Evaluation and
Cost-Sensitive Learning

Evaluation

= Hold-out Estimates

= Cross-validation
Significance Testing

= Sign test

ROC Analysis

= Cost-Sensitive Evaluation
= ROC space

= ROC convex hull

= Rankers and Classifiers
= ROC curves

= AUC

Cost-Sensitive Learning

J. Furnkranz



Evaluation of Learned Models

¢ Validation through experts

= a domain experts evaluates the plausibility of a learned model
+ but often the only option (e.g., clustering)
— subjective, time-intensive, costly
® Validation on data

= evaluate the accuracy of the model on a separate dataset
drawn from the same distribution as the training data

— labeled data are scarce, could be better used for training

+ fast and simple, off-line, no domain knowledge needed, methods
for re-using training data exist (e.g., cross-validation)

® On-line Validation

= test the learned model in a fielded application

+ gives the best estimate for the overall utility
— bad models may be costly
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Confusion Matrix
(Concept Learning)

Classfied as+ Classfied as—

s+ | true pogitives (tp) | false negatives (fn) |[tp+fn=P

|s— | false positives (fp) | true negatives (tn) |fp+th= N

tp + fp fn+tn

¢ the confusion matrix summarizes all important information
= how often is class i confused with class j

® most evaluation measures can be computed from the
confusion matrix

= accuracy
= recall/precision, sensitivity/specificity

3 © J. Furnkranz



Basic Evaluation Measures

true positive rate: 7" 77

® percentage of correctly classified positive examples

false positive rate: ﬁ?'”=—ﬁ£m

® percentage of negative examples incorrectly classified as positive

fn
tp+ fn

false negative rate: fir= =1—tpr

® percentage of positive examples incorrectly classified as negative

. t
true negative rate; tmr=———=1-fpr

fp+in
® percentage of correctly classified negative examples
. _Ip+in
daccuracy. acc=-r

® percentage of correctly classified examples
® can be written in terms of {pr and fpr: acc=

] _mptm_. P N
error: er=<——=I1—acc= (1 tpr)-I—P_I_N fpr

P+N P+N -
® percentage of incorrectly classified examples
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Confusion Matrix
(Multi-Class Problems)

¢ for multi-class problems, the confusion matrix has many
more entries: classified as

true class

® accuracy is defined analogously to the two-class case:
Ny 4 TN pTNhe cThp p
E|

5 J. Furnkranz
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Out-of-Sample Testing

® Performance cannot be measured on training data
= overfitting!
® Reserve a portion of the available data for testing

= typical scenario

e 2/3 of data for training
¢ 1/3 of data for testing (evaluation)

= a classifier is trained on the training data

= and tested on the test data
® e.g., confusion matrix is computed for test data set

® Problems:
= waste of data
= |abelling may be expensive

= high variance

e often: repeat 10 times or — cross-validation
6 © J. Furnkranz



Cross-Validation

e Algorithm:
= split dataset into x (usually 10) partitions

= for every partition X
® use other x-1 partitions for learning and partition X for testing
= average the results

e Example: 4-fold cross-validation

[ ] Training
===  Test

7 © J. Furnkranz



Leave-One-Out Cross-Validation

® ;-fold cross-validation

= where n is the number of examples:
® use n-1 examples for training
® 1 example for testing
® repeat for each example

® Properties:
+ makes best use of data
® only one example not used for testing
+ no influence of random sampling
® training/test splits are determined deterministically
— typically very expensive
® but, e.g., not for k-NN (Why?)
— bias
® example see exercises
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Experimental Evaluation of Algorithms

® Typical experimental setup (in % Accuracy):
= evaluate n algorithms on m datasets

vy VY Vv V
Dataset Grading Select Stacking Voting Dataset Grading Select Stacking Voting
audiology 83.36 T7.61 76.02 84.56 < ® hepatitis |83.42 83.03 83.20 82.77
autos 80.93 80.83 82.20 83.51|-w{ionosphere| 91.85 91.34 92.82 92.42
balance-scale | 89.89 91.54 89.50 86.16 |- ®iris 95.13 95.20 94.93 94.93
breast-cancer| 73.99 71.64 72.06 74.86<®»labor 03.68 90.35 91.58 93.86
breast-w 06.70 97.47 97.41 96.82<»|lvmph 83.45 81.69 80.20 84.05
colic 84.38 84.48 84.78 85.08|<»{primary-t. | 49.47 49.23 42,63 46.02
credit-a 86.01 84.87 86.09 86.04 |« »|segment |98.03 97.05 98.08 98.14
credit-g 75.64 Th.48 T6.17 75.23< P |sonar 85.05 85.05 85.58 84.23
diabetes 75.53 76.86 76.32 76.25 P®|soybean 03.91 93.69 92.90 93.84
glass 74.35 T4.44 76.45 T75.70<»{vehicle 74.46 73.90 79.89 72.91
heart-c 82.74 84.09 84.26 81.55r«»|voie 95.93 95.95 96.32 95.33
heart-h 83.64 85.78 85.14 83.16|a»|vowel 98.74 99.06 99.00 98.80
heart-statlog | 84.22 83.56 84.04 83.30(<-»{z00 96.44 95.05 93.96 97.23

® Can we conclude that algorithm X is better than Y? How?
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Summarizing Experimental Results

[ Averag”']g the performance Dataset|Grading Select Stacking Voting
: Avg 85.04 84.59 84.68 84.88
= May be deceptive: -

e algorithm A'is 0.1% better on 19 datasets with thousands of
examples

e algorithm B is 2% better on 1 dataset with 50 examples

® A s better, but B has the higher average accuracy

= |n our example: “Grading” is best on average

Grading Select Stacking | Voting

® Counting wins/ties/losses Grading | — |15/1/10|11/0/15/12/0/14
« C gy Select [10/1/15 10/0/16|14/0/12
= now "Stacking” is best Stacking|15/0/11[16/0/10 15/1/10

= Results are “inconsistent”.  |voting |14/0/12]12/0/14]10/1/15
® Grading > Select > Voting > Grading

= How many “wins” are needed to conclude that one method is
better than the other?
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Sign Test

Given:
= A coin with two sides (heads and tails)
Question:

= How often do we need heads in order to be sure that
the coin is not fair?

Null Hypothesis:

= The coin is fair (P(heads) = P(tails) = 0.5)
= \We want to refute that!

Experiment:

= Throw up the coin N times

Result:

= | heads, N—I tails

= What is the probability of observing i under the null hypothesis?

11
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Sign Test

Given:
= A-coirrwith-two-sig  Two Learning Algorithms (A and B)

Question:

» Howoftel On how many datasets must A be better than B
the-coiii to ensure that A is a better algorithm than B?

Null Hypothesis:
= Thecoinisfair(Ptheads)=P(d Both Algorithms are equal.

= \We want to refute that!
Experiment:

» Throwup-the-eoin-Nt  Run both algorithms on N datasets

Result:

s -heads—N—itails | wins for A on N-i wins for B
= \What is the probability of observing i under the null hypothesis?

12 © J. Furnkranz




Sign Test: Summary

We have a binomial distribution with p =1

® the probability of having i successes is P(i>=(N)pi(l—p)N_i

l

® the probability of having at most £ successes is
(one-tailed test)

P(iﬁk)=zk:(N)l . 1Nzk:( )

N_
i 1282 i=1

& Jior

A

critical

® the probability of having at most k£ successes or at least N—k

successes is (two-tailed test)

1 k
52

27 =

k

P(iSk\/iZN—k)=%z
i=1

1

— 2N—1

N
I

M =~

N —i

Y A

critical

e giogn

critical

¢ for large N, this can be approximated with a normal distribution

lllustrations taken from http://www.mathsrevision.net/ 13
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Table

Source: Erich Mittenecker, Planung und Statistische Auswertung von Experimenten,

10™ edition, Deuticke Verlag, Wien, 1983.

Vorzeichentest : Kritische Haufigheiten 4 baw. N —1 (5. 8. 187)

Irrtumswahrscheinlichkeit

| Irrtumswahrscheinlichkeit

- N N
Sign Test T R
B = 0 41 11 13
7 = 0 42 12 14
& © 0 0 43 12 14
L (0 1 44 13 15
o Examp|e: 10 0 i 45 3 15
1 0 1 46 13 15
12 1 2 47 ;
= 20 datasets v 1 - 1 14 {6
1 2 40 15 17
= Alg. Avs. B 15 g ; 50 15 ¥
- . [ : 51 15 18
. 1 - 1 52 16 15
® A4 wins 18 3 + ] 53 16 18
_ 5 g 1 54 17 19
® B 14 wins él;lr 3 5 55 17 19
, 4 5 S 17 ()
® 2 ties (not counted) 3 i : o 3 >
94 f 5 6 59 19 ' 21
= We Can say iig 5 7 5O 19 21
) ; 9 6 7 61 20 29
with a certainty - = . 7 62 20 -
g . i . 20 :
of 95% that B is 20 7 : 64 21 23
better than A & 1 : s > 2
i 33 8 10 B8 29 25
= but not with - 4;; g iﬂ 69 29 30
) 34 1 70 23 26
0 | 36 0 11 71 24 26
99 A) Certamty' 27 10 12 %:a 24 27
. _ 94 10 12 73 25 a7
® Online: 30 i1 12 74 o5 28
5 28

http://www.fon.hum.uva.nl/Service/Statistics/Sign_Test.html

14
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Properties

Sign test is a very simple test

= does not make any assumption about the distribution
Sign test is very conservative

= |[f it detects a significant difference, you can be sure it is

= |f it does not detect a significant difference, a different test that
models the distribution of the data may still yield significance

Alternative tests:
= fwo-tailed t-test:

® incorporates magnitude of the differences in each experiment

® assumes that differences form a normal distribution
Rule of thumb:
= Sign test answers the question “How often?”
= t-test answers the question “How much?”

15
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Problem of Multiple Comparisons

® Problem:

= for each pair of algorithms we have a probability of 5% that
one algorithm appears to be better than the other

= even if the null hypothesis holds
= then if we make many pairwise comparisons

= the chance that an apparently “significant” difference is
observed increases rapidly

® Solutions:

= Bonferroni adjustments:

® Basic idea: tighten the significance thresholds depending on the
number of comparisons

® Too conservative
= No recommended procedure yet

16 © J. Furnkranz



Cost-Sensitive Evaluation

® Predicting class j instead of the correct i is associated with
a cost factor C(i | j)
= 0/1-loss (accuracy): C(i|j) = | Y 1=/
1 ifi#]

= general case for concept learning:

Clasdfied as+ | Clasdfied as—
s+ C(+[|+) C(—|+)
|s— C(+]-) C(—|-)

17 © J. Furnkranz



Examples

® | oan Applications
= rejecting an applicant who will not pay back — minimal costs
= accepting an applicant who will pay back  — gain
= accepting an applicant who will not pay back — big loss
= rejecting an applicant who would pay back — loss
® Spam-Mail Filtering
= rejecting good E-mails (ham) is much worse than accepting a
few spam mails

® Medical Diagnosis

= failing to recognize a disease is often much worse than to
treat a healthy patient for this disease

18 © J. Furnkranz



Cost-Sensitive Evaluation

® Expected Cost (Loss):
L = tpr-C(+|+) + fpr-C(+|-) + farC(=|+) + tnr-C(—=|-)

® |f there are no costs for correct classification:
L= for-Cl+|=) + fir-Cl=|+) = for-C(+|=) + (1-ppr)-C(=|+)

= note the general form:

¢ this is (except for a constant term) the linear cost metric we know
from rule learning

e Distribution of positive and negative examples may be
viewed as a cost parameter

. . N P
= erroris a special case |C(+|-)=%=, Cl-[+)=5=

= we abbreviate the costs with ¢_ = C(+|-), ¢, = C(-|+)

19 © J. Furnkranz



ROC Analysis

® Receiver Operating Characteristic

= origins in signal theory to show tradeoff between hit rate and
false alarm rate over noisy channel
¢ Basic Objective:

= Determine the best classifier for varying cost models

® accuracy is only one possibility, where true positives and false
positives receive equal weight

® Method:

= Visualization in ROC space
® each classifier is characterized by its measured fpr and tpr

= ROC space is like coverage space (— rule learning) except
that axes are normalized

® x-axis: false positive rate fpr
® y-axis: true positive rate tpr

20 © J. Furnkranz



Example ROC plot

Classifiers in ROC space

SVM

+C4.5
1]
< Ripper

+CHN2

TP Rate
10 20 30 40 50 60 70 BO 90 100

0

FP Rate

ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/MachinelLearning/rocon/)

Slide © P. Flach, ICML-04 Tutorial on ROC 21 © J. Furnkranz



ROC spaces vs. Coverage Spaces

® ROC spaces are normalized coverage spaces

= Coverage spaces may have different shapes of the
rectangular area (0,P) x (0,N)

= ROC spaces are normalized to a square (0,1) x (0,1)

property ROC space coverage space
X-axis FPR = & n
y-axis TPR= 5 P
empty theory Ry (0,0) (0.0)
correct theory R (0.1) (0.P)
universal theory R (1,1) (N,P)
resolution ( % %] (1.1)

- P
slope of diagonal 1 5
slope of p = n line %r 1

22 J. Furnkranz



Costs and Class Distributions

® assume no costs for correct classification and a cost ratio
r = c_/c, for incorrect classifications

= this means that false positives are r times as expensive as
false negatives

¢ this situation can be simulated by increasing the proportion
of negative examples by a factor of »

= e.g. by replacing each negative example with » identical
copies of the same example

= the number of mistakes on negative examples are then
counted with », the number of mistakes on positive examples
are still counted with 1

= computing the error in the new set corresponds to computing
a cost-sensitive evaluation in the original dataset

> the same trick can be used for cost-sensitive learning!

23 © J. Furnkranz



Example

® Coverage space with equally distributed positive and
negative examples (P = N)

® assume a false positive is
twice as bad as a false

negative (i.e., c. =2c;)

® this situation can be
modeled by counting each
covered negative example
twice

24 © J. Furnkranz



Example

® Doubling the number of negative examples

= changes the shape of the coverage space and the location of
the points

25 © J. Furnkranz



Example

® Mapping back to ROC space
= yields the same (relative) location of the original points

O

= but the angle of the isometrics
has changed as well

= accuracy in the coverage
space with doubled negative
examples corresponds to a
line with slope »=2 in ROC
space

26 © J. Furnkranz



Important Lessons

Class Distributions and Cost Distributions are interchangable

= cost-senstive evaluation (and learning) can be performed by
changing the class distribution (e.g., duplication of examples)

Therefore there is always a coverage space that corresponds to
the current cost distribution

= |n this coverage space, the cost ratio »=1, i.e., positive and
negative examples are equally important

The ROC space results from normalizing this rectangular
coverage space to a square

= cost isometrics in the ROC space are accuracy isometrics in the
corresponding coverage space

The location of a classifier in ROC space is invariant to changes
In the class distribution

= but the slope of the isometrics changes when a different cost model
IS used

27 © J. Furnkranz



ROC isometrics

100%

® |so-cost lines connects ROC
points with the same costs ¢

" c=c,(1—tpr)+c_- fpr

80%

60%

pr="" for+|-=—1
pr—c+ Jpr c,

True positive rate

40%

® Cost isometrics are parallel
ascending lines with slope

r=-c_/c,

20%

= e.g., error/accuracy slope = N/P 0 20i% 40i% 60% 80% 100%

False positive rate

Slide adapted from P. Flach, ICML-04 Tutorial on ROC 28 J. Firnkranz



Selecting the optimal classifier

Classifiers in ROC space
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For uniform class distribution (»=1), C4.5 is optimal
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Selecting the optimal classifier

Classifiers in ROC space

SVM

90 100

H A

nB

60 70 &80
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SN2
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FP Rate

With four times as many positives as negatives (»=1/4), SVM is optimal

Slide adapted from P. Flach, ICML-04 Tutorial on ROC 30 © J. Flrnkranz



Selecting the optimal classifier

Classifiers in ROC space
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With four times as many negatives as positives (r=4), CN2 is optimal
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Selecting the optimal classifier

Classifiers in ROC space

90 100

TP Rate
10 20 30 40 50 60 70 &0
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-
|||||||| | ol LAY ALY RALLN RAALS ALY L) RRALY BALLE LLAAN MARE) LLALY WAL LLLLN R AR) LLEA) LAY R
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FP Rate

0

= With less than 9% positives, predicting always negative is optimal

= With less than 11% negatives, predicting always positive is optimal
Slide adapted from P. Flach, ICML-04 Tutorial on ROC 32 © J. Flrnkranz



The ROC convex hull

Classifiers on the
convex hull
minimize costs for
some cost model

TP Rate S
0 41020 30 40 50 60 70 80 90100/

FP Rate

L S
SVM., V..
-l
L P
A s P
F
/f
B
Ripper . g
'V ///

Any performance on a

|| line segment connecting
two ROC points can be

achieved by interpolating
between the classifiers

the convex hull are

Classifiers below

always suboptimal

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
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Interpolating Classifiers

® Given two learning schemes we can achieve any
point on the convex hull!

= TP and FP rates for scheme 1: #pr, and fpr,
= TP and FP rates for scheme 2: 1pr, and fpr,

® |[f scheme 1 is used to predict 100x¢% of the cases
and scheme 2 for the rest, then

= TP rate for combined scheme: #r, =q-tpr,+(1—q)-tpr,

= FP rate for combined scheme: fpr =q- fpr,+(1—q) fpr,

Slide adapted from Witten/Frank, Data Mining 34 © J. Firnkranz



Rankers and Classifiers

® A scoring classifier outputs scores f (x,+) and f (x,—) for each
class

= e.g. estimate probabilities P(+|x) and P(—X)
= scores don’t need to be normalised

® f(x)=f(x,*)/f(x,—) can be used to rank instances from most
to least likely positive
= e.g. odds ratio P(+|x) / P(—X)

® Rankers can be turned into classifiers by setting a threshold
on f(X)

e Example:
= Naive Bayes Classifier for two classes is actually a ranker

= that has been turned into classifier by setting a probability
threshold of 0.5 (corresponds to a odds ratio treshold of 1.0)

® P(+|X)>0.5>1— P(+|X) = P(—|x) means that class + is more likely

Slide adapted from P. Flach, ICML-04 Tutorial on ROC 35 © J. Flrnkranz



Drawing ROC Curves for Rankers

Performance of a ranker can be visualized via a ROC curve
e Naive method:

= consider all possible thresholds
® only k+1 thresholds between the k instances need to be considered
= each threshold corresponds to a new classifier
= for each classifier
® construct confusion matrix
o plot classifier at point (fpr,tpr) in ROC space Note: It may be
® Practical method: sectar (6 Qe 7

= rank test instances on decreasing score f(x) ~  coverage space

i (1 up/right).
= startin (0,0) . ( p/right)
¢ if the next instance in the ranking is +: move 1/};{]"5
¢ if the next instance in the ranking is —: move 1/N to the right

® make diagonal move in case of ties
Slide adapted from P. Flach, ICML-04 Tutorial on ROC 36 © J. Flrnkranz




A sample ROC curve

100%

80%
True
positives

60%

40%

20%

0 20% 40% 60% 80% 100%
False positives

Slide adapted from Witten/Frank, Data Mining 37 © J. Firnkranz



Properties of ROC Curves
for Rankers

® The curve visualizes the quality of the ranker or probabilistic

model on a test set, without committing to a classification
threshold

= aggregates over all possible thresholds

® The slope of the curve indicates class distribution in that
segment of the ranking

= diagonal segment — locally random behaviour

® Concavities indicate locally worse than random behaviour
= convex hull corresponds to discretizing scores
= can potentially do better: repairing concavities

Slide adapted from P. Flach, ICML-04 Tutorial on ROC 38 © J. Flrnkranz



Some example ROC curves

halance-scale | naive Bayes | all

TP Rat
0 10 20 30 40 50 60 ¥0O B8O &0 100

10 20 30 40 &0 60 7O 80 &0 100
FF Rate

= Good separation between classes, convex curve

Slide © P. Flach, ICML-04 Tutorial on ROC 39 © J. Furnkranz



Some example ROC curves

TP Rat
0 10 20 30 40 50 60 ¥0O B8O &0 100

adult | naive Bayes | all

10 20 30 40 &0 60 7O &0 &0 100

FF Rate

= Reasonable separation, mostly convex

Slide © P. Flach, ICML-04 Tutorial on ROC
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Some example ROC curves

tic-tac-tor | naive Bayes | all

TP Rat
0 10 20 30 40 50 60 ¥0O B8O &0 100

10 20 30 40 &0 60 7O 80 &0 100
FF Rate

= Fairly poor separation, mostly convex

Slide © P. Flach, ICML-04 Tutorial on ROC 41 © J. Furnkranz



Some example ROC curves

hreast-cancer | naive Bayes | all

TP Rat
0 10 20 30 40 50 60 ¥0O B8O &0 100

10 20 30 40 &0 60 7O 80 &0 100
FF Rate

= Poor separation, large and small concavities

Slide © P. Flach, ICML-04 Tutorial on ROC 42 © J. Furnkranz



Some example ROC curves

¥O 80 &0 100

GO

TP Rats

100 20 30 40 &0

= Random performance

Slide © P. Flach, ICML-04 Tutorial on ROC 43 © J. Furnkranz



Comparing Rankers with ROC Curves

100%
Inbetween,
interpolate
80% between A
True and B
positives
60%
If low fpr is
more important,
use Method A 40%,
0%
e

If high 1pr is
more important,
use Method B

0 20%

Slide adapted from Witten/Frank, Data Mining
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AUC: The Area Under the ROC Curve

100%

80% |
True

positives
60% |

40% |

20%

0 20% 40% 60% 80% 100%
False positives
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The AUC metric

® The Area Under ROC Curve (AUC) assesses the ranking in
terms of separation of the classes

= all the positives before the negatives: AUC=1
= random ordering: AUC=0.5

= all the negatives before the positives: AUC=0
® can be computed from the step-wise curve as:

Zr—Zi

i=1 i=1

S —N(N+1)/2
PN N P-N

where r; is the rank of a negative example and S_ Z 7,

® Equivalent to the Mann-Whitney-Wilcoxon sum of ranks test

= estimates probability that randomly chosen positive example is
ranked before randomly chosen negative example

AUC = mlzl(r—) =

Slide adapted from P. Flach, ICML-04 Tutorial on ROC 46 © J. Flrnkranz



Multi-Class AUC

® ROC-curves and AUC are only defined for two-class
problems (concept learning)

= Extensions to multiple classes are still under investigation
® Some Proposals for extensions:

= |n the most general case, we want to calculate Volume Under

ROC Surface (VUS)

® number of dimensions proportional to number of entries in
confusion matrix

= Projecting down to sets of two-dimensional curves and

averaging , B
e MAUC (Hand & Till, 2001); MAUC=ory 2 AUCG. /)

= unweighted average of AUC of pairwise classification (1-vs-1)
® (Provost & Domingos, 2001):

m weighted average of 1-vs-all AUC for class ¢ weighted by P(c)

Slide adapted from P. Flach, ICML-04 Tutorial on ROC 47
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Calibrating a Ranking Classifier

® What is the right threshold of the ranking score if the
ranker does not estimate probabilities?

= classifier can be calibrated by choosing appropriate
threshold that minimizes costs

= may also lead to improved performance in accuracy if
probability estimates are bad (e.g., Naive Bayes)

® Easy in the two-class case:

= calculate cost for each point/threshold while tracing the curve
= return the threshold with minimum cost

® Non-trivial in the multi-class case

Note: threshold selection is part of the classifier training and
must therefore be performed on the training data!

Slide adapted from P. Flach, ICML-04 Tutorial on ROC 48
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Example: Uncalibrated threshold

B.6 "/ True and false positive rates

achieved by default threshold
(NB. worse than always
predicting majority class!)

4

Slide © P. Flach, ICML-04 Tutorial on ROC
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Accuracy isometric
for this domain
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Example: Calibrated threshold

Optimal achievable
accuracy
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Cost-sensitive learning

® Most learning schemes do not perform cost-sensitive learning

= They generate the same classifier no matter what costs are
assigned to the different classes

= Example: standard decision tree learner
¢ Simple methods for cost-sensitive learning:

= |f classifier is able to handle weighted instances

¢ weighting of instances according to costs

® covered examples are not counted with 1, but with their weight
= For any classifier

® resampling of instances according to costs

® proportion of instances with higher weights/costs will be increased
= |f classifier returns a score f or probability P

® varying the classification threshold
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Costs and Example Weights

® The effort of duplicating examples can be saved if the
learner can use example weights

= positive examples get a weight of ¢,
= negative examples get a weight of c_

e All computations that involve counts are henceforth
computed with weights

= instead of counting, we add up the weights

e Example: > w,
= Precision with weighted examples is prec =2
w, is the weight of example x Z Wy

x€Cov

Cov is the set of covered examples
Pos is the set of positive examples

= if w_= 1 for all x, this reduces to the familiar prec=—-

p+n
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Minimizing Expected Cost

® Given a specification of costs for correct and incorrect
predictions

= an example should be predicted to have the class that leads
to the lowest expected cost

= not necessarily to the lowest error

® The expected cost (/oss) for predicting class i for an
example x

= sum over all possible outcomes, weighted by estimated
probabilities
Z C(ilj) P(jlx)

® A classifier should predict the class that minimizes L(i,x)

= |f the classifier can estimate the probability distribution P(i | x)
of an example x
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Minimizing Cost in Concept Learning

® For two classes:
= predict positive if it has the smaller expected cost:

C(+|+)-P(+[x) + C(+[=)-P(=[x) = C(=[+)-P(+|x) + C(=]=)-P(-|x)

N N !
\/ \/

cost if we predict positive cost if we predict negative

= as P(+|x) =1 - P(- x):

Cl+]=) = C(=]-)
(+=) + C(=l+) = C(++) = C(=|-)

predict positive if P(+|x) = .

® Example:

= Classifying a spam mail as ham costs 1, classifying ham as
spam costs 99, correct classification cost nothing:

[1 classify as spam if spam-probability is at least 99%
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