
1 © J. Fürnkranz

Searching for Single RulesSearching for Single Rules

● Introduction
 Concept Learning
 Generality Relations
 Refinement Operators
 Structured Hypothesis Spaces

● Simple algorithms
 Find-S
 Find-G

● Version Spaces
 Version Spaces
 Candidate-Elimination Algorithm

● Batch Learning

2 © J. Fürnkranz

Concept LearningConcept Learning

● Given:
 Positive Examples E+

● examples for the concept to learn (e.g., days with golf)
 Negative Examples E

● counter-examples for the concept (e.g., days without golf)
 Hypothesis Space H

● a (possibly infinite) set of candidate hypotheses
● e.g., rules, rule sets, decision trees, linear functions, neural

networks, ...
● Find:

 Find the target hypothesis h ∈ H
 the target hypothesis is the hypothesis that was used (could

have been used) to generate the training examples

3 © J. Fürnkranz

CorrectnessCorrectness

● What is a good rule?
 Obviously, a correct rule would be good
 Other criteria: interpretability, simplicity, efficiency, ...

● Problem:
 We cannot compare the learned hypothesis to the target

hypothesis because we don't know the target
● Otherwise we wouldn't have to learn...

● Correctness on training examples
 completeness: Each positive example should be covered by

the target hypothesis
 consistency: No negative example should be covered by the

target hypothesis
● But what we want is correctness on all possible examples!

4 © J. Fürnkranz

Conjunctive RuleConjunctive Rule

● Coverage
 A rule is said to cover an example if the example satisfies

the conditions of the rule.
● Prediction

 If a rule covers an example, the rule's head is predicted for
this example.

if (atti = valiI) and (attj = valjJ) then +

 Body of the rule (IF-part)
 contains a conjunction of

conditions
 a condition typically consists of

comparison of attribute values

 Head of the rule (THEN-part)
 contains a prediction
 typically + if object

belongs to concept,
– otherwise

5 © J. Fürnkranz

Propositional LogicPropositional Logic

● simple logic of propositions
 combination of simple facts
 no variables, no functions, no relations

(→ predicate calculus)
 Operators:

● conjunction ∧, disjunction ∨, negation ¬, implication →, ...
● rules with attribute/value tests may be viewed as statements

in propositional logic
● because all statements in the rule implicitly refer to the same object
● each attribute/value pair is one possible condition

● Example:
● if windy = false and outlook = sunny then golf
● in propositional logic: ¬ windy ∧ sunny_outlook → golf

p → q

6 © J. Fürnkranz

Generality RelationGenerality Relation

● Intuitively:
 A statement is more general than another statement if it refers

to a superset of its objects
● Examples:

All students are good.
All students are good in Machine Learning.
All students who took a course in Machine Learning and Data

Mining are good in Machine Learning
All students who took course ML&DM at the TU Darmstadt are

good in Machine Learning
All students who took course ML&DM at the TU Darmstadt and

passed with 2 or better are good in Machine Learning.

m
or

e
ge

ne
ra

l m
ore specific

7 © J. Fürnkranz

Generality Relation for RulesGenerality Relation for Rules

● Rule r1 is more general than r2
 if it covers all examples that are covered by r2.

● Rule r1 is more specific than r2
 if r2 is more general than r1.

● Rule r1 is equivalent to r2
 if it is more specific and more general than r2.

Examples:
 if animal = mammal then +

 if feeds_children = milk then +
 if size > 5 then +

if size > 3 then +

 if outlook = sunny then +
 if outlook = sunny and windy = false then +

r1≥r2

r1≤r2

r1≡r2

8 © J. Fürnkranz

Special RulesSpecial Rules

● Most general rule
 typically the rule that covers all examples

● the rule with the body true
● if disjunctions are allowed: the rule that allows all possible values

for all attributes
● Most specific rule ⊥

 typically the rule that covers no examples
● the rule with the body false
● the conjunction of all possible values of each attribute

 evaluates to false (only one value per attribute is possible)
● Each training example can be interpreted as a rule

 body: all attribute-value tests that appear inside the example
 the resulting rule is an immediate generalization of ⊥

● covers only a single example

9 © J. Fürnkranz

Structured Hypothesis SpaceStructured Hypothesis Space

 The availability of a generality relation allows to structure the
hypothesis space:

Structured Hypothesis Space
arrows represent „is more general than“

Instance Space

...

...

...

...

...

...

⊥

⊤

10 © J. Fürnkranz

Testing for GeneralityTesting for Generality

● In general, we cannot check the generality of hypotheses
 We do not have all examples of the domain available (and it

would be too expensive to generate them)
● For single rules, we can approximate generality via a

syntactic generality check:
 Example: Rule r1 is more general than r2 if the set of

conditions of r1 forms a subset of the set of conditions of r2.
 Why is this only an approximation?

● For the general case, computable generality relations will
rarely be available
 E.g., rule sets

● Structured hypothesis spaces and version spaces are also
a theoretical model for learning

11 © J. Fürnkranz

Refinement OperatorsRefinement Operators
● A refinement operator modifies a hypothesis

 can be used to search for good hypotheses
● Generalization Operator:

 Modify a hypothesis so that it becomes more general
● e.g.: remove a condition from the body of a rule

 necessary when a positive example is uncovered
● Specialization Operator:

 Modify a hypothesis so that it becomes more specific
● e.g., add a condition to the body of a rule

 necessary when a negative examples is covered
● Other Refinement Operators:

 in some cases, the hypothesis is modified in a way that
neither generalizes nor specializes
● e.g., stochastic or genetic search

12 © J. Fürnkranz

Generalization Operators Generalization Operators
for Symbolic Attributesfor Symbolic Attributes

There are different ways to generalize a rule, e.g.:
● Subset Generalization

 a condition is removed
 used by most rule learning

algorithms
● Disjunctive Generalization

 another option is added
to the test

● Hierarchical Generalization
 a generalization hierarchy

is exploited

shape = square & color = blue → +
 ⇒
color = blue → +

shape = square & color = blue → +
 ⇒
shape = (square ∨ rectangle)
 & color = blue → +

shape = square & color = blue → +
 ⇒
shape = quadrangle & color = blue → +

13 © J. Fürnkranz

Minimal Refinement OperatorsMinimal Refinement Operators

● In many cases it is desirable, to only make minimal
changes to a hypothesis
 specialize only so much as is necessary to uncover a

previously covered negative example
 generalize only so much as is necessary to cover a previously

uncovered positive example
● Minimal Generalization relative to an example:

 Find a generalization g of a rule r and an example e so that
● g covers example e (r did not cover e)
● there is no other rule g' so that e ≤ g' < g and g' r≥

 need not be unique
● Minimal Specialization relative to an example:

 analogously

14 © J. Fürnkranz

Subset Generalization of RulesSubset Generalization of Rules

● least general generalization
(lgg) of two rules
 the intersection of the

conditions of the rules
(or a rule and an example)

● most general specialization
(mgs) of two rules
 the union of the conditions

of the rules

...

...

...

...

...

● R1

● R2

mgs(R1,R2)●

minimal specialization relative to a rule/example
may be viewed as the lgg of the rule and the negation of the example
note that the negation of a conjunctive rule turns into a disjunction of

several rules with one negated condition

lgg(R1,R2)
●

15 © J. Fürnkranz

Algorithm Find-SAlgorithm Find-S

I. h = most specific hypothesis in H
 (covering no examples)

II. for each training example e
a)if e is negative

● do nothing
b)if e is positive

● for each condition c in h
● if c does not cover e

● delete c from h

III.return h

Note: when the first positive examples is encountered, step II.b)
 amounts to converting the example into a rule
 (Recall that the most specific hypothesis can be written as a conjunction
 of all possible values of each attribute.)

Minimal Subset
generalization

(other generalizations
possible)

The hypothesis
if false then +

16 © J. Fürnkranz

ExampleExample

No. Sky Temperature Humidity Windy Water Forecast sport?
1 sunny hot normal strong warm same yes
2 sunny hot high strong warm same yes
3 rainy cool high strong warm change no
4 sunny hot high strong cool change yes

H0: if false then +
 if (sky = sunny & sky = rainy & ... & forecast = same & forecaset = change) then +
 { <Ø,Ø,Ø,Ø,Ø,Ø> }

H1: { <sunny, hot, normal, strong, warm,same> }

H2: { <sunny, hot, ?, strong, warm,same> }

H4: { <sunny, hot, ?, strong, ?, ? > }

H3: { <sunny, hot, ?, strong, warm,same> }

Short-hand notation:
● only body (head is +)
● one value per attribute
● ⊘ for false (full conjunction)
● ? for true (full disjunction)

17 © J. Fürnkranz

Algorithm Find-GAlgorithm Find-G

I. h = most general hypothesis in H
 (covering all examples)

II. for each training example e
a)if e is positive

● do nothing
b)if e is negative

● for some condition c in e
● if c is part of h

 add a condition that negates c
and covers all previous positive
examples to h

III.return h

Minimal Subset
specialization

(other specializations
possible)

The hypothesis
if true then +

18 © J. Fürnkranz

ExampleExample

No. Sky Temperature Humidity Windy Water Forecast sport?
1 sunny hot normal strong warm same yes
2 sunny hot high strong warm same yes
3 rainy cool high strong warm change no
4 sunny hot high strong cool change yes

H0: if true then +
 if (sky = sunny || sky = rainy) & ... & (forecast = same || forecaset = change) then +
 { <?, ?, ?, ?, ?, ?> }

H1: { <?, ?, ?, ?, ?, ?> }

H2: { <?, ?, ?, ?, ?, ?> }

H4: { <sunny, ?, ?, ?, ?, ?> }

H3: { <sunny, ?, ?, ?, ?, ?> }
Other possibilities:
● <?, hot, ?, ?, ?, ?>
● <?, ?, ?, ?, ?, same>

19 © J. Fürnkranz

Properties of Find-S and Find-GProperties of Find-S and Find-G

● completeness:
 h covers all positive examples

● consistency:
 h will not cover any negative training examples
 but only if the hypothesis space contains a target concept

(i.e., there is a single conjunctive rule that describes the target concept)

● Properties:
 no way of knowing whether it has found the target concept

(there might be more than one theory that are complete and consistent)
 Find-S prefers more specific hypotheses (hence the name)

(it will never generalize unless forced by a training example)
 Find-G prefers more general hypotheses (hence the name)

(it will never specialize unless forced by a training example)
 it only maintains one specific hypothesis

(in other hypothesis languages there might be more than one)

20 © J. Fürnkranz

Uniqueness of Refinement OperatorsUniqueness of Refinement Operators

● Subset Specialization is not unique
 we could specialize any condition in the rule that currently

covers the example
 we could specialize it to any value other than the one that is

used in the example

→ a wrong choice may lead to an impasse
● Possible Solutions:

 more expressive hypothesis language (e.g., disjunctions of
values)

 backtracking
 remember all possible specializations and remove bad ones

later
● Note: Generalization operators also need to be unique!

21 © J. Fürnkranz

Algorithm Find-GSetAlgorithm Find-GSet

I. h = most general hypothesis in H (covering all examples)

II. G = { h }
III.for each training example e

a)if e is positive
● remove all h∈G that do not cover e

b)if e is negative
● for all hypotheses h∈G that cover e

 G = G \ {h}
 for every condition c in e

 for all conditions c' that negate c
 h' = h ∪ {c'}
 if h' covers all previous positive examples

 G = G ∪ {h'}

IV.return G

22 © J. Fürnkranz

Correct HypothesesCorrect Hypotheses

● Find-GSet:
 finds most general hypotheses that are correct on the data
→ has a bias towards general hypotheses

● Find-SSet:
 can be defined analogously
 finds most specific hypotheses that are correct on the data
→ has a bias towards specific hypotheses

● Thus, the hypotheses found by Find-GSet or Find-SSet are
not necessarily identical!

● Could there be hypotheses that are correct but are neither
found by GSet nor by SSet?

23 © J. Fürnkranz

Version SpaceVersion Space

● The Version Space V is the set of all hypotheses that
 cover all positive examples (completeness)
 do not cover any negative examples (consistency)

● For structured hypothesis spaces there is an efficient
representation consisting of
 the general boundary G

● all hypotheses in V for which no generalization is in V
 the specific boundary S

● all hypotheses in V for which no specialization is in V
● a hypothesis that is neither in G nor in S is

 a generalization of at least one hypothesis in S
 a specialization of at least one hypothesis in G

24 © J. Fürnkranz

Candidate Elimination AlgorithmCandidate Elimination Algorithm

● G = set of maximally general hypotheses
S = set of maximally specific hypotheses

● For each training example e
 if e is positive

● For each hypothesis g in G that does not cover e
 remove g from G

● For each hypothesis s in S that does not cover e
 remove s from S
 S = S ∪ all hypotheses h such that

 h is a minimal generalization of s
 h covers e
 some hypothesis in G is more general than h

 remove from S any hypothesis that is more general than another
hypothesis in S

25 © J. Fürnkranz

Candidate Elimination Algorithm Candidate Elimination Algorithm
(Ctd.)(Ctd.)

 if e is negative
● For each hypothesis s in S that covers e

 remove s from S
● For each hypothesis g in G that covers e

 remove g from G
 G = G ∪ all hypotheses h such that

 h is a minimal specialization of g
 h does not cover e
 some hypothesis in S is more specific than h

 remove from G any hypothesis that is less general than another
hypothesis in G

26 © J. Fürnkranz

ExampleExample

No. Sky Temperature Humidity Windy Water Forecast sport?
1 sunny hot normal strong warm same yes
2 sunny hot high strong warm same yes
3 rainy cool high strong warm change no
4 sunny hot high strong cool change yes

S0: { <Ø,Ø,Ø,Ø,Ø,Ø> }
G0: { <?, ?, ?, ?, ?, ?> }

S1: { <sunny, hot, normal, strong, warm,same> }
G1: { <?, ?, ?, ?, ?, ?> }

S2: { <sunny, hot, ?, strong, warm,same> }
G2: { <?, ?, ?, ?, ?, ?> }

S3: { <sunny, hot, ?, strong, warm,same> }
G3: { <sunny, ?, ?, ?, ?, ? >
 <?, hot, ?, ?, ?, ? >
 <?, ?, ?, ?, ?, same > }

S4: { <sunny, hot, ?, strong, ?, ? > }
G4: { <sunny, ?, ?, ?, ?, ? >
 <?, hot, ?, ?, ?, ? >}

27 © J. Fürnkranz

How to Classify these Examples?How to Classify these Examples?

No. Sky Temperature Humidity Windy Water Forecast sport?
5 sunny hot normal strong cool change yes
6 rainy cool normal light warm same no
7 sunny hot normal light warm same ?
8 sunny cool normal strong warm same maybe no

● Version Space:

● How to Classify these Examples?

 G <sunny, ?, ?, ?, ?, ? > <?, hot, ?, ?, ?, ? >

<sunny, ?, ?, strong, ?, ?> <sunny, hot, ?, ?, ?, ?> <?, hot, ?, strong, ?, ?>

 S <sunny, hot, ?, strong, ?, ? >

28 © J. Fürnkranz

PropertiesProperties

● Convergence towards target theory
 convergence if S = G

● Reliable classification with partially learned concepts
 an example that matches all elements in S must be a member

of the target concept
 an example that matches no element in G cannot be a

member of the target concept
 examples that match parts of S and G are undecidable

● no need to remember examples (incremental learning)
● Assumptions

 no errors in the training set
 the hypothesis space contains the target theory
 practical only if generality relation is (efficiently) computable

29 © J. Fürnkranz

Other Generality RelationsOther Generality Relations

● First-Order
 generalize the arguments of each pair of literals of the same

relation
● Hierarchical Values

 generalization and specialization for individual attributes
follows the ontology

30 © J. Fürnkranz

Generalization Operators for Generalization Operators for
Numerical AttributesNumerical Attributes

● Subset Generalization
● generalization works as in symbolic case
● specialization is difficult as there are infinitely different values to

specialize to
● Disjunctive Generalization

● specialization and generalization as in symbolic case
● problematic if no repetition of numeric values can be expected

 generalization will only happen on training data
 no new unseen examples are covered after a generalization

● Interval Generalization
 the range of possible values is represented by an open or

closed intervals
● generalize by widening the interval to include the new point
● specialize by shortening the interval to exclude the new point

31 © J. Fürnkranz

Batch inductionBatch induction

● So far we looked at
 all theories at the same time (implicitly through the version space)
 and processed examples incrementally

● We can turn this around:
 work on the theories incrementally
 and process all examples at the same time

● Basic idea:
 try to quickly find a complete and consistent rule
 need not be in either S or G (but in the version space)

● Algorithm like FindG:
 successively refine rule by adding conditions:

● evaluate all refinements and pick the one that looks best
 until the rule is consistent

32 © J. Fürnkranz

Algorithm Batch-FindGAlgorithm Batch-FindG

I. h = most general hypothesis in H
C = set of all possible conditions

II. while h covers negative examples
I. for each possible condition c ∈ C

a) h' = h ∪ {c}

b) if h' covers
● all positive examples
● and fewer negative examples than hbest
then hbest = h'

II. h = hbest

III. return h

Scan through all examples
in database:
● count covered positives
● count covered negatives

33 © J. Fürnkranz

PropertiesProperties

● General-to-Specific (Top-Down) Search
 similar to FindG:

● FindG makes an arbitrary selection among possible refinements,
taking the risk that it may lead to an consistency later

● Batch-FindG selects next refinement based on all training examples
● Heuristic algorithm

 among all possible refinements, we select the one that leads
to the fewest number of covered negatives
● IDEA: the more negatives are excluded with the current condition,

the less have to be excluded with subsequent conditions
● Converges towards some theory

 not necessarily towards a theory in G
● Not very efficient, but quite flexible

 criteria for selecting conditions could be exchanged

