
1 © J. Fürnkranz

Inductive Rule LearningInductive Rule Learning

● Introduction
● Version Spaces

 Generality Relations
 Structured Hypothesis Spaces
 Version Spaces
 Candidate-Elimination Algorithm

● Separate-and-Conquer Rule Learning
 Covering algorithm
 Bottom-Up/Top-Down Learning
 Rule Evaluation Heuristics
 Pruning
 Multi-Class Problems

2 © J. Fürnkranz

Rule-based ClassifiersRule-based Classifiers

● A classifier basically is a function that computes the output
(the class) from the input (the attribute values)

● Rule learning tries to represent this function in the form
of (a set of) IF-THEN rules
IF (att

i
 = val

iI
) AND (att

j
 = val

jJ
) THEN class

k

● Coverage
 A rule is said to cover an example if the example satisfies

the conditions of the rule.
● Correctness

 completeness: Each example should be covered by (at
least) one rule

 consistency: For each example, the predicted class should
be identical to the true class.

3 © J. Fürnkranz

A sample taskA sample task
Temperature Outlook Humidity Windy Play Golf?

hot sunny high false no
hot sunny high true no
hot overcast high false yes
cool rain normal false yes
cool overcast normal true yes
mild sunny high false no
cool sunny normal false yes
mild rain normal false yes
mild sunny normal true yes
mild overcast high true yes
hot overcast normal false yes
mild rain high true no
cool rain normal true no
mild rain high falsch yes

● Task:
 Find a rule set that correctly predicts the dependent

variable from the observed variables

4 © J. Fürnkranz

A Simple SolutionA Simple Solution

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=mild AND H=high AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
IF T=mild AND H=high AND O=rain AND W=false THEN yes

5 © J. Fürnkranz

A Better SolutionA Better Solution

IF Humidity = high AND Outlook = sunny THEN no
IF Outlook = rain AND Windy = true THEN no
ELSE yes

6 © J. Fürnkranz

Rules vs. Trees Rules vs. Trees

● Rule sets are at least as expressive as decision trees
 a decision tree can be viewed as a set of non-overlapping

rules
 typically learned via divide-and-conquer algorithms

(recursive partitioning)
● Many concepts have a shorter description as a rule set

 exceptions: if one or more attributes are relevant for the
classification of all examples (e.g., parity)

7 © J. Fürnkranz

Generality RelationGenerality Relation

● Rule r1 is more general than r2
 if it covers all examples that are covered by r1.

● Rule r1 is more specific than r2
 if r2 is more general than r1.

● Rule r1 is equivalent to r2
 if it is more specific and more general than r2.

● Examples: IF size > 5 THEN +
IF size > 3 THEN +

IF outlook = sunny AND windy = false THEN +
IF outlook = sunny THEN +

IF animal = mammal THEN +
 IF feeds_children = milk THEN +

8 © J. Fürnkranz

Structured Hypothesis SpaceStructured Hypothesis Space

 The availability of a generality relation allows to structure the
hypothesis space:

Structured Hypothesis Space
arrows represent „is more general than“

Instance Space

...

...

...

...

...

...

Ø

9 © J. Fürnkranz

Testing for GeneralityTesting for Generality

● In general, we cannot check the generality of theories
 We do not have all examples of the domain available (and it

would be too expensive to generate them)
● For single rules, we can approximate generality via a

syntactic generality check:
 Rule r1 is more general than r2 if the set of conditions of r1

forms a subset of the set of conditions of r2.
 Why is this only an approximation?

● For the general case, computable generality relations will
rarely be available
 E.g., rule sets

● Structured hypothesis spaces and version spaces are also
a theoretical model for learning

10 © J. Fürnkranz

Algorithm Find-SAlgorithm Find-S

I. h = most specific hypothesis in H
 (covering no examples)

II. for each training example e
a)if e is negative

● do nothing
b)if e is positive

● for each condition c in h
● if c does not cover e

● delete c from h
III.return h

Note: when the first positive examples is encountered, step II.b)
 reduces to converting the example into a rule

11 © J. Fürnkranz

Properties of Find-SProperties of Find-S

● completeness:
 h covers all positive examples

● consistency:
 h will not cover any negative training examples
 but only if the hypothesis space contains a target concept

(i.e., there is a single conjunctive rule that describes the target concept)
● Properties:

 no way of knowing whether it has found the target concept
(there might be more than one theory that are complete and consistent)

 it prefers more specific hypothesis
(it will never generalize unless forced by a training example)

 it only maintains one specific hypothesis
(in other hypothesis languages there might be more than one)

12 © J. Fürnkranz

Version SpaceVersion Space

● The Version Space V is the set of all hypotheses that
 cover all positive examples (completeness)
 do not cover any negative examples (consistency)

● For structured hypothesis spaces there is an efficient
representation consisting of
 the general boundary G

● all hypotheses in V for which no generalization is in V
 the specific boundary S

● all hypotheses in V for which no specialization is in V
● a hypothesis that is neither in G nor in S is

 a generalization of at least one hypothesis in S
 a specialization of at least one hypothesis in G

13 © J. Fürnkranz

Candidate Elimination AlgorithmCandidate Elimination Algorithm

● G = set of maximally general hypotheses
S = set of maximally specific hypotheses

● For each training example e
 if e is positive

● For each hypothesis g in G that does not cover e
 remove g from G

● For each hypothesis s in S that does not cover e
 remove s from S
 S = S U all hypotheses h such that

 h is a minimal generalization of s
 h covers e
 some hypothesis in G is more general than h

 remove from S any hypothesis that is more general than another
hypothesis in S

14 © J. Fürnkranz

Candidate Elimination Algorithm Candidate Elimination Algorithm
(Ctd.)(Ctd.)

 if e is negative
● For each hypothesis s in S that covers e

 remove s from S
● For each hypothesis g in G that covers e

 remove g from G
 G = G U all hypotheses h such that

 h is a minimal specialization of g
 h does not e
 some hypothesis in S is more specific than h

 remove from G any hypothesis that is less general than another
hypothesis in G

15 © J. Fürnkranz

ExampleExample

No. Sky Temperature Humidity Windy Water Forecast sport?
1 sunny hot normal strong warm same yes
2 sunny hot high strong warm same yes
3 rainy cool high strong warm change no
4 sunny hot high strong cool change yes

S0: { <Ø,Ø,Ø,Ø,Ø,Ø> }
G0: { <?, ?, ?, ?, ?, ?> }

S1: { <sunny, hot, normal, strong, warm,same> }
G1: { <?, ?, ?, ?, ?, ?> }

S2: { <sunny, hot, ?, strong, warm,same> }
G2: { <?, ?, ?, ?, ?, ?> }

S3: { <sunny, hot, ?, strong, warm,same> }
G3: { <sunny, ?, ?, ?, ?, ? >
 <?, hot, ?, ?, ?, ? >
 <?, ?, ?, ?, ?, same > }

S4: { <sunny, hot, ?, strong, ?, ? > }
G4: { <sunny, ?, ?, ?, ?, ? >
 <?, hot, ?, ?, ?, ? >}

16 © J. Fürnkranz

How to Classify these Examples?How to Classify these Examples?

No. Sky Temperature Humidity Windy Water Forecast sport?
5 sunny hot normal strong cool change yes
6 rainy cool normal light warm same no
7 sunny hot normal light warm same ?
8 sunny cool normal strong warm same maybe no

● Version Space:

● How to Classify these Examples?

 G <sunny, ?, ?, ?, ?, ? > <?, hot, ?, ?, ?, ? >

<sunny, ?, ?, strong, ?, ?> <sunny, hot, ?, ?, ?, ?> <?, hot, ?, strong, ?, ?>

 S <sunny, hot, ?, strong, ?, ? >

17 © J. Fürnkranz

PropertiesProperties
● Convergence towards target theory

 If S = G
● Using partially learned concepts

 an example that matches all elements in S must be a member
of the target concept

 an example that matches no element in G cannot be a
member of the target concept

 examples that match parts of S and G are undecidable
● no need to remember examples (incremental learning)
● Assumptions

 no errors in the training set
 the hypothesis space contains the target theory
 practical only if generality relation is (efficiently) computable

18 © J. Fürnkranz

TerminologyTerminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P
class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n) P+N

● training examples
● P: total number of positive examples
● N: total number of negative examples

● examples covered by the rule (predicted positive)
● true positives p: positive examples covered by the rule
● false positives n: negative examples covered by the rule

● examples not covered the rule (predicted negative)
● false negatives P-p: positive examples not covered by the rule
● true negatives N-n: negative examples not covered by the rule

19 © J. Fürnkranz

Coverage Spaces Coverage Spaces

● good tools for visualizing properties of covering algorithms
● each point is a theory covering p positive and n negative examples

universal theory:
all examples
are covered

empty theory:
no examples
are covered

perfect theory:
all positive and

no negative
examples

are covered

default distribution:
maintain P/(P+N)

positive and N/(P+N)
negative examples

opposite theory:
all negative and

no positive
examples

are covered

iso-accuracy:
cover same
amount of
positive

and negative
examples

20 © J. Fürnkranz

Learning Rule SetsLearning Rule Sets

● many datasets cannot be solved with a single rule
 not even the simple weather dataset
 they need a rule set for formulating a target theory

● finding a computable generality relation for rule sets is not
trivial
 adding a condition to a rule specializes the theory
 adding a new rule to a theory generalizes the theory

● practical algorithms use different approaches
 covering or separate-and-conquer algorithms

21 © J. Fürnkranz

Separate-and-ConquerSeparate-and-Conquer
Rule LearningRule Learning

 Learn a set of rules, one by one
1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T
3. If T is satisfactory (complete), return T
4. Else:

• Separate: Remove examples explained by R from E
• Conquer: If E is non-empty, goto 2.

 One of the oldest family of learning algorithms
● goes back AQ (Michalski, 60s)
● FRINGE, PRISM and CN2: relation to decision trees (80s)
● popularized in ILP (FOIL and PROGOL, 90s)
● RIPPER brought in good noise-handling

 Different learners differ in how they find a single rule

● language bias:
 which type of

conditions are allowed
(static)

 which combinations of
condictions are
allowed (dynamic)

● search bias:
 search heuristics
 search algorithm

(greedy, stochastic,
exhaustive)

 search strategy (top-
down, bottom-up)

● overfitting avoidance
bias:
 pre-pruning

(stopping criteria)
 post-pruning

23 © J. Fürnkranz

Covering StrategyCovering Strategy

● Covering or Separate-and-Conquer
rule learning learning algorithms
learn one rule at a time

● This corresponds to a path in
coverage space:

● The empty theory R0 (no rules)
corresponds to (0,0)

● Adding one rule never
decreases p or n because
adding a rule covers more
examples (generalization)

● The universal theory R+ (all
examples are positive)
corresponds to (N,P)

24 © J. Fürnkranz

Top-Down Hill-ClimbingTop-Down Hill-Climbing

 Top-Down: A rule is successively specialized

1. Start with an empty rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

● Almost all greedy s&c rule learning systems use this
strategy

25 © J. Fürnkranz

Top-Down Hill-ClimbingTop-Down Hill-Climbing
● successively extends a rule by adding conditions

● This corresponds to a path in
coverage space:
 The rule p:-true covers all

examples (universal theory)
 Adding a condition never

increases p or n (specialization)
 The rule p:-false covers

no examples (empty theory)

● which conditions are selected depends on a heuristic function that
estimates the quality of the rule

26 © J. Fürnkranz

Rule Learning HeuristicsRule Learning Heuristics

● Adding a rule should
 increase the number of covered negative examples as little as

possible (do not decrease consistency)
 increase the number of covered positive examples as much

as possible (increase completeness)
● An evaluation heuristic should therefore trade off these two

extremes
 Example: Laplace heuristic

● grows with
● grows with

 Note: Precision is not a good heuristic. Why?

hLap=
p1

pn2

hPrec=
p

pn

p∞
n0

27 © J. Fürnkranz

ExampleExample

Condition p n Precision Laplace p-n
Hot 2 2 0.5000 0.5000 0

Temperature = Mild 3 1 0.7500 0.6667 2
Cold 4 2 0.6667 0.6250 2
Sunny 2 3 0.4000 0.4286 -1

Outlook = Overcast 4 0 1.0000 0.8333 4
Rain 3 2 0.6000 0.5714 1

Humidity = High 3 4 0.4286 0.4444 -1
Normal 6 1 0.8571 0.7778 5

Windy = True 3 3 0.5000 0.5000 0
False 6 2 0.7500 0.7000 4

● Heuristics Precision and Laplace
 add the condition Outlook= Overcast to the (empty) rule
 stop and try to learn the next rule

● Heuristic Accuracy / p-n
 adds Humidity = Normal
 continue to refine the rule (until no covered negative)

28 © J. Fürnkranz

Isometrics in Coverage SpaceIsometrics in Coverage Space

● Isometrics are lines that connect points for which a
function in p and n has equal values
 Examples: Isometrics for heuristics h

p
 = p and h

n
 = -n

29 © J. Fürnkranz

Precision (Confidence)Precision (Confidence)

● basic idea:
percentage of positive
examples among covered
examples

● effects:
 rotation around origin

(0,0)
 all rules with same

angle equivalent
 in particular, all rules

on P/N axes are
equivalent

hPrec=
p

pn

30 © J. Fürnkranz

Entropy and Gini Index Entropy and Gini Index

 effects:
 entropy and Gini index are

equivalent
 like precision, isometrics

rotate around (0,0)
 isometrics are symmetric

around 45o line
 a rule that only covers

negative examples is as
good as a rule that only
covers positives

hEnt=− p
pn

log2
p

pn
 n

pn
log2

n
pn

hGini=1− p
pn

2

− n
pn

2

≃ pn
 pn2

31 © J. Fürnkranz

Accuracy Accuracy

● basic idea:
percentage of correct
classifications
(covered positives plus
uncovered negatives)

● effects:
 isometrics are parallel

to 45o line
 covering one positive

example is as good as
not covering one
negative example

hAcc=
pN−n

PN
≃ p−n

32 © J. Fürnkranz

Weighted Relative Accuracy Weighted Relative Accuracy

● basic idea:
normalize accuracy with
the class distribution

● effects:
 isometrics are parallel

to diagonal
 covering x% of the

positive examples is as
good as not covering
x% of the negative
examples

hAcc=
pn

PN
 p

pn
− P

PN
≃ p

P
− n

N

33 © J. Fürnkranz

Linear Cost MetricLinear Cost Metric

● Accuracy and weighted relative accuracy are only two
special cases of the general case with linear costs:
 costs c mean that covering 1 positive example is

equivalent to not covering (1-c)/c negative examples

 The general form is then
● the isometrics of hcost are parallel lines with slope (1-c)/c

hcost=cp−1−cn

c measure
½ accuracy

P/(P+N) weighted relative accuracy
0 excluding negatives at all costs
1 covering positivesat all costs

34 © J. Fürnkranz

Laplace-Estimate Laplace-Estimate

● basic idea:
precision, but count
coverage for positive
and negative examples
starting with 1 instead
of 0

● effects:
 origin at (-1,-1)
 different values on

p=0 or n=0 axes
 not equivalent to

precision

hLap=
p1

pn2

35 © J. Fürnkranz

m-Estimate m-Estimate
● basic idea:

initialize the counts with m
examples in total, distributed
according to the prior
distribution P/(P+N) of p and
n.

● effects:
 origin shifts to

(-mP/(P+N),-mN/(P+N))
 with increasing m, the

lines become more and
more parallel

 can be re-interpreted as a
trade-off between WRA
and confidence

hm=
pm P

PN
pnm

=
pm P

PN

 pm P
PN

nm N
PN

36 © J. Fürnkranz

Generalized m-EstimateGeneralized m-Estimate

● One can re-interpret the m-Estimate:
 Re-interpret c = N/(P+N) as a cost factor like in the general

cost metric
 Re-interpret m as a trade-off between precision and cost-

metric
● m = 0: precision (independent of cost factor)
● m∞: the isometrics converge towards the parallel

isometrics of the cost metric
● Thus, the m-Estimate may be viewed as a means of

trading off between precision and the cost metric

37 © J. Fürnkranz

Optimizing Precision Optimizing Precision

● Precision tries to pick the steepest continuation of the
curve
 does not assume any costs

38 © J. Fürnkranz

Optimizing AccuracyOptimizing Accuracy

● Accuracy assumes the same costs in all subspaces
 a local optimum in a sub-space is also a global optimum in

the entire space

39 © J. Fürnkranz

Summary of Rule Learning HeuristicsSummary of Rule Learning Heuristics
● There are two basic types of (linear) heuristics.

 precision: rotation around the origin
 cost metrics: parallel lines

● They have different goals
 precision picks the steepest continuation for the curve for

unkown costs
 linear cost metrics pick the best point according to known or

assumed costs

● The m-heuristic may be interpreted as a trade-off
between the two prototypes
 parameter c chooses the cost model
 parameter m chooses the “degree of parallelism”

40 © J. Fürnkranz

Foil GainFoil Gain

 (c is the precision of the parent clause)

h foil=− p log2 c−log2
p

pn

41 © J. Fürnkranz

A Pathology forA Pathology for
Top-Down LearningTop-Down Learning

● Parity problems (e.g. XOR)
 r relevant binary attributes
 s irrelevant binary attributes
 each of the n = r + s attributes has values 0/1 with probability ½
 an example is positive if the number of 1's in the relevant

attributes is even, negative otherwise
 Problem for top-down learning:

● by construction, each condition of the form a
i
 = 0 or a

i
 = 1

covers approximately 50% positive and 50% negative
examples

● irrespective of whether a
i
 is a relevant or an irrelevant attribute

➔ top-down hill-climbing cannot learn this type of concept
 Typical recommendation:

● use bottom-up learning for such problems

42 © J. Fürnkranz

Bottom-Up Approach: Motivation Bottom-Up Approach: Motivation

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=mild AND H=high AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
IF T=mild AND H=high AND O=rain AND W=false THEN yes

43 © J. Fürnkranz

Bottom-Up Hill-ClimbingBottom-Up Hill-Climbing

 Simple inversion of top-down hill-climbing

 A rule is successively generalized

1. Start with an empty rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one

4. If R is satisfactory, return it

5. Else goto 2.

a fully specialized a single example

delete

44 © J. Fürnkranz

A Pathology of Bottom-Up A Pathology of Bottom-Up
Hill-ClimbingHill-Climbing

att1 att2 att3

+ 1 1 1

+ 1 0 0

− 0 1 0

− 0 0 1

 Target concept att1 = 1 not (reliably) learnable with
bottom-up hill-climbing

 because no generalization of a seed example will increase
coverage

 Hence you either stop or make an arbitrary choice (e.g.,
delete attribute 1)

45 © J. Fürnkranz

Bottom-Up Rule Learning AlgorithmsBottom-Up Rule Learning Algorithms

● AQ-type:
 select a seed example and search the space of its

generalizations
 BUT: search this space top-down
 Examples: AQ (Michalski 1969), Progol (Muggleton 1995)

● based on least general generalizations (lggs)
 greedy bottom-up hill-climbing
 BUT: expensive generalization operator

(lgg/rlgg of pairs of seed examples)
 Examples: Golem (Muggleton & Feng 1990), DLG (Webb 1992), RISE

(Domingos 1995)
● Incremental Pruning of Rules:

 greedy bottom-up hill-climbing via deleting conditions
 BUT: start at point previously reached via top-down specialization
 Examples: I-REP (Fürnkranz & Widmer 1994), Ripper (Cohen 1995)

46 © J. Fürnkranz

Overfitting Overfitting

● Overfitting
 Given

● a fairly general model class
● enough degrees of freedom

 you can always find a model that explains the data
● even if the data contains error (noise in the data)
● in rule learning: each example is a rule

● Such concepts do not generalize well!
 → Pruning

47 © J. Fürnkranz

Pre-Pruning Pre-Pruning

● keep a theory simple while it is
learned

● decide when to stop adding
conditions to a rule
(relax consistency
constraint)

● decide when to stop adding
rules to a theory
(relax completeness
constraint)

 efficient but not accurate

48 © J. Fürnkranz

Pre-Pruning HeuristicsPre-Pruning Heuristics

● Threshold
 require a certain minimum value of the search heuristic
 e.g.: Laplace > 0.8.

● Foil's Minimum Description Length Criterion
 the length of the theory plus the exceptions (misclassified

examples) must be shorter than the length of the examples by
themselves

 lengths are measured in bits (information content)
● CN2's Significance Test

 tests whether the distribution of the examples covered by a
rule deviates significantly from the distribution of the examples
in the entire training set

 if not, discard the rule

49 © J. Fürnkranz

Minimum Coverage FilteringMinimum Coverage Filtering

 positive examples all examples

filter rules that do not cover a minimum number of

50 © J. Fürnkranz

Support/Confidence FilteringSupport/Confidence Filtering

● filter rules that
 cover not enough positive

examples (p < suppmin)
 are not precise enough

(hprec < confmin)
● effects:

 all but a region around
(0,P) is filtered

51 © J. Fürnkranz

CN2's likelihood ratio statisticsCN2's likelihood ratio statistics

● basic idea:
measure significant deviation
from prior probability
distribution

● effects:
 non-linear isometrics

● similar to m-estimate
● but prefer rules near the

edges
 distributed χ2

 significance levels 95%
(dark) and 99% (light grey)

hLRS=2 p log p
e p

n log n
en

e p= pn P
PN

;en= pn N
PN

52 © J. Fürnkranz

Fossil's CorrelationFossil's Correlation

● basic idea:
measure correlation coefficient
of predictions with target

● effects:
 non-linear isometrics
 in comparison to WRA

● prefers rules near the
edges

● steepness of connection
of intersections with
edges increases

 equivalent to χ2

 grey area = cutoff of 0.3

hCorr=
p N−n−P− pn

PN pnP− pN−n

53 © J. Fürnkranz

Foil's MDL-based Stopping CriterionFoil's MDL-based Stopping Criterion

● basic idea:
compare the encoding length
of the rule l(r) to the encoding
length hMDL of the example.
 we assume l(r) = c constant

● effects:
 equivalent to filtering on

support

hMDL=log2PN log2PN
p

54 © J. Fürnkranz

Anomaly of Foil's Stopping criterionAnomaly of Foil's Stopping criterion

● We have tacitly assumed N > P...

● hMDL assumes its maximum at p = (P+N)/2
 thus, for P > N, the maximum is not on top!

● there may be rules
● of equal length
● covering the same number of negative

examples
● the rule covering fewer positive examples is

acceptable
● but the rule covering more positive

examples is not!

55 © J. Fürnkranz

Pre-Pruning SystemsPre-Pruning Systems

● Foil:
 Search heuristic: Foil Gain
 Pruning: MDL-Based

● CN2:
 Search heuristic: Laplace/m-heuristic
 Pruning: Likelihood Ratio

● Fossil:
 Search heuristic: Correlation
 Pruning: Threshold

56 © J. Fürnkranz

How Foil WorksHow Foil Works

 filtering of rules with no
information gain
● after each refinement step,

the region of acceptable
rules is adjusted as in
precision/confidence
filtering

 filtering of rules that
exceed the rule length
● after each refinement step,

the region of acceptable
rules is adjusted as in
support filtering

→ Foil (almost) implements Support/Confidence Filtering

57 © J. Fürnkranz

Post Pruning Post Pruning

● simplify a theory after it has been learned
● Reduced Error Pruning

 anaologous to decision trees
● Reserve part of the data for validation (pruning set)
● Learn a rule set
● Simplify rule set by deleting rules and conditions as long as this

does not decrease accuracy on the validation set
● accurate but not efficient

 O(n4)

58 © J. Fürnkranz

Reduced Error PruningReduced Error Pruning

60 © J. Fürnkranz

Incremental Incremental
Reduced Error PruningReduced Error Pruning

● Prune each rule right after it is learned:

1. split data into a training and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does
not increase

4. if the rule is better than the default rule, add it to the rule set
and goto 1.

● More accurate, much more efficient
 because it does not learn overly complex intermediate concept

 REP: O(n4) I-REP: O(n log2n)

● Subsequently used in the RIPPER (JRip in Weka) rule
learner (Cohen, 1995)

62 © J. Fürnkranz

Multi-class problems Multi-class problems

 GOAL: discriminate c
classes from each other

 PROBLEM: many learning
algorithms are only suitable
for binary (2-class)
problems

 SOLUTION:
"Class binarization":
Transform an c-class
problem into a series of 2-
class problems

63 © J. Fürnkranz

Class Binarization for Rule LearningClass Binarization for Rule Learning
● None

 class of a rule is defined by the majority of covered
examples

 decision lists, CN2 (Clark & Niblett 1989)
● One-against-all / unordered

 foreach class c: label its examples positive, all others
negative

 CN2 (Clark & Boswell 1991), Ripper -a unordered
● Ordered

 sort classes - learn first against rest - remove first - repeat
 Ripper (Cohen 1995)

● Error Correcting Output Codes (Dietterich & Bakiri, 1995)
 generalized by (Allwein, Schapire, & Singer, JMLR 2000)

64 © J. Fürnkranz

One-against-all binarizationOne-against-all binarization

Treat each class as a separate concept:
 c binary problems, one for each class
 label examples of one class positive, all others negative

65 © J. Fürnkranz

Round Robin LearningRound Robin Learning
(aka (aka Pairwise ClassificationPairwise Classification))

 c(c-1)/2 problems
 each class against each

other class

✔ smaller training sets
✔ simpler decision

boundaries
✔ larger margins

66 © J. Fürnkranz

Accuracy Accuracy

● error rates on 20
datasets with 4 or
more classes
 10 significantly

better (p > 0.99,
McNemar)

 2 significantly
better (p > 0.95)

 8 equal
 never

(significantly)
worse

67 © J. Fürnkranz

Yes, but isn't that expensive?Yes, but isn't that expensive?

YES:
We have O(c2) learning problems...

but NO:
the total training effort is smaller than for the c learning
problems in the one-against-all setting!

● Fine Print :
 single round robin

● more rounds add a constant factor
 training effort only

● test-time and memory are still quadratic
● BUT: theories to test may be simpler

68 © J. Fürnkranz

Advantages of Round RobinAdvantages of Round Robin
● Accuracy

 never lost against one-
against-all

 often significantly more
accurate

● Efficiency
 proven to be faster than,

e.g., one-against-all,
ECOC, boosting...

 higher gains for slower
base algorithms

● Understandability
 simpler boundaries/concepts
 similar to pairwise ranking as

recommended by Pyle (1999)
● Example Size Reduction

 each binary task is
considerably smaller than
original data

 subtasks might fit into
memory where entire task
does not

● Easily parallelizable
 each task is independent of

all other tasks

