Ensemble Classifiers

IDEA:

- do not learn a single classifier but learn a set of classifiers
- combine the predictions of multiple classifiers

MOTIVATION:

- reduce variance: results are less dependent on peculiarities of a single training set
- reduce bias: a combination of multiple classifiers may learn a more expressive concept class than a single classifier

KEY STEP:

 formation of an ensemble of diverse classifiers from a single training set

Forming an Ensemble

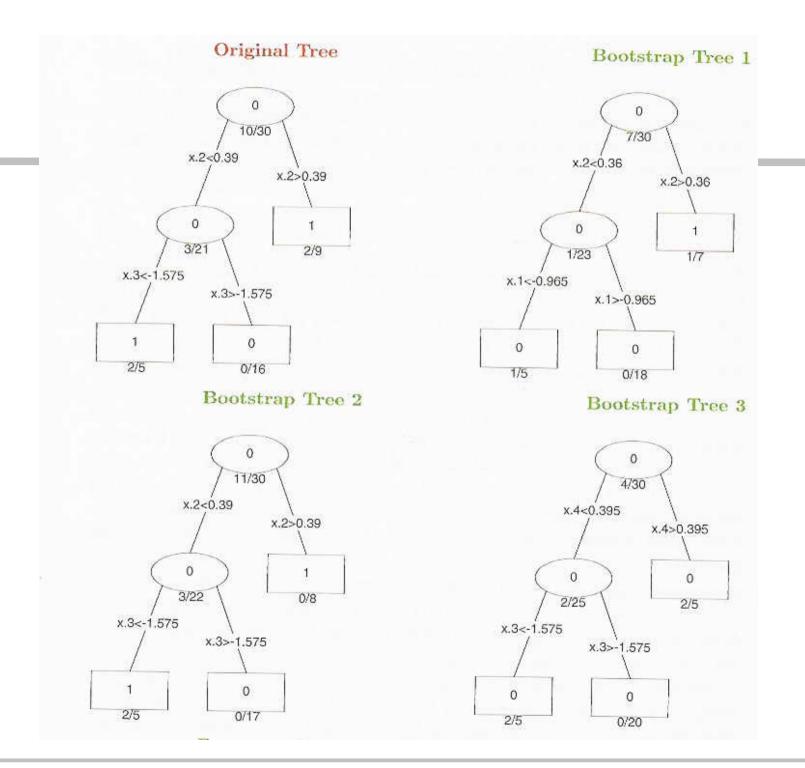
- Modifying the data
 - Subsampling
 - bagging
 - boosting
 - feature subsets
 - randomly feature samples
- Modifying the learning task
 - pairwise classification / round robin learning
 - error-correcting output codes

- Exploiting the algorithm characterisitics
 - algorithms with random components
 - neural networks
 - randomizing algorithms
 - randomized decision trees
 - use multiple algorithms with different characteristics
- Exploiting problem characteristics
 - e.g., hyperlink ensembles

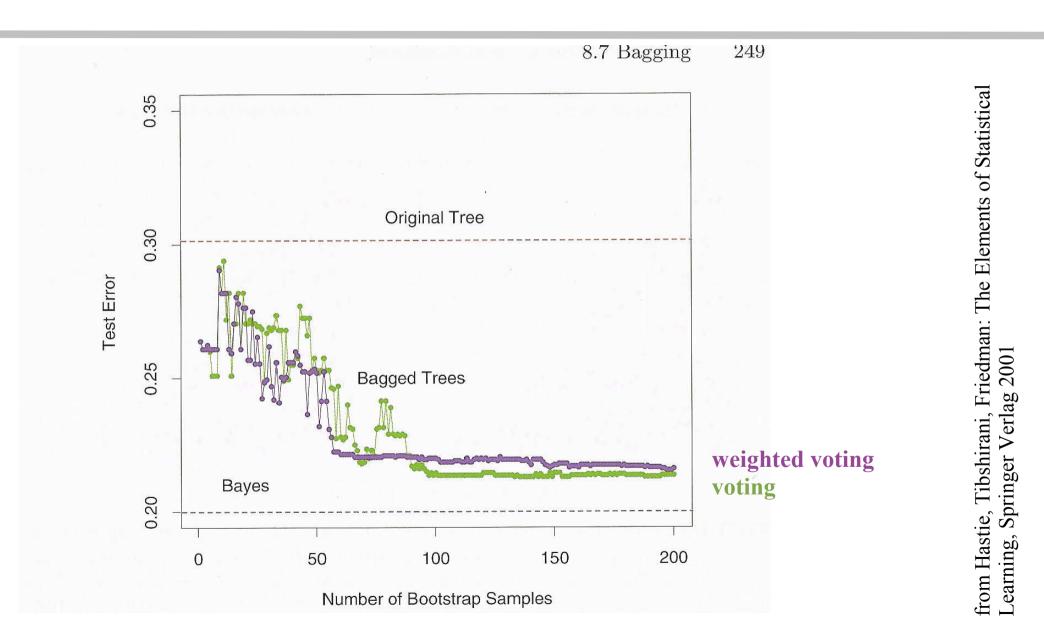
Bagging

- 1. for m = 1 to M // M ... number of iterations
 - a) draw (with replacement) a bootstrap sample S_m of the data
 - b) learn a classifier C_m from S_m
- 2. for each test example
 - a) try all classifiers C_m
 - b) predict the class that receives the highest number of votes
 - variations are possible
 - e.g., size of subset, sampling w/o replacement, etc.
 - many related variants
 - sampling of features, not instances
 - learn a set of classifiers with different algorithms

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001



Bagged Trees



Boosting

Basic Idea:

- later classifiers focus on examples that were misclassified by earlier classifiers
- weight the predictions of the classifiers with their error
- Realization
 - perform multiple iterations
 - each time using different example weights
 - weight update between iterations
 - increase the weight of incorrectly classified examples
 - this ensures that they will become more important in the next iterations (misclassification errors for these examples count more heavily)
 - combine results of all iterations
 - weighted by their respective error measures

Dealing with Weighted Examples

Two possibilities (→ cost-sensitive learning)

- directly
 - example e_i has weight w_i
 - number of examples $n \Rightarrow \text{total example weight } \sum_{i=1}^{n} w_i$
- via sampling
 - interpret the weights as probabilities
 - examples with larger weights are more likely to be sampled
 - assumptions
 - sampling with replacement
 - weights are well distributed in [0,1]
 - learning algorithm sensible to varying numbers of identical examples in training data

Boosting – Algorithm AdaBoost

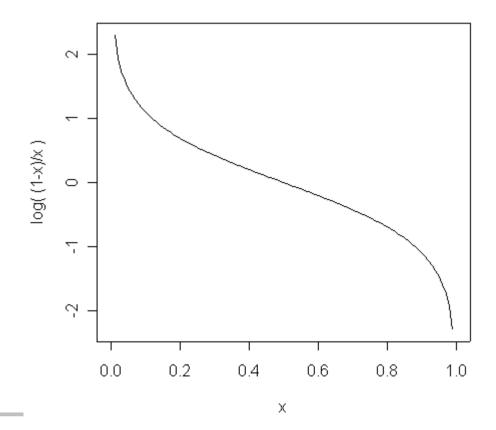
- 1. initialize example weights $w_i = 1/N$ (i = 1..N)
- 2. for m = 1 to M// M ... number of iterations
 - a) learn a classifier C_m using the current example weights
 - b) compute a weighted error estimate $err_m = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = 1 \ because \ weights$
 - c) compute a classifier weight $\alpha_m = \frac{1}{2} \log(\frac{1 err_m}{err_m})$
 - d) for all correctly classified examples $e_i: w_i \leftarrow w_i e^{-\alpha_m}$
 - e) for all incorrectly classified examples e_i : $w_i \leftarrow w_i e^{\alpha_m}$
 - f) normalize the weights w_i so that they sum to 1
- 3. for each test example
 - a) try all classifiers C_m
 - b) predict the class that receives the highest sum of weights α_m

are normalized

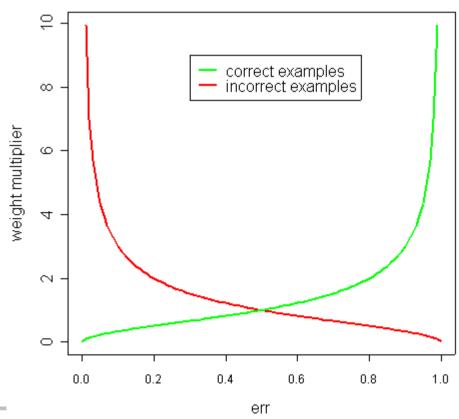
update weights so that sum of correctly classified examples equals sum of incorrectly classified examples

Illustration of the Weights

- Classifier Weights α_m
 - differences near 0 or 1 are emphasized

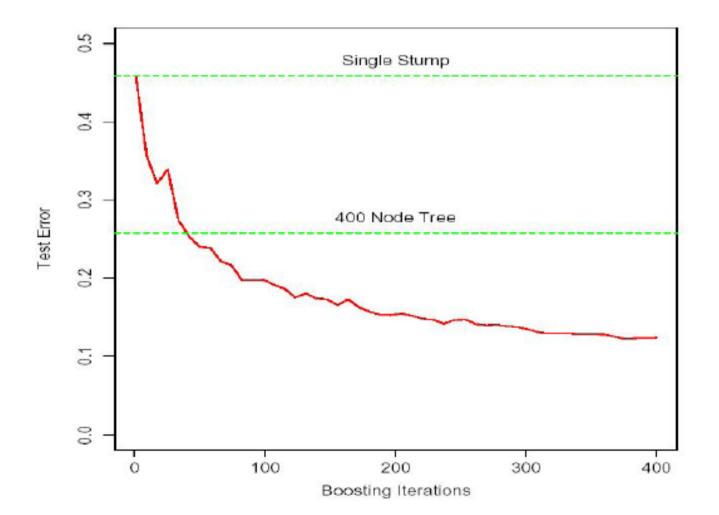


- Example Weights
 - multiplier for correct and incorrect examples, depending on error



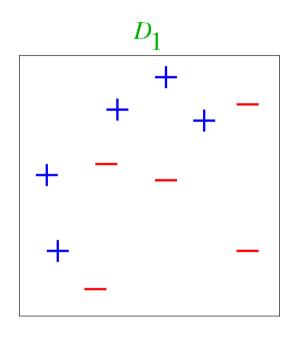
Boosting – Error rate example

boosting of decision stumps on simulated data



rom Hastie, Tibshirani, Friedman: The Elements of Statistical earning, Springer Verlag 2001

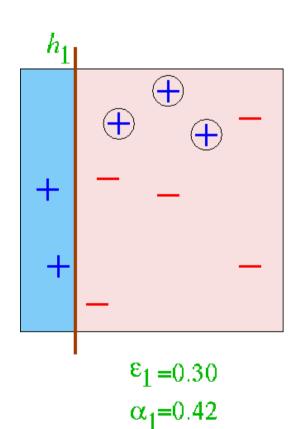
Toy Example

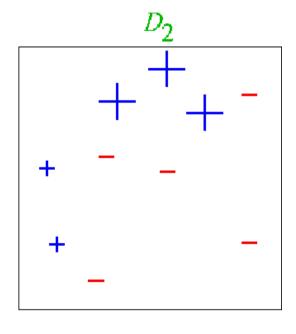


(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)

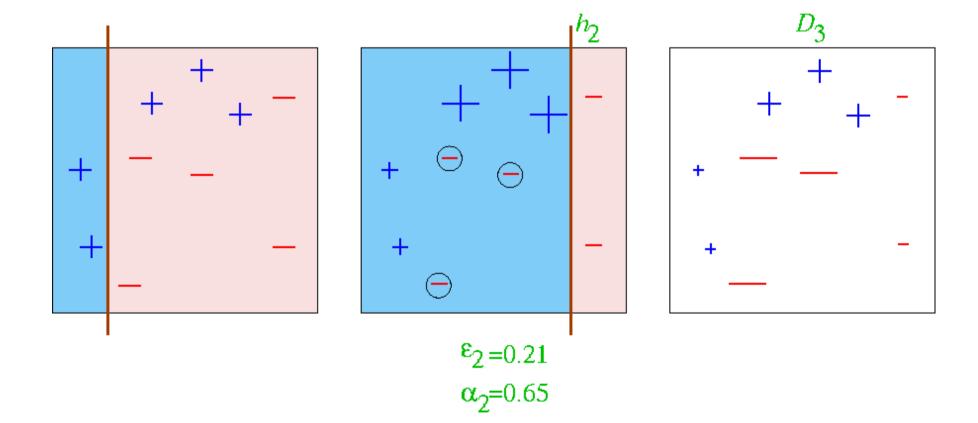
- An Applet demonstrating AdaBoost
 - http://www.cse.ucsd.edu/~yfreund/adaboost/

Round 1

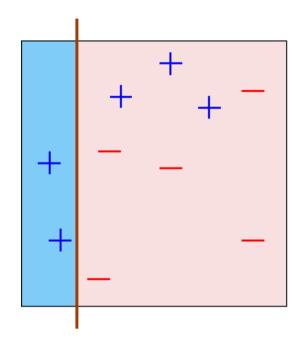


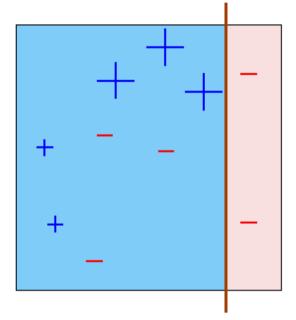


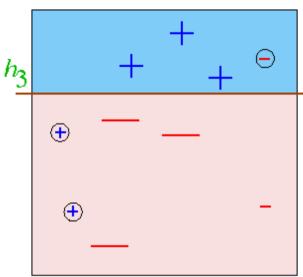
Round 2



Round 3



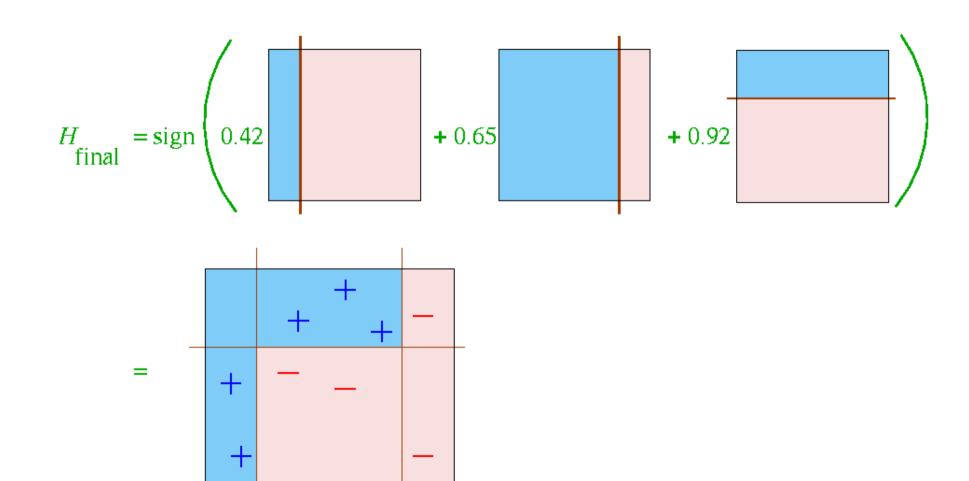




$$\epsilon_{3=0.14}$$
 $\alpha_{3}=0.92$

$$\alpha_3 = 0.92$$

Final Hypothesis



from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

Example

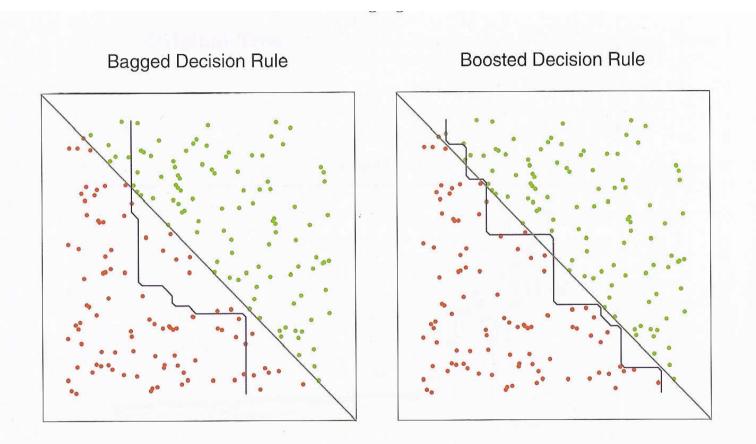


FIGURE 8.11. Data with two features and two classes, separated by a linear boundary. Left panel: decision boundary estimated from bagging the decision rule from a single split, axis-oriented classifier. Right panel: decision boundary from boosting the decision rule of the same classifier. The test error rates are 0.166, and 0.065 respectively. Boosting is described in Chapter 10.

Comparison Bagging/Boosting

- Bagging
 - noise-tolerant
 - produces better class probability estimates
 - not so accurate
 - statistical basis

related to random sampling

- Boosting
 - very susceptible to noise in the data
 - produces rather bad class probability estimates
 - if it works, it works really well
 - based on learning theory (statistical interpretations are possible)
 - related to windowing

Combining Predictions

- voting
 - each ensemble member votes for one of the classes
 - predict the class with the highest number of vote (e.g., bagging)
- weighted voting
 - make a weighted sum of the votes of the ensemble members
 - weights typically depend
 - on the classifiers confidence in its prediction (e.g., the estimated probability of the predicted class)
 - on error estimates of the classifier (e.g., boosting)
- stacking
 - Why not use a classifier for making the final decision?
 - training material are the class labels of the training data and the (cross-validated) predictions of the ensemble members

Stacking

Basic Idea:

learn a function that combines the predictions of the individual classifiers

Algorithm:

- train n different classifiers $C_1...C_n$ (the base classifiers)
- obtain predictions of the classifiers for the training examples
 - better do this with a cross-validation!
- form a new data set (the meta data)
 - classes
 - the same as the original dataset
 - attributes
 - one attribute for each base classifier
 - value is the prediction of this classifier on the example
- train a separate classifier M (the meta classifier)

Stacking (2)

Example:

. A	Class	
x_{11}	 x_{1n_a}	t
x_{21}	 x_{2n_a}	f
x_{n_e1}	 $x_{n_e n_a}$	t

C_1	C_2	 C_{n_c}
t	t	 f
f	t	 t
f	f	 t

training set

predictions of the classfiers

C_1	C_2	 C_{n_c}	Class
t	t	 f	t
f	t	 t	f
f	f	 t	t

training set for stacking

- Using a stacked classifier:
 - try each of the classifiers $C_1...C_n$
 - form a feature vector consisting of their predictions
 - submit this
 feature vectors to
 the meta
 classifier M