
1 © J. Fürnkranz

Pre-ProcessingPre-Processing

● Databases are typically not made to support analysis with a
data mining algorithm
 pre-processing of data is necessary

● Pre-processing techniques:
 Data Cleaning: remove inconsistencies from the data
 Feature Engineering: find the right features/attribute set

● Feature Subset Selection: select appropriate feature subsets
● Feature Transformation: bring attributes into a suitable form

(e.g., discretization)
● Feature Construction: construct derived features

 Sampling:
● select appropriate subsets of the data

2 © J. Fürnkranz

Unsupervised vs. SupervisedUnsupervised vs. Supervised
Pre-processingPre-processing

● Unsupervised
 do not use information about the learning task

● only prior information (from knowledge about the data)
● and information about the distribution of the training data

● Supervised
 use information about the learning task

● e.g.: look at relation of an attribute to class attribute

● WARNING:
● pre-processing may only use information from training data!

 compute pre-processing model from training data
 apply the model to training and test data
 otherwise information from test data may be captured in the pre-

processing step → biased evaluation
● in particular: apply pre-processing to every fold in cross-validation

3 © J. Fürnkranz

Feature Subset SelectionFeature Subset Selection
● Databases are typically not collected with data mining in

mind
● Many features may be

 irrelevant
 uninteresting
 redundant

● Removing them can
 increase efficiency
 improve accuracy
 prevent overfitting

● Feature Subsect Selection techniques try to determine
appropriate features automatically

4 © J. Fürnkranz

Unsupervised FSSUnsupervised FSS

● Using domain knowledge
 some features may be known to be irrelevant, uninteresting or

redundant
● Random Sampling

 select a random sample of the feature
 may be appropriate in the case of many weakly relevant

features and/or in connection with ensemble methods

5 © J. Fürnkranz

Supervised FSSSupervised FSS

● Filter approaches:
 compute some measure for estimating the ability to

discriminate between classes
 typically measure feature weight and select the best n

features
 problems

● redundant features (correlated features will all have similar
weights)

● dependent features (some features may only be important in
combination (e.g., XOR/parity problems).

● Wrapper approaches
 search through the space of all possible feature subsets
 each search subset is tried with the learning algorithm

6 © J. Fürnkranz

Supervised FSS: FiltersSupervised FSS: Filters

● foreach attribute A
 W[A] = feature weight according to some measure of

 discrimination
● e.g., decision tree splitting criteria

(entropy/information gain, gini-index, ...)
● select the n features with highest W[A]

Basic idea:
● a good attribute should discriminate between the different

classes
● use a measure of discrimination to determine which attributes to

select
Disadvantage:

● quality of each attribute is measured in isolation
● some attributes may only be useful in combination with others

7 © J. Fürnkranz

Basic idea:
● in a local neighborhood around an example R a good

attribute A should
 allow to discriminate R from all examples of different classes

(the set of misses)
● therefore the probability that the attribute has a different value for

R and a miss M should be high
 have the same value for all examples of the same class as R

(the set of hits)
● therefore the probability that the attribute has a different value for

R and a hit H should be low
→ try to estimate and maximize

where aX is the value of attribute A in example X

RELIEFRELIEF
(Kira & Rendell, ICML-92)(Kira & Rendell, ICML-92)

W [A]=P aR≠aM −P aR≠aH

8 © J. Fürnkranz

RELIEFRELIEF
(Kira & Rendell, ICML-92)(Kira & Rendell, ICML-92)

● set all attribute weights W[A] = 0.0
● for i = 1 to m (← user-settable parameter)

 select a random example R
 find

● H: nearest neighbor of same class (near hit)
● M: nearest neigbor of different class (near miss)

 for each attribute A
●

where d(A,X,Y) is the distance in attribute A between
examples X and Y (normalized to [0,1]-range).

W [A] W [A]−
d A , H , R

m

d A , M , R
m

9 © J. Fürnkranz

FSS: Wrapper ApproachFSS: Wrapper Approach
(John, Kohavi, Pfleger, ICML-94)(John, Kohavi, Pfleger, ICML-94)

● Wrapper Approach:
 try a feature subset with the learner
 improve it by modifying the feature sets based on the result
 repeat

Figure by Kohavi & John

10 © J. Fürnkranz

FSS: Wrapper ApproachFSS: Wrapper Approach
● Forward selection:

1.start with empty feature set F
2. for each attribute A

a) F = F ∪ {A}
b) Estimate Accuracy of Learning algorithm on F
c) F = F \ {A}

3. F = F ∪ {attribute with highest estimated accuracy}
4.goto 2. unless estimated accuracy decreases significantly

● Backward elimination:
 start with full feature set F
 try to remove attributes

● Bi-directional search is also possible

11 © J. Fürnkranz

Example: Forward SearchExample: Forward Search

Figure by John, Kohavi & Pfleger

Attrs: current set of attributes
Est: accuracy estimated by wrapper
Real: „real“ accuracy

12 © J. Fürnkranz

PropertiesProperties

● Advantage:
 find feature set that is tailored to learning algorithm
 considers combinations of features, not only individual feature

weights
 can eliminate redundant features

(picks only as many as the algorithm needs)

● Disadvantage:
 very inefficient: many learning cycles necessary

13 © J. Fürnkranz

Comparison Wrapper / ReliefComparison Wrapper / Relief

Figure by John, Kohavi & Pfleger

Note: RelieveD is a version of Relief that uses all examples instead of a random sample

● on these datasets:
 forward selection reduces attributes w/o error increase

● in general, it may also reduce error

14 © J. Fürnkranz

Feature TransformationFeature Transformation

● bring features into a usable form
● numerization

 some algorithms can only use numeric data
 nominal → binary

● a nominal attribute with n values is converted into n binary attributes
 binary → numeric

● binary features may be viewed as special cases of numeric
attributes with two values

● discretization
 some algorithms can only use categorical data

● transform numeric attributes into a number of (ordered) categorical
values

15 © J. Fürnkranz

DiscretizationDiscretization

● Supervised vs. Unsupervised:
 Unsupervised:

● only look at the distribution of values of the attribute
 Supervised:

● also consider the relation of attribute values to class values

● Merging vs. Splitting:
 Merging (bottom-up discretization):

● Start with a set of intervals (e.g., each point is an interval)
and successively combine neighboring intervals

 Splitting (top-down discretization):
● Start with a single interval and successively split the interval

into sub-intervals

16 © J. Fürnkranz

Unsupervised DiscretizationUnsupervised Discretization

● domain-dependent:
● suitable discretizations are often known
● age (0-18) →

baby (0-3), child (3-6), school child (6-10), teenager (11-18)

● equal-width:
● divide value range into a number of intervals with equal width
● age (0,18) → (0-3, 4-7, 8-11, 12-15, 16-18)

● equal-frequency:
● divide value range into a number of intervals so that (approximately)

the same number of datapoints are in each interval
● e.g., N = 5: each interval will contain 20% of the training data
● good for non-uniform distributions (e.g., salary)

17 © J. Fürnkranz

Supervised Discretization: Supervised Discretization:
 Chi-Merge Chi-Merge (Kerber, AAAI-92)(Kerber, AAAI-92)

● initialization:
 sort examples according to feature value
 construct one interval for each value

● interval merging:
 compute 2 value for each pair of adjacent intervals

Aij = number of examples in i-th interval that are of class j
Eij = expected number of examples in i-th interval that are of class j
 = examples in i-th interval Ni × fraction Cj/N of (all) examples of class j

 merge those with lowest 2 value
● stop

 when the 2 values of all pairs exceed a significance threshold

2=∑
i=1

2

∑
j=1

c Aij−E ij
2

E ij

 Basic Idea: merge neighboring intervals if the class information is
 independent of the interval an example belongs to

E ij=N i
C j

N
N i=∑

j=1

c

Aij C j=∑
i=1

nintervals

Aij

18 © J. Fürnkranz

Supervised Discretization: Supervised Discretization:
 Entropy-Split Entropy-Split (Fayyad & Irani, IJCAI-93)(Fayyad & Irani, IJCAI-93)

 Basic Idea: grow a decision tree using a single numeric attribute and
 use the value ranges in the leaves as ordinal values

● initialization:
 initialize intervals with a single interval covering all examples S
 sort all examples according to the attribute value
 initialize the set of possible split points

 simple: all values
 more efficient: only between class changes in sorted list

● interval splitting:
 select split point with the minimum weighted entropy

 recursively apply Entropy-Split to and
● stop

 when a given number of splits is achieved
 or when splitting would yield too small intervals
 or MDL-based stopping criterion (Fayyad & Irani, 1993)

T max=arg min
T ∣S AT∣

∣S∣
EntropyS AT

∣S A≥T∣
∣S∣

Entropy S A≥T
S AT max

S A≥T max

19 © J. Fürnkranz

ExampleExample

Play

Temperature

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Play

Temperature

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Slide taken from Witten & Frank

20 © J. Fürnkranz

Unsupervised Feature ConstructionUnsupervised Feature Construction

● based on domain knowledge
 Example: Body Mass Index

● automatic
 Examples:

● kernel functions
 may be viewed as feature construction modules
 → support vector machines

● principal components analysis
 transforms an n-dimensional space into a lower-dimensional subspace

w/o losing much information
● GLEM:

 uses an Apriori -like algorithms to compute all conjunctive combinations
of basic features that occur at least n times

 application to constructing evaluation functions for game Othello

BMI=weight kg
height m2

21 © J. Fürnkranz

Supervised Feature ConstructionSupervised Feature Construction

● use the class information to construct features that help to
solve the classification problem

● Examples:
 Wrapper approach

● use rule or decision tree learning algorithm
● observe frequently co-occurring features or feature values
● encode them as separate features

 Neural Network
● nodes in hidden layers may be interpreted as constructed features

22 © J. Fürnkranz

ScalabilityScalability

● databases are often too big for machine learning algorithms
 ML algorithms require frequent counting operations and multi-

dimensional access to data
 only feasible for data that can be held in main memory

● two strategies to make DM algorithms scalable
 design algorithms that are explicitly targetted towards

minimizing the number of database operations (e.g., Apriori)
 use sampling to work on subsets of the data

23 © J. Fürnkranz

SamplingSampling

● Random Sampling
 Select a random subset of the data

● Progressive Sampling
 start with a small sample
 increase sample size

● arithmetic: increase sample size by fixed number of examples
● geometric: multiply size with a fixed number (e.g., double size)

 stop when convergence is detected

● Sequential sampling
 rule out solution candidates based on significant differences

24 © J. Fürnkranz

WindowingWindowing
● Idea:

 focus the learner on the parts of the search space that are not
yet correctly covered

● Algorithm:

1. Initialize the window with a random subsample of the
available data

2.Learn a theory from the current window
3. If the learned theory correctly classifies all examples

(including those outside of the window), return the theory
4.Add some mis-classified examples to the window and goto 2.

● Properties:
 may learn a good theory from a subset of the data
 problems with noisy data

