head is +)

* one value per attribute

e @ for false (full conjunction

e ? for true (full disjunction)
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Algorithm Find-G

. h=most general hypothesis in H

.The hypothesis lJ (covering all examples)
if true then + o
.for each training example e

a)if elis positive
* do nothing
b)if eis negative
* for some condition cin e
e ifcispartofh

+ add a condition that negates c
and covers all previous positive

examples to h
ll.return h

Minimal Subset
specialization
(other specializations
possible
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Example

. Temperature Humidity Forecast
1 sunny hot normal strong warm same yes
2 sunny hot high strong warm same yes
3 rainy cool high strong warm change no
4 sunny hot high strong cool change yes

Hy: if true then +
if (sky =sunny || sky =rainy) & ... & (forecast = same || forecaset = change) then +
{<2,7,7,7,7,7}

Hp: {<2,2,2,2,2,2>}

H,: {<2,2,2,2,2,7> )

Hj: { <sunny, 7, ?7,?7,7,7>} <=

Hy: { <sunny, ?,?7,?7,?7, 7>}
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Other possibilities:
* <2, hot, 2,2,72, 7>
o <7.7°,7,7, 7, same>
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Properties of Find-S and Find-G

® completeness:
P .. For Find-G this only holds
= hcovers all positive examples if we always pick the

® consistency: ,fight” specializaton
= hwill not cover any negative training examples

= but only if the hypothesis space contains a target concept
(i.e., there is a single conjunctive rule that describes the target concept)

® Properties:
= no way of knowing whether it has found the target concept
(there might be more than one theory that are complete and consistent)

= Find-S prefers more specific hypotheses (hence the name)
(it will never generalize unless forced by a training example)

2 prefers hypotheses (hence the name)
(it will never specialize unless forced by a training example)

= |t only maintains one specific hypothesis
(in other hypothesis languages there might be more than one)
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Uniqueness of Refinement Operators

® Subset Specialization is not unique

= We could specialize any condition in the rule that currently
covers the example

= Wwe could specialize it to any value other than the one that is
used in the example

— a wrong choice may lead to an impasse
® Possible Solutions:

= more expressive hypothesis language (e.g., disjunctions of
values)

= packtracking

= remember all possible specializations and remove bad ones
later

®* Note: Generalization operators also need not be unique!
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Algorithm Find-GSet

l. h=most hypothesis in H (covering all examples)
. G={h}
lll.for each training example e
a)if eis
e remove all 2eG that do not cover e
b)if els
e for all hypotheses heG that cover e
m G=G\{nh}

m for every condition cin e
«+ for all conditions ¢’ that negate c
e« '=hu{c}
«+ if h' covers all previous positive examples
e G=Gu({h}
I\VV.return G
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Correct Hypotheses

Find-GSet:

= finds most general hypotheses that are correct on the data
— has a bias towards general hypotheses

Find-SSet:

= can be defined analogously

= finds most specific hypotheses that are correct on the data
— has a bias towards specific hypotheses

Thus, the hypotheses found by Find-GSet or Find-SSet are
not necessarily identical!

Could there be hypotheses that are correct but are neither
found by GSet nor by SSet?
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Version Space

® The Version Space V' Is the set of all hypotheses that
= cover all positive examples (completeness)
= do not cover any negative examples (consistency)

® For structured hypothesis spaces there Is an efficient
representation consisting of

= the general boundary G

¢ all hypotheses in V for which no generalization is in V'
= the specific boundary S

¢ all hypotheses in V for which no specialization is in
® a hypothesis in V' that is neither in G norin S'is
= a generalization of at least one hypothesis in S
= a specialization of at least one hypothesis in G
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Candidate Elimination Algorithm

e (G = set of maximally general hypotheses
S = set of maximally specific hypotheses

® [or each training example e
= |f e IS positive
® For each hypothesis g in G that does not cover e
m remove g from G

® [or each hypothesis s in S that does not cover e
= remove s from §

m §=S U all hypotheses h such that
+ s is a minimal generalization of s
¢ hcovers e
+ some hypothesis in G is more general than 4

m remove from S any hypothesis that is more general than another
hypothesis in §
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Candidate Elimination Algorithm
(Ctd.)

= If e IS negative
® [or each hypothesis s in Sthat covers e
m remove s from S
® [or each hypothesis g in G that covers e
= remove g from G
m G =G U all hypotheses h such that
+ i is a minimal specialization of g
+ h does not cover e
+ some hypothesis in §'is more specific than /

= remove from G any hypothesis that is less general than another
hypothesis in G
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Example

No. Sky Temperature Humidity Windy Water Forecast sport?
1 sunny hot normal strong warm same yes
2 sunny hot high strong warm same yes
3 rainy cool high strong warm change no
4 sunny hot high strong cool change yes

S;: { <sunny, hot, ?, strong, warm,same> }
G;: { <sunny, ?,?7,?7,?7,7>

<?,hot, ?,?,?,?7>

<?,?7,?7,?,7?, same > }

So: { <0,0,0.0,0,0>
Gy {<2,2,2,2,2,7> 1

Si: { <sunny, hot, normal, strong, warm,same> }

Gi: {<2,2,7,70"7>}

S,: { <sunny, hot, ?, strong, 7, 7> }
Gy: { <sunny, ?,?,?,?7,7>

S,: { <sunny, hot, ?, strong, warm,same> }
RN ’ ’ <2, hot, 2,2,2, 7>}

Gy {<2,2,2,2,2,7> }
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How to Classify these Examples?

® Version Space:

<sunn ?‘?‘?‘??>

<2, hot, 2,2,2,2>

<sunny, ?, ?, strong, ?, 7> <sunny, hot, ?, 7, ?, 7> <?, hot, ?, strong, ?, 7>

T e e

S

<sunny, hot, ?, strong, ?, ? >

® How to Classify these Examples?

No. ’ Sky | Temperature | Humidity | Water Forecast
5 sunny hot normal strong cool change yes
6 rainy cool normal light warm same no
7 sunny hot normal light warm same ?
8 sunny cool normal strong warm same maybe no
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Properties

Convergence towards target theory
= convergence if S=G
Reliable classification with partially learned concepts

= an example that matches all elements in S must be a member

of the target concept

= an example that matches no element in G cannot be a
member of the target concept

= examples that match parts of S and G are undecidable
no need to remember examples (incremental learning)
Assumptions

= no errors in the training set
= the hypothesis space contains the target theory

= practical only if generality relation is (efficiently) computable
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Other Generality Relations

® [irst-Order

= generalize the arguments of each pair of literals of the same
relation

® Hierarchical Values

= generalization and specialization for individual attributes
follows the ontology
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Generalization Operators for
Numerical Attributes

® Subset Generalization

® generalization works as in symbolic case
® specialization is difficult as there are infinitely different values to
specialize to
® Disjunctive Generalization

® specialization and generalization as in symbolic case

® problematic if no repetition of numeric values can be expected

m generalization will only happen on training data
® N0 new unseen examples are covered after a generalization

® |nterval Generalization

= the range of possible values is represented by an open or
closed intervals

® generalize by widening the interval to include the new point
® specialize by shortening the interval to exclude the new point
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Batch induction

So far we looked at

= all theories at the same time (implicitly through the version space)

= and processed examples incrementally

We can turn this around:

= work on the theories incrementally
= and process all examples at the same time

Basic idea:

= try to quickly find a complete and consistent rule
= need not be Iin either S or G (but In the version space)

Algorithm like FIndG:

= successively refine rule by adding conditions:
e evaluate all refinements and pick the one that looks best

= until the rule I1s consistent

32

© J. Furnkranz



Algorithm Batch-FindG

I.  h=most general hypothesis in H
C = set of all possible conditions

Il. while & covers negative examples <«

Scan through all examples

I. hy,,,=h in database:
II. for each possible conditionce C ~ ° count covered positives
* count covered negatives
a) hh=hu {c}

b) if &' covers
 all positive examples
e and fewer negative examples than 4,

then Ay, ., = H'
. h=h,,,

II. return A,
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Properties

General-to-Specific (Top-Down) Search
= similar to FindG:

® FindG makes an arbitrary selection among possible refinements,

taking the risk that it may lead to an inconsistency later

® Batch-FindG selects next refinement based on all training examples

Heuristic algorithm

= among all possible refinements, we select the one that leads

to the fewest number of covered negatives

e |DEA: the more negatives are excluded with the current condition,

the less have to be excluded with subsequent conditions
Converges towards some theory in V
= not necessarily towards a theory in G
Not very efficient, but quite flexible
= criteria for selecting conditions could be exchanged
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