Association Rule Discovery

- Association Rules describe frequent co-occurences in sets
 - an *itemset* is a subset *A* of all possible items *I*
- Example Problems:
 - Which products are frequently bought together by customers? (Basket Analysis)
 - DataTable = Receipts x Products (or Customer x Products)
 - Results could be used to change the placements of products in the market
 - Which courses tend to be attended together?
 - DataTable = Students x Courses
 - Results could be used to avoid scheduling conflicts....

1

Association Rules

• General Form:

$$A_1, A_2, ..., A_n \to B_1, B_2, ..., B_m$$

- Interpretation:
 - When items A_i appear, items B_i also appear with a certain probability
- Examples:
 - Bread, Cheese → RedWine. Customers that buy bread and cheese, also tend to buy red wine.
 - MachineLearning
 → WebMining, MLPraktikum.
 Students that take 'Machine Learning' also take 'Web Mining'
 and the 'Machine Learning Praktikum'

Basic Quality Measures

• **Support** $support(A \to B) = support(A \cup B) = \frac{n(A \cup B)}{n}$

 $n(A \cup B)$ is the no. of customers that bought all items in item sets A and B.

- proportion of examples for which both the head and the body of the rule are true
- How many examples does this rule cover?

• **Confidence**
$$confidence(A \rightarrow B) = \frac{support(A \cup B)}{support(A)} = \frac{n(A \cup B)}{n(A)}$$

- proportion of examples for which the head is true among those for which the body is true
- How strong is the implication of the rule?
- Example:
 - **Bread**, **Cheese** => **RedWine** (S = 0.01, C = 0.8)

80% of all customers that bought bread and cheese also bought red wine. 1% of all customers bought all three items.

Learning Problem

Find all association rules with a given *minimum support* s_{min} and a given *minimum confidence* c_{min}

- Frequent itemsets:
 - An itemset A is *frequent* if $support(A) \ge s_{min}$
- Key Observation (*anti-monotonicity of support*):
 - Adding a condition (specializing the rule) may never increase support/freqency of a rule (or of its itemset). $C \subseteq D \Rightarrow support(C) \ge support(D)$
 - Therefore:
 - an itemset can only be frequent if all of its subsets are freqent
 - all supersets of an infrequent itemset are also infrequent

Support/Confidence Filtering

- filter rules that
 - cover not enough positive examples (p < s_{min})
 - are not precise enough (*h*_{prec} < c_{min})
- effects:
 - all but a region around (0,P) is filtered

Note: $P \cong$ examples for which head is true $N \cong$ examples for which head is false

APRIORI Step1: FreqSet: Find all Frequent Itemsets

1. k = 12. $C_1 = I$ (all items) 3. while $C_{\nu} > \emptyset$ (a) $S_{\mu} = C_{\mu} \setminus \text{all infrequent itemsets in } C_{\mu} \leftarrow \text{check on data}$ (b) $C_{k+1} =$ all sets with k+1 elements that can be formed by forming the union of two itemsets in S_k (c) $C_{k+1} = C_{k+1} \setminus all$ itemsets for which not all k-subsets are in S_k (d) $S = S + S_{k}$ (e) k++ 4. return S

Candidate itemsets are stored in efficient data structures such as hash trees or tries.

Efficient Candidate Generation

- Formation of C_{k+1} (Step 3(b) of the algorithm):
 - combines two frequent k-itemsets to a candidate for a (k+1)-itemset
 - can be performed efficiently:

 $C_{k+1} = \{ \langle X_1, \dots, X_{k-1}, X_k, X_{k+1} \rangle | \langle X_1, \dots, X_{k-1}, X_k \rangle \in C_k, \langle X_1, \dots, X_{k-1}, X_{k+1}, \rangle \in C_k, X_k < X_{k+1} \}$

- assumes items are ordered in some way (e.g., alphabetically)
- will generate each itemset only once (sorted from X_1 to X_{k+1})
- no candidate will be missed (anti-monotonicity of support)
- Pruning of C_{k+1} (Step 3(c) of the algorithm):
 - testing all k-item subsets of a k+1-itemset
 - generated by deleting each of the first k-1 conditions
 - delete the candidate set if not all k-item subsets are frequent (i.e., in Sk)

Example

	beer	chips	pizza	wine
customer 1	1	1	0	1
customer 2	1	1	0	0
customer 3	0	0	1	1
customer 4	0	1	1	0

• Find all itemsets with $s_{\min} = 0.25$

• $C_1 = \{ \{beer\}, \{chips\}, \{pizza\}, \{wine\} \}$

 $S_1 = \{ \{beer\}, \{chips\}, \{pizza\}, \{wine\} \}$

C₂ = { {beer, chips}, {beer, pizza}, {beer, wine}, {chips, pizza}, {chips, wine}, {pizza, wine} }

 $S_2 = \{ \{beer, chips\}, \{beer, wine\}, \{chips, pizza\}, \{chips, wine\}, \{pizza, wine\} \}$

•
$$C_3 = \{ \{ \text{beer, chips, wine} \}, \{ \text{chips, pizza, wine} \} \}$$

 $S_3 = \{ \{ beer, chips, wine \} \}$

•
$$C_4 = \emptyset$$

Search Space and Border

• Search Space:

 The search space for frequent itemsets can be structured with the subset relationship

• Border:

- The border are all itemsets for which
 - all subsets are frequent
 - no superset is frequent
- positive border:
 - elements of the border that are frequent
- negative border:
 - elements of the border that are infrequent
- Frequent itemsets = subsets of border + positive border

Search Space and Border

based on Bart Goethals, Survey on Frequent Pattern Mining, 2002

APRIORI Step 2: Generate Association Rules

- Association rules can be generated from frequent item sets
 - confidence of the rule can be computed efficiently from the support of *Y* and *Z*, but generating all rules may be expensive
 - for each frequent item set *X* there are $2^{|X|}$ possible association rules of the form $Y \rightarrow Z$, with $Y \cup Z = X$ and $Y \cap Z = \{\}$
- Efficient generation of association rules:
 - the generation of all subsets can be made much more efficient by exploiting the anti-monotonicity property in the heads of the rules
 - Confidence Anti-monotonicity:
 - $confidence(A \rightarrow B, C) \leq confidence(A, B \rightarrow C)$
 - Why?
 - Thus, rules can be generated with an algorithm similar to FreqSet (starting with heads with length 1, etc.)
 - if a head causes the rule to become unconfident, all supersets of the head must be unconfident

Example

Source: Bart Goethals, Survey on Frequent Pattern Mining, 2002

Example 2

	bread	butter	coffee	milk	sugar
customer 1	1	1	0	0	1
customer 2	0	0	1	1	1
customer 3	1	0	1	1	1
customer 4	0	0	1	1	0

- Find all association rules with $s_{\min} = 0.5$ and $c_{\min} = 1.0$ 1. find frequent itemsets:
 - $C_1 = \{ \{bread\}, \{butter\}, \{coffee\}, \{milk\}, \{sugar\} \}$ $S_1 = \{ \{bread\}, \{coffee\}, \{milk\}, \{sugar\} \}$
 - C₂ = { {bread, coffee}, {bread, milk}, {bread, sugar}, {coffee, milk}, {coffee, sugar}, {milk, sugar} }

 $S_2 = \{ \{bread, sugar\}, \{coffee, milk\}, \{coffee, sugar\}, \{milk, sugar\} \}$

- $C_3 = \{ \{ coffee, milk, sugar \} \}$
 - $S_3 = \{ \{ coffee, milk, sugar \} \}$
- $C_4 = 0$

Example 2 (Ctd.)

- 2. Find all rules with $c_{\min} = 1.0$
 - bread => sugar (0.5,1.0)
 - milk => coffee (0.75,1.0)
 - coffee => milk (0.75,1.0)
 - milk, sugar => coffee (0.5, 1.0)
 - sugar, coffee => milk(0.5, 1.0)
- Other rules have
 - too small frequency (filtered out by Step 1)
 - butter => bread, sugar (0.25, 1.0)
 - too small confidence (filtered out by Step 2)
 - milk, coffee => sugar (0.5, 0.67)

bread	butter	coffee	milk	sugar
1	1	0	0	1
0	0	1	1	1
1	0	1	1	1
0	0	1	1	0

Properties of APRIORI

• Efficiency

- only needs k passes through the database to find all association rules of length k
 - important if database is too big for memory
- bottleneck:
 - large number of itemsets must be tested for each item

Search space

- significant reduction of search space over searching all possible rules (2^{|1|} different subsets)
- Results
 - generates far too many rules for practical purposes
 - further filtering of result sets is necessary
 - e.g., sort rules by some measure of interestingness and report the best n rules

Filtering Association Rules

- assume rules $R_1: A, B \to C$ and $R_2: A \to C$
- OpusMagnum (Webb, 2000) filters rule R₁ if it is
 - trivial:
 - R₂ covers the same examples
 - unproductive:
 - R₂ has an equal or higher confidence
 - insignificant:
 - R₂'s confidence is not significantly worse (binomial test)
- Interesting Measures:
 - sort rules by some numerical measure of interestingness
 - return the n best rules (n set by user)
 - it is hard to formalize the notion of "interestingness"

Interestingness Measures

• Basic problem:

- support and confidence are not sufficient for capturing whether a rule is interesting or not
- a rule may have high support and confidence, but still not be interesting of surprising
- Example:
 - diapers => beer (c=0.9)
 90% of customers that buy diapers also buy beer.
 - Iooks like an interesting finding
 - BUT: if we know that 90% of *all* customers buy beer, the rule is not at all interesting

Lift & Leverage

• Lift:

- ratio of confidence over a priori expectaction for head $\frac{n(A \cup B)}{n(A)} = \frac{\frac{n(A \cup B)}{n(A)}}{\frac{n(B)}{n(B)}} = \frac{confidence(A \to B)}{support(B)} = \frac{support(A \to B)}{support(A)support(B)}$
- Leverage: *n*
 - Difference between support and expected support if rule head and body were independent

 $leverage(A \rightarrow B) = support(A \rightarrow B) - support(A) support(B)$

- leverage is a lower bound for support
 - high leverage implies high support
 - optimizing only leverage guarantees a certain minimum support (contrary to optimizing only confidence or only lift)

Best-First Search

- Frequent set based search (Apriori)
 - typically far too many rules
 - pruning is based on support/frequency, even if interesting measure is different
 - focus on minimizing the number of database scans
- OpusMagnum (Webb, KDD-2000)
 - assumes examples fit in main memory
 - directly searches for the *n* best rules in a best-first fashion
 - rule quality can be based on a variety of criteria
 - many pruning options
 - optimistic pruning: prune a rule if the highest possible value of its successors is too low to be of interest
 - syntactic constraints really reduce search space
 - for Apriori they only affect phase 2.

Vertical Database Layout

- horizontal database
 - each transaction lists bought items

	beer	wine	chips	pizza
100	1	1	1	0
200	1	0	1	0
300	0	1	0	1
400	0	0	1	1

- vertical database
 - each item lists the transactions that bought it

	beer	wine	chips	pizza
100	1	1	1	0
200	1	0	1	0
300	0	1	0	1
400	0	0	1	1

- if the vertical database fits into memory
 - itemsets can be joined by computing the intersection of the transactions that bought it

• e.g., { beer } = {1,1,0,0} \cup { wine } = {1,0,1,0} \rightarrow { beer, wine } = {1,0,0,0}

- transactions that appear in no k-item can be deleted
 - will not appear in any (*k*+1)-item
- algorithm works only if database fits into memory!

Depth-First Search

- Apriori searches for itemsets in a breadth-first fashion
- There are other algorithms that find frequent item sets depth-first:
 - Eclat (Zaki, 2000)
 - recursively generates all item-sets with the same prefix
 - uses vertical database layout
 - but data can be divided into smaller subsets based on common prefixes
 - FP-Growth (Han, Pei, Yin, 2000)
 - quite similar to Eclat, but uses an elaborate data structure, a frequent pattern tree (FP-tree)
- The Association rule growing phase is the same for these algorithms

Representational Extensions

- Nominal Attributes:
 - each *n*-valued attribute can be transformed into *n* binary attributes
 - increased efficiency if the algorithm knows that only one of these n values can appear in an item set
- Abstraction Hierarchies:
 - forming groups of items (e.g., dairy products) and using them as additional items
- Sequences:
 - efficient extension of FreqSet to find frequent subsequences
- Rule Schemata:
 - the user may restrict the pattern of rules of interest (e.g., only rules with a certain set of attributes in the head)

Application: Telecommunication Alarm Sequence Analyzer (TASA)

- Goal:
 - find temporal dependencies in alarm sequences for
 - recognizing redundant alarms
 - detecting problems in the networks
 - early warning of severe problems
- Data:
 - temporal sequence of alarms in a finnish telecommunications network
 - 200-10000 alarms/day, 73679 alarms over 50 days, 287 different alarm types
- Find:
 - associations in time sequences of a certain length
 - IF alarm A and alarm B occur within 5 seconds THEN with probability 0.7, alarm C will follow within 60 seconds

References

- Bart Goethals. Survey on Frequent Pattern Mining. Manuscript, 2003. http://www.adrem.ua.ac.be/~goethals/publications/survey.pdf
- Ian H. Witten, Eibe Frank, Data Mining: *Practical Machine Learning Tools and Techniques with Java Implementations*, Morgan Kaufmann, 2nd edition 2005. (sections 3.4 and 4.5)

Software:

- Geoff Webb, Magnum Opus, Demo Version (limited to 1000 examples). http://www.csse.monash.edu.au/~webb/software.htm
- Other Association Rule Learning software is also available by Mohammed Zaki, Bart Goethals, or Christian Borgelt, and a version of APriori is implemented in Weka.