Searching for Single Rules

- Introduction
 - Concept Learning
 - Generality Relations
 - Refinement Operators
 - Structured Hypothesis Spaces
- Simple algorithms
 - Find-S
 - Find-G
- Version Spaces
 - Version Spaces
 - Candidate-Elimination Algorithm
- Batch Learning

Concept

- Attribute-Value Representation
 - each object is represented with a finite number of attributes
- Concept
 - A concept is a subset of all possible objects
- Example 1:
 - objects are points in a 2-d plane
 - a concept can be any subarea in the plane
 - can have many disconnected components
 - # objects and # concepts is infinite
- Example 2:
 - all attributes are Boolean, objects are Boolean vectors
 - a concept can be any subset of the set of possible objects
 - # concepts and # objects is finite

Concept Learning

• Given:

- Positive Examples E⁺
 - examples for the concept to learn (e.g., days with golf)
- Negative Examples E⁻
 - counter-examples for the concept (e.g., days without golf)
- Hypothesis Space H
 - a (possibly infinite) set of candidate hypotheses
 - e.g., rules, rule sets, decision trees, linear functions, neural networks, ...

Find:

- Find the target hypothesis $h \in H$
- the target hypothesis is the concept that was used (or could have been used) to generate the training examples

Correctness

- What is a good rule?
 - Obviously, a correct rule would be good
 - Other criteria: interpretability, simplicity, efficiency, ...
- Problem:
 - We cannot compare the learned hypothesis to the target hypothesis because we don't know the target
 - Otherwise we wouldn't have to learn...
- Correctness on training examples
 - completeness: Each positive example should be covered by the target hypothesis
 - consistency: No negative example should be covered by the target hypothesis
- But what we want is correctness on all possible examples!

Conjunctive Rule

if
$$(att_i = val_{iI})$$
 and $(att_j = val_{jJ})$

Body of the rule (IF-part)

- contains a conjunction of conditions
- a condition typically consists of comparison of attribute values

then +

Head of the rule (THEN-part)

- contains a prediction
- typically + if object belongs to concept,otherwise

- Coverage
 - A rule is said to cover an example if the example satisfies the conditions of the rule.
- Prediction
 - If a rule covers an example, the rule's head is predicted for this example.

Propositional Logic

- simple logic of propositions
 - combination of simple facts
 - no variables, no functions, no relations (→ predicate calculus)

		$p \rightarrow q$
\boldsymbol{p}	$oldsymbol{q}$	$\neg p \lor q$
$\overline{\mathbf{T}}$	T	T
${f T}$	\mathbf{F}	${f F}$
\mathbf{F}	\mathbf{T}	${f T}$
F	F	${f T}$

- Operators:
 - conjunction \wedge , disjunction \vee , negation \neg , implication \rightarrow , ...
- rules with attribute/value tests may be viewed as statements in propositional logic
 - because all statements in the rule implicitly refer to the same object
 - each attribute/value pair is one possible condition
- Example:
 - if windy = false and outlook = sunny then golf
 - in propositional logic: ¬ windy ∧ sunny_outlook → golf

Generality Relation

- Intuitively:
 - A statement is more general than another statement if it refers to a superset of its objects
- Examples:

All students are good.

All students are good in Machine Learning.

All students who took a course in Machine Learning and Data Mining are good in Machine Learning

All students who took course ML&DM at the TU Darmstadt are good in Machine Learning

All students who took course ML&DM at the TU Darmstadt and passed with 2 or better are good in Machine Learning.

more specific

Generality Relation for Rules

 $r_1 \equiv r_2$

- Rule r_1 is more general than r_2 $r_1 \ge r_2$
 - if it covers all examples that are covered by r₂.
- Rule r_1 is *more specific* than r_2 $r_1 \le r_2$
 - if r₂ is more general than r₁.
- Rule r₁ is equivalent to r₂
 - if it is more specific and more general than r₂.

Examples:

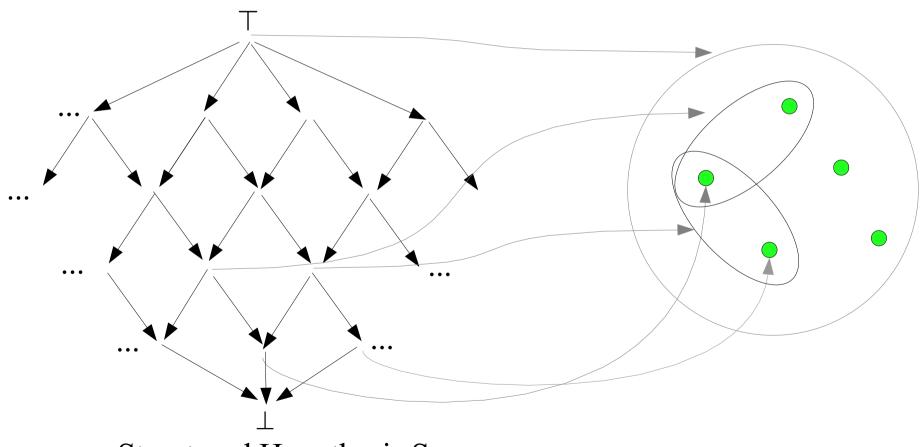
```
if size > 5 then +
if size > 3 then +
if outlook = sunny then +
if outlook = sunny and windy = false then +
```

Special Rules

- Most general rule ⊤
 - typically the rule that covers all examples
 - the rule with the body true
 - if disjunctions are allowed: the rule that allows all possible values for all attributes
- Most specific rule ⊥
 - typically the rule that covers no examples
 - the rule with the body false
 - the conjunction of all possible values of each attribute
 - evaluates to false (only one value per attribute is possible)
- Each training example can be interpreted as a rule
 - body: all attribute-value tests that appear inside the example
 - the resulting rule is an immediate generalization of \perp
 - covers only a single example

Structured Hypothesis Space

The availability of a generality relation allows to structure the hypothesis space:



Structured Hypothesis Space arrows represent "is more general than"

Instance Space

Testing for Generality

- In general, we cannot check the generality of hypotheses
 - We do not have all examples of the domain available (and it would be too expensive to generate them)
- For single rules, we can approximate generality via a syntactic generality check:
 - Example: Rule r₁ is more general than r₂ if the set of conditions of r₁ forms a subset of the set of conditions of r₂.
 - Why is this only an approximation?
- For the general case, computable generality relations will rarely be available
 - E.g., rule sets
- Structured hypothesis spaces and version spaces are also a theoretical model for learning

Refinement Operators

- A refinement operator modifies a hypothesis
 - can be used to search for good hypotheses
- Generalization Operator:
 - Modify a hypothesis so that it becomes more general
 - e.g.: remove a condition from the body of a rule
 - necessary when a positive example is uncovered
- Specialization Operator:
 - Modify a hypothesis so that it becomes more specific
 - e.g., add a condition to the body of a rule
 - necessary when a negative examples is covered
- Other Refinement Operators:
 - in some cases, the hypothesis is modified in a way that neither generalizes nor specializes
 - e.g., stochastic or genetic search

Generalization Operators for Symbolic Attributes

There are different ways to generalize a rule, e.g.:

Subset Generalization

- a condition is removed
- used by most rule learning algorithms

Disjunctive Generalization

another option is added to the test

Hierarchical Generalization

a generalization hierarchy is exploited

shape = square & color = blue
$$\rightarrow$$
 +
$$\Rightarrow$$
color = blue \rightarrow +

shape = square & color = blue
$$\rightarrow$$
 +
 \Rightarrow
shape = (square \lor rectangle)
& color = blue \rightarrow +

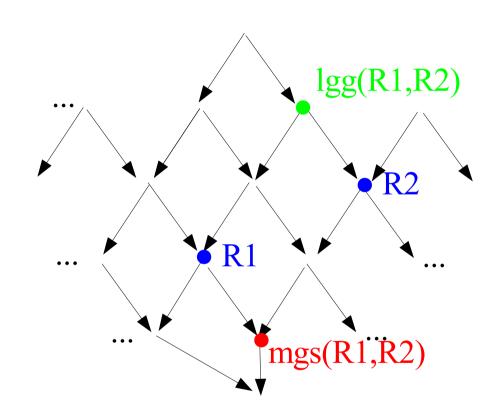
shape = square & color = blue
$$\rightarrow$$
 +
 \Rightarrow
shape = quadrangle & color = blue \rightarrow +

Minimal Refinement Operators

- In many cases it is desirable, to only make minimal changes to a hypothesis
 - specialize only so much as is necessary to uncover a previously covered negative example
 - generalize only so much as is necessary to cover a previously uncovered positive example
- Minimal Generalization relative to an example:
 - Find a generalization g of a rule r and an example e so that
 - g covers example e $(r \operatorname{did} \operatorname{not} \operatorname{cover} e)$
 - there is no other rule g' so that $e \le g' < g$ and $g' \ge r$
 - need not be unique
- Minimal Specialization relative to an example:
 - analogously

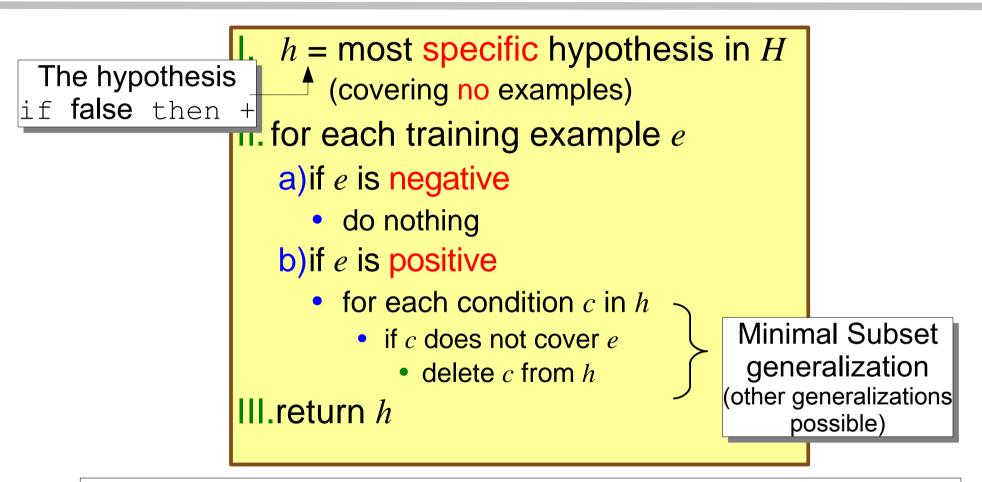
Minimal Generalization/Specialization

- least general generalization (lgg) of two rules
 - for Subset Generalization: the intersection of the conditions of the rules (or a rule and an example)
- most general specialization (mgs) of two rules
 - for Subset Generalization: the union of the conditions of the rules



- minimal specialization relative to a rule/example
 - may be viewed as the lgg of the rule and the negation of the example
 - note that the negation of a conjunctive rule turns into a disjunction of several rules with one negated condition

Algorithm Find-S



Note: when the first positive example is encountered, step II.b) amounts to converting the example into a rule (Recall that the most specific hypothesis can be written as a conjunction of all possible values of each attribute.)

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

```
H_0: if false then +
     if (sky = sunny & sky = rainy & ... & forecast = same & forecaset = change) then +
    { <∅,∅,∅,∅,∅,∅> } ◄
H<sub>1</sub>: { <sunny, hot, normal, strong, warm, same> }
H_2: { <sunny, hot, ?, strong, warm, same> }
H_3: { <sunny, hot, ?, strong, warm, same> }
H_4: { <sunny, hot, ?, strong, ?, ? > }
```

Short-hand notation:

- only body (head is +)
- one value per attribute
- o for false (full conjunction)
- ? for true (full disjunction)

17

Algorithm Find-G

The hypothesis
if true then +

h = most general hypothesis in H

(covering all examples)

 $\mathbf{1}$. for each training example e

- a) if e is positive
 - do nothing
- b) if e is negative
 - for some condition c in e
 - if c is part of h
 - add a condition that negates c
 and covers all previous positive
 examples to h

III.return h

Minimal Subset specialization other specializations possible)

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

$$H_0$$
: if true then + if $(sky = sunny || sky = rainy) & ... & (forecast = same || forecaset = change) then + $\{,?,?,?,?,?,\}</math$$

$$H_1: \{ , ?, ?, ?, ?, ? \}$$

$$H_2: \{ , ?, ?, ?, ?, ? \}$$

$$H_3: \{ < sunny, ?, ?, ?, ?, ? > \}$$

Other possibilities:

- <?, hot, ?, ?, ?, ?>
- <?, ?, ?, ?, same>

Properties of Find-S and Find-G

completeness:

h covers all positive examples

consistency:

- For Find-G this only holds if we always pick the "right" specializaton
- h will not cover any negative training examples
- but only if the hypothesis space contains a target concept
 (i.e., there is a single conjunctive rule that describes the target concept)

Properties:

- no way of knowing whether it has found the target concept (there might be more than one theory that are complete and consistent)
- Find-S prefers more specific hypotheses (hence the name)
 (it will never generalize unless forced by a training example)
- Find-G prefers more general hypotheses (hence the name)
 (it will never specialize unless forced by a training example)
- it only maintains one specific hypothesis
 (in other hypothesis languages there might be more than one)

Uniqueness of Refinement Operators

- Subset Specialization is not unique
 - we could specialize any condition in the rule that currently covers the example
 - we could specialize it to any value other than the one that is used in the example
- → a wrong choice may lead to an impasse
- Possible Solutions:
 - more expressive hypothesis language (e.g., disjunctions of values)
 - backtracking
 - remember all possible specializations and remove bad ones later
- Note: Generalization operators also need not be unique!

Algorithm Find-GSet

I. h = most general hypothesis in H (covering all examples)

II.
$$G = \{ h \}$$

III.for each training example e

- a) if e is positive
 - remove all $h \in G$ that do not cover e

b) if e is negative

- for all hypotheses $h \in G$ that cover e
 - $G = G \setminus \{h\}$
 - for every condition c in e
 - for all conditions c' that negate c
 - $\bullet h' = h \cup \{c'\}$
 - if h' covers all previous positive examples
 - $G = G \cup \{h'\}$

IV.return G

Correct Hypotheses

- Find-GSet:
 - finds most general hypotheses that are correct on the data
 - → has a bias towards general hypotheses
- Find-SSet:
 - can be defined analogously
 - finds most specific hypotheses that are correct on the data
 - → has a bias towards specific hypotheses
- Thus, the hypotheses found by Find-GSet or Find-SSet are not necessarily identical!
- Could there be hypotheses that are correct but are neither found by GSet nor by SSet?

Version Space

- The Version Space V is the set of all hypotheses that
 - cover all positive examples (completeness)
 - do not cover any negative examples (consistency)
- For structured hypothesis spaces there is an efficient representation consisting of
 - the general boundary G
 - all hypotheses in V for which no generalization is in V
 - the <u>specific boundary</u> S
 - all hypotheses in V for which no specialization is in V
- a hypothesis in V that is neither in G nor in S is
 - a generalization of at least one hypothesis in S
 - a specialization of at least one hypothesis in G

Candidate Elimination Algorithm

- G = set of maximally general hypothesesS = set of maximally specific hypotheses
- For each training example e
 - if *e* is positive
 - For each hypothesis g in G that does not cover e
 - remove g from G
 - For each hypothesis s in S that does not cover e
 - remove s from S
 - - h is a minimal generalization of s
 - h covers e
 - some hypothesis in G is more general than h
 - remove from S any hypothesis that is more general than another hypothesis in S

Candidate Elimination Algorithm (Ctd.)

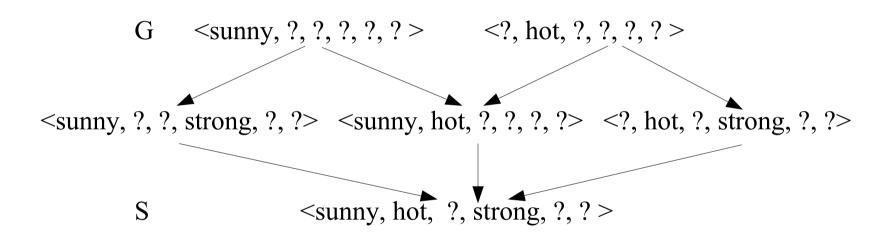
- if e is negative
 - For each hypothesis s in S that covers e
 - remove s from S
 - For each hypothesis *g* in *G* that <u>covers</u> *e*
 - remove g from G
 - lacksquare $G = G \cup \text{all hypotheses h such that}$
 - h is a minimal <u>specialization</u> of g
 - h does not cover e
 - some hypothesis in S is more specific than h
 - remove from G any hypothesis that is less general than another hypothesis in G

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

How to Classify these Examples?

Version Space:



• How to Classify these Examples?

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
5	sunny	hot	normal	strong	cool	change	yes
6	rainy	cool	normal	light	warm	same	no
7	sunny	hot	normal	light	warm	same	?
8	sunny	cool	normal	strong	warm	same	maybe no

Properties

- Convergence towards target theory
 - convergence if S = G
- Reliable classification with partially learned concepts
 - an example that matches all elements in S must be a member of the target concept
 - an example that matches no element in G cannot be a member of the target concept
 - examples that match parts of S and G are undecidable
- no need to remember examples (incremental learning)
- Assumptions
 - no errors in the training set
 - the hypothesis space contains the target theory
 - practical only if generality relation is (efficiently) computable

Other Generality Relations

- First-Order
 - generalize the arguments of each pair of literals of the same relation
- Hierarchical Values
 - generalization and specialization for individual attributes follows the ontology

Generalization Operators for Numerical Attributes

- Subset Generalization
 - generalization works as in symbolic case
 - specialization is difficult as there are infinitely different values to specialize to
- Disjunctive Generalization
 - specialization and generalization as in symbolic case
 - problematic if no repetition of numeric values can be expected
 - generalization will only happen on training data
 - no new unseen examples are covered after a generalization
- Interval Generalization
 - the range of possible values is represented by an open or closed intervals
 - generalize by widening the interval to include the new point
 - specialize by shortening the interval to exclude the new point

Batch induction

- So far we looked at
 - all theories at the same time (implicitly through the version space)
 - and processed examples incrementally
- We can turn this around:
 - work on the theories incrementally
 - and process all examples at the same time
- Basic idea:
 - try to quickly find a complete and consistent rule
 - need not be in either S or G (but in the version space)
- Algorithm like FindG:
 - successively refine rule by adding conditions:
 - evaluate all refinements and pick the one that looks best
 - until the rule is consistent

Algorithm Batch-FindG

- I. h = most general hypothesis in H C = set of all possible conditions
- II. while h covers negative examples -

I.
$$h_{best} = h$$

- II. for each possible condition $c \in C$
 - a) $h' = h \cup \{c\}$
 - b) if h' covers
 - all positive examples
 - and fewer negative examples than h_{best}

then
$$h_{best} = h'$$

III.
$$h = h_{best}$$

III. return h_{best}

Scan through all examples in database:

- count covered positives
- count covered negatives

Properties

- General-to-Specific (Top-Down) Search
 - similar to FindG:
 - FindG makes an arbitrary selection among possible refinements, taking the risk that it may lead to an inconsistency later
 - Batch-FindG selects next refinement based on all training examples
- Heuristic algorithm
 - among all possible refinements, we select the one that leads to the fewest number of covered negatives
 - IDEA: the more negatives are excluded with the current condition, the less have to be excluded with subsequent conditions
- Converges towards some theory in V
 - not necessarily towards a theory in G
- Not very efficient, but quite flexible
 - criteria for selecting conditions could be exchanged