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Searching for Single RulesSearching for Single Rules

● Introduction
 Concept Learning
 Generality Relations
 Refinement Operators
 Structured Hypothesis Spaces

● Simple algorithms
 Find-S
 Find-G

● Version Spaces
 Version Spaces
 Candidate-Elimination Algorithm

● Batch Learning
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Concept LearningConcept Learning

● Given:
 Positive Examples E+

● examples for the concept to learn (e.g., days with golf)
 Negative Examples E

● counter-examples for the concept (e.g., days without golf)
 Hypothesis Space H

● a (possibly infinite) set of candidate hypotheses
● e.g., rules, rule sets, decision trees, linear functions, neural 

networks, ...
● Find:

 Find the target hypothesis h ∈ H 
 the target hypothesis is the hypothesis that was used (could 

have been used) to generate the training examples 
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CorrectnessCorrectness

● What is a good rule?
 Obviously, a correct rule would be good
 Other criteria: interpretability, simplicity, efficiency, ...

● Problem:
 We cannot compare the learned hypothesis to the target 

hypothesis because we don't know the target
● Otherwise we wouldn't have to learn...

● Correctness on training examples
 completeness: Each positive example should be covered by 

the target hypothesis
 consistency: No negative example should be covered by the 

target hypothesis
● But what we want is correctness on all possible examples!
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Conjunctive RuleConjunctive Rule

● Coverage
 A rule is said to cover an example if the example satisfies 

the conditions of the rule.
● Prediction

 If a rule covers an example, the rule's head is predicted for 
this example.

if (atti = valiI) and (attj = valjJ)       then +

 Body of the rule (IF-part)
 contains a conjunction of 

conditions
 a condition typically consists of 

comparison of attribute values

 Head of the rule (THEN-part)
 contains a prediction
 typically + if object

belongs to concept,
– otherwise
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Propositional LogicPropositional Logic

● simple logic of propositions
 combination of simple facts
 no variables, no functions, no relations 

(→ predicate calculus)
 Operators:

● conjunction ∧, disjunction ∨, negation ¬, implication →, ...
● rules with attribute/value tests may be viewed as statements 

in propositional logic
● because all statements in the rule implicitly refer to the same object
● each attribute/value pair is one possible condition

● Example:
● if windy = false and outlook = sunny then golf
● in propositional logic: ¬ windy ∧ sunny_outlook → golf

p → q
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Generality RelationGenerality Relation

● Intuitively:
 A statement is more general than another statement if it refers 

to a superset of its objects
● Examples:

All students are good.
All students are good in Machine Learning.
All students who took a course in Machine Learning and Data 

Mining are good in Machine Learning
All students who took course ML&DM at the TU Darmstadt are 

good in Machine Learning
All students who took course ML&DM at the TU Darmstadt and 

passed with 2 or better are good in Machine Learning.
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Generality Relation for RulesGenerality Relation for Rules

● Rule r1 is more general than r2 
 if it covers all examples that are covered by r2.

● Rule r1 is more specific than r2 
 if r2 is more general than r1.

● Rule r1 is equivalent to r2 
 if it is more specific and more general than r2.

Examples: 
    if animal = mammal then +

 if feeds_children = milk then +
                        if size > 5 then +

if size > 3 then +

        if outlook = sunny then +
                 if outlook = sunny and windy = false then +

r1≥r2

r1≤r2

r1≡r2
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Special RulesSpecial Rules

● Most general rule 
 typically the rule that covers all examples

● the rule with the body true
● if disjunctions are allowed: the rule that allows all possible values 

for all attributes
● Most specific rule ⊥

 typically the rule that covers no examples
● the rule with the body false
● the conjunction of all possible values of each attribute

 evaluates to false (only one value per attribute is possible)
● Each training example can be interpreted as a rule

 body: all attribute-value tests that appear inside the example
 the resulting rule is an immediate generalization of ⊥

● covers only a single example
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Structured Hypothesis SpaceStructured Hypothesis Space

 The availability of a generality relation allows to structure the 
hypothesis space:

Structured Hypothesis Space
arrows represent „is more general than“

Instance Space

...

...

...

...

...

...

⊥

⊤
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Testing for GeneralityTesting for Generality

● In general, we cannot check the generality of hypotheses
 We do not have all examples of the domain available (and it 

would be too expensive to generate them)
● For single rules, we can approximate generality via a 

syntactic generality check:
 Example: Rule r1 is more general than r2 if the set of 

conditions of r1 forms a subset of the set of conditions of r2.
 Why is this only an approximation?

● For the general case, computable generality relations will 
rarely be available 
 E.g., rule sets

● Structured hypothesis spaces and version spaces are also 
a theoretical model for learning
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Refinement OperatorsRefinement Operators
● A refinement operator modifies a hypothesis

 can be used to search for good hypotheses
● Generalization Operator:

 Modify a hypothesis so that it becomes more general
● e.g.: remove a condition from the body of a rule

 necessary when a positive example is uncovered
● Specialization Operator:

 Modify a hypothesis so that it becomes more specific
● e.g., add a condition to the body of a rule

 necessary when a negative examples is covered
● Other Refinement Operators:

 in some cases, the hypothesis is modified in a way that  
neither generalizes nor specializes
● e.g., stochastic or genetic search
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Generalization Operators Generalization Operators 
for Symbolic Attributesfor Symbolic Attributes

There are different ways to generalize a rule, e.g.:
● Subset Generalization

 a condition is removed
 used by most rule learning 

algorithms
● Disjunctive Generalization

 another option is added 
to the test

● Hierarchical Generalization
 a generalization hierarchy 

is exploited

shape = square & color = blue → +
                       ⇒
color = blue → +

shape = square & color = blue → +
                       ⇒
shape = (square ∨ rectangle)
                        & color = blue → +

shape = square & color = blue → +
                       ⇒
shape = quadrangle & color = blue → +
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Minimal Refinement OperatorsMinimal Refinement Operators

● In many cases it is desirable, to only make minimal 
changes to a hypothesis
 specialize only so much as is necessary to uncover a 

previously covered negative example
 generalize only so much as is necessary to cover a previously 

uncovered positive example
● Minimal Generalization relative to an example:

 Find a generalization g of a rule r and an example e so that 
● g covers example e                     (r did not cover e)
● there is no other rule g' so that e ≤  g' < g and g'  r≥

 need not be unique
● Minimal Specialization relative to an example:

 analogously
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Subset Generalization of RulesSubset Generalization of Rules

● least general generalization 
(lgg) of two rules
 the intersection of the 

conditions of the rules
(or a rule and an example)

● most general specialization 
(mgs) of two rules
 the union of the conditions 

of the rules

...

...

...

...

...

● R1

● R2

mgs(R1,R2)●

minimal specialization relative to a rule/example
may be viewed as the lgg of the rule and the negation of the example
note that the negation of a conjunctive rule turns into a disjunction of 

several rules with one negated condition

lgg(R1,R2)
●
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Algorithm Find-SAlgorithm Find-S

I.  h = most specific hypothesis in H
      (covering no examples)

II. for each training example e
a)if e is negative

● do nothing
b)if e is positive

● for each condition c in h
● if c does not cover e

● delete c from h

III.return h

Note: when the first positive examples is encountered, step II.b)
           amounts to converting the example into a rule
            (Recall that the most specific hypothesis can be written as a conjunction
             of all possible values of each attribute.)

Minimal Subset
generalization

(other generalizations
possible)

The hypothesis
if false then +
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ExampleExample

No. Sky Temperature  Humidity  Windy Water Forecast sport?
1 sunny hot  normal strong warm same yes
2 sunny hot  high strong warm same yes
3 rainy cool  high strong warm change no
4 sunny hot  high strong cool change  yes 

H0: if false then +
        if  (sky = sunny & sky = rainy & ... & forecast = same & forecaset = change) then +
       { <Ø,Ø,Ø,Ø,Ø,Ø> }

H1: { <sunny, hot, normal, strong, warm,same> }

H2: { <sunny, hot,  ?, strong, warm,same> }

H4: { <sunny, hot,  ?, strong, ?, ? > }

H3: { <sunny, hot,  ?, strong, warm,same> }

Short-hand notation:
● only body (head is +)
● one value per attribute
● ⊘ for false (full conjunction)
● ? for true (full disjunction)
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Algorithm Find-GAlgorithm Find-G

I.  h = most general hypothesis in H
      (covering all examples)

II. for each training example e
a)if e is positive

● do nothing
b)if e is negative

● for some condition c in e
● if c is part of h

 add a condition that negates c 
and covers all previous positive 
examples to h

III.return h

Minimal Subset
specialization

(other specializations
possible)

The hypothesis
if true then +
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ExampleExample

No. Sky Temperature  Humidity  Windy Water Forecast sport?
1 sunny hot  normal strong warm same yes
2 sunny hot  high strong warm same yes
3 rainy cool  high strong warm change no
4 sunny hot  high strong cool change  yes 

H0: if true then +
        if  (sky = sunny || sky = rainy) & ... & (forecast = same || forecaset = change) then +
       { <?, ?, ?, ?, ?, ?> }

H1: { <?, ?, ?, ?, ?, ?> }

H2: { <?, ?, ?, ?, ?, ?> }

H4: { <sunny, ?, ?, ?, ?, ?> }

H3: { <sunny, ?, ?, ?, ?, ?> }
Other possibilities:
●  <?,  hot, ?, ?, ?, ?>
●  <?, ?, ?, ?, ?, same>
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Properties of Find-S and Find-GProperties of Find-S and Find-G

● completeness:
 h covers all positive examples

● consistency:
 h will not cover any negative training examples 
 but only if the hypothesis space contains a target concept

(i.e., there is a single conjunctive rule that describes the target concept)

● Properties:
 no way of knowing whether it has found the target concept 

(there might be more than one theory that are complete and consistent)
 Find-S prefers more specific hypotheses (hence the name) 

(it will never generalize unless forced by a training example)
 Find-G prefers more general hypotheses (hence the name) 

(it will never specialize unless forced by a training example)
 it only maintains one specific hypothesis 

(in other hypothesis languages there might be more than one)
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Uniqueness of Refinement OperatorsUniqueness of Refinement Operators

● Subset Specialization is not unique
 we could specialize any condition in the rule that currently 

covers the example
 we could specialize it to any value other than the one that is 

used in the example

→ a wrong choice may lead to an impasse
● Possible Solutions:

 more expressive hypothesis language (e.g., disjunctions of 
values)

 backtracking
 remember all possible specializations and remove bad ones 

later
● Note: Generalization operators also need to be unique!
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Algorithm Find-GSetAlgorithm Find-GSet

I.  h = most general hypothesis in H (covering all examples)

II.  G = { h }
III.for each training example e

a)if e is positive
● remove all h∈G that do not cover e

b)if e is negative
● for all hypotheses h∈G that cover e

 G = G \ {h}
 for every condition c in e

 for all conditions c' that negate c
 h' = h ∪ {c'}
 if h' covers all previous positive examples

 G = G ∪ {h'}

IV.return G
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Correct HypothesesCorrect Hypotheses

● Find-GSet:
 finds most general hypotheses that are correct on the data
→ has a bias towards general hypotheses

● Find-SSet:
 can be defined analogously
 finds most specific hypotheses that are correct on the data
→ has a bias towards specific hypotheses

● Thus, the hypotheses found by Find-GSet or Find-SSet are 
not necessarily identical!

● Could there be hypotheses that are correct but are neither 
found by GSet nor by SSet?
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Version SpaceVersion Space

● The Version Space V is the set of all hypotheses that
 cover all positive examples (completeness)
 do not cover any negative examples (consistency)

● For structured hypothesis spaces there is an efficient 
representation consisting of
 the general boundary G

● all hypotheses in V for which no generalization is in V
 the specific boundary S

● all hypotheses in V for which no specialization is in V
● a hypothesis that is neither in G nor in S is

 a generalization of at least one hypothesis in S
 a specialization of at least one hypothesis in G
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Candidate Elimination AlgorithmCandidate Elimination Algorithm

● G = set of maximally general hypotheses
S = set of maximally specific hypotheses

● For each training example e
 if e is positive

● For each hypothesis g in G that does not cover e
 remove g from G

● For each hypothesis s in S that does not cover e
 remove s from S
 S = S ∪ all hypotheses h such that

 h is a minimal generalization of s
 h covers e
 some hypothesis in G is more general than h

 remove from S any hypothesis that is more general than another 
hypothesis in S
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Candidate Elimination Algorithm Candidate Elimination Algorithm 
(Ctd.)(Ctd.)

 if e is negative
● For each hypothesis s in S that covers e

 remove s from S
● For each hypothesis g in G that covers e

 remove g from G
 G = G ∪ all hypotheses h such that

 h is a minimal specialization of g
 h does not cover e
 some hypothesis in S is more specific than h

 remove from G any hypothesis that is less general than another 
hypothesis in G
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ExampleExample

No. Sky Temperature  Humidity  Windy Water Forecast sport?
1 sunny hot  normal strong warm same yes
2 sunny hot  high strong warm same yes
3 rainy cool  high strong warm change no
4 sunny hot  high strong cool change  yes 

S0: { <Ø,Ø,Ø,Ø,Ø,Ø> }
G0: { <?, ?, ?, ?, ?, ?>  }

S1: { <sunny, hot, normal, strong, warm,same> }
G1: { <?, ?, ?, ?, ?, ?>  }

S2: { <sunny, hot,  ?, strong, warm,same> }
G2: { <?, ?, ?, ?, ?, ?>  }

S3: { <sunny, hot,  ?, strong, warm,same> }
G3: { <sunny, ?, ?, ?, ?, ? >
         <?, hot, ?, ?, ?, ? >
         <?, ?, ?, ?, ?, same > }

S4: { <sunny, hot,  ?, strong, ?, ? > }
G4: { <sunny, ?, ?, ?, ?, ? >
         <?, hot, ?, ?, ?, ? >}
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How to Classify these Examples?How to Classify these Examples?

No. Sky Temperature  Humidity  Windy Water Forecast sport?
5 sunny hot  normal strong cool change yes
6 rainy cool normal light warm same no
7 sunny hot  normal light warm same ?
8 sunny cool  normal strong warm same maybe no

● Version Space:

● How to Classify these Examples?

              G      <sunny, ?, ?, ?, ?, ? >         <?, hot, ?, ?, ?, ? >

<sunny, ?, ?, strong, ?, ?>   <sunny, hot, ?, ?, ?, ?>   <?, hot, ?, strong, ?, ?> 

              S                              <sunny, hot,  ?, strong, ?, ? >
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PropertiesProperties

● Convergence towards target theory
 convergence if S = G

● Reliable classification with partially learned concepts
 an example that matches all elements in S must be a member 

of the target concept
 an example that matches no element in G cannot be a 

member of the target concept
 examples that match parts of S and G are undecidable

● no need to remember examples (incremental learning)
● Assumptions

 no errors in the training set
 the hypothesis space contains the target theory
 practical only if generality relation is (efficiently) computable
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Other Generality RelationsOther Generality Relations

● First-Order
 generalize the arguments of each pair of literals of the same 

relation
● Hierarchical Values

 generalization and specialization for individual attributes 
follows the ontology
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Generalization Operators for Generalization Operators for 
Numerical AttributesNumerical Attributes

● Subset Generalization
● generalization works as in symbolic case
● specialization is difficult as there are infinitely different values to 

specialize to
● Disjunctive Generalization

● specialization and generalization as in symbolic case
● problematic if no repetition of numeric values can be expected

 generalization will only happen on training data
 no new unseen examples are covered after a generalization

● Interval Generalization
 the range of possible values is represented by an open or 

closed intervals
● generalize by widening the interval to include the new point
● specialize by shortening the interval to exclude the new point
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Batch inductionBatch induction

● So far we looked at 
 all theories at the same time (implicitly through the version space)
 and processed examples incrementally

● We can turn this around:
 work on the theories incrementally
 and process all examples at the same time

● Basic idea:
 try to quickly find a complete and consistent rule
 need not be in either S or G (but in the version space)

● Algorithm like FindG:
 successively refine rule by adding conditions:

● evaluate all refinements and pick the one that looks best
 until the rule is consistent
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Algorithm Batch-FindGAlgorithm Batch-FindG

I.  h = most general hypothesis in H
C = set of all possible conditions 

II. while h covers negative examples
I.  for each possible condition c ∈ C

a)  h' = h ∪ {c}

b)  if h' covers
● all positive examples
● and fewer negative examples than hbest
then hbest = h'

II.  h = hbest

III. return h

Scan through all examples
in database:
● count covered positives
● count covered negatives
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PropertiesProperties

● General-to-Specific (Top-Down) Search
 similar to FindG:

● FindG makes an arbitrary selection among possible refinements,
taking the risk that it may lead to an  consistency later

● Batch-FindG selects next refinement based on all training examples
● Heuristic algorithm

 among all possible refinements, we select the one that leads 
to the fewest number of covered negatives
● IDEA: the more negatives are excluded with the current condition, 

the less have to be excluded with subsequent conditions
● Converges towards some theory

 not necessarily towards a theory in G
● Not very efficient, but quite flexible

 criteria for selecting conditions could be exchanged


