Inductive Rule Learning

® |ntroduction

® \ersion Spaces
= Generality Relations
= Structured Hypothesis Spaces
= Version Spaces
= Candidate-Elimination Algorithm
® Separate-and-Conquer Rule Learning
= Covering algorithm
= Bottom-Up/Top-Down Learning
= Rule Evaluation Heuristics
= Pruning
= Multi-Class Problems
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Rule-based Classifiers

® A classifier basically is a function that computes the output
(the class) from the input (the attribute values)

® Rule learning tries to represent this function in the form
of (a set of) IF-THEN rules

IF (att, = val.) AND (att = val ) THEN class,

e Coverage

= Arule is said to cover an example if the example satisfies
the conditions of the rule.

® Correctness

= completeness: Each example should be covered by (at
least) one rule

= consistency:. For each example, the predicted class should
be identical to the true class.
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Temperature Outlook

hot

hot

hot
cool
cool
mild
cool
mild
mild
mild

hot
mild
cool
mild

® Task:

A sample task

sunny
sunny
overcast
rain
overcast
sunny
sunny
rain
sunny
overcast
overcast
rain
rain
rain

Humidity

high
high
high
normal
normal
high
normal
normal
normal
high
normal
high
normal
high

Windy
false
true
false
false
true
false
false
false
true
true
false
true
true

falsch

Play Golf?

= Find a rule set that correctly predicts the dependent

variable from the observed variables
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A Simple Solution

IF T=hot AND H=high = AND O=sunny AND W=false THEN no
IF T=hot AND H=high = AND O=sunny AND W=true THEN no
IF T=hot AND H=high = AND O-=overcast AND W=false THEN vyes
IF T=cool AND H=normal AND O=rain AND W=false THEN vyes
IF T=cool AND H=normal AND O-=overcast AND W=true THEN yes
IF T=mild AND H=high = AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN vyes
IF T=mild AND H=normal AND O=rain AND W-=false THEN yes
IF T=mild AND H=normal AND O-=sunny AND W=true THEN yes
IF T=mild AND H=high  AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W-=false THEN yes
IF T=mild AND H=high  AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
H=high ~ AND O=rain AND W=false




A Better Solution

IF Humidity = high AND Outlook = sunny THEN no
IF Outlook = rain AND Windy = true  THEN no

ELSE yes
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Rules vs. Trees

® Rule sets are at least as expressive as decision trees

= a decision tree can be viewed as a set of non-overlapping
rules

= typically learned via divide-and-conquer algorithms
(recursive partitioning)

® Many concepts have a shorter description as a rule set

= exceptions: if one or more attributes are relevant for the
classification of all examples (e.g., parity)
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Rule r1 is

Generality Relation

than r2

= if it covers all examples that are covered by r1.

Rule r1 is

than r2

= if r2 is more general than r1.

Rule r1 is

tor2

= if it is more specific and more general than r2.

Examples:

IF size > 5 THEN +
IF size > 3 THEN +

IF outlook = sunny AND windy = false THEN +
IF outlook = sunny THEN +

IF animal = mammal THEN +
IF feeds_children = milk THEN +

7

© J. Furnkranz



Structured Hypothesis Space

= The availability of a generality relation allows to structure the
hypothesis space:

— 7\
K /\/}/\
AR

. @

Structured Hypothesm Space Instance Space
arrows represent ,,is more general than*
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Testing for Generality

In general, we cannot check the generality of theories

= We do not have all examples of the domain available (and it
would be too expensive to generate them)

For single rules, we can approximate generality via a
Syntactic generality check:

= Rulerlis than r2 if the set of conditions of r1
forms a of the set of conditions of r2.

= Why is this only an approximation?

For the general case, computable generality relations will
rarely be available

= E.g., rule sets

Structured hypothesis spaces and version spaces are also
a theoretical model for learning
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Algorithm Find-S

|. h = most specific hypothesis in H
(covering no examples)

ll. for each training example e
a)if e is negative
* do nothing
b)if e is positive
» for each condition cin h

e if c does not cover e
e delete ¢ from h

lll.return h

Note: when the first positive examples is encountered, step 11.b)
reduces to converting the example into a rule
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Properties of Find-S

® completeness:
= h covers all positive examples

® consistency:
= h will not cover any negative training examples

= but only if the hypothesis space contains a target concept
(i.e., there is a single conjunctive rule that describes the target concept)

® Properties:

= no way of knowing whether it has found the target concept
(there might be more than one theory that are complete and consistent)

= it prefers more specific hypothesis
(it will never generalize unless forced by a training example)

= it only maintains one specific hypothesis
(in other hypothesis languages there might be more than one)
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Version Space

® The Version Space V is the set of all hypotheses that

= cover all positive examples (completeness)
= do not cover any negative examples (consistency)

® For structured hypothesis spaces there is an efficient
representation consisting of

= the general boundary G

¢ all hypotheses in V for which no generalization is in V
= the specific boundary S

e all hypotheses in V for which no specialization is in V
® a hypothesis that is neitherin G norin S is
= a generalization of at least one hypothesis in S
= a specialization of at least one hypothesis in G
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Candidate Elimination Algorithm

® G = set of maximally general hypotheses
S = set of maximally specific hypotheses
® For each training example e
= if e is positive
® For each hypothesis g in G that does not cover e
m remove g from G

® For each hypothesis s in S that does not cover e
= remove s from S

m S =S U all hypotheses h such that
+ h is a minimal generalization of s
+ h covers e
+ some hypothesis in G is more general than h

m remove from S any hypothesis that is more general than another
hypothesis in S
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Candidate Elimination Algorithm
(Ctd.)

= if e is negative
® For each hypothesis s in S that covers e
= remove s from S
® For each hypothesis g in G that covers e
= remove g from G
m G =G U all hypotheses h such that
+ h is a minimal specialization of g
¢+ h does not e
+ some hypothesis in S is more specific than h

m remove from G any hypothesis that is less general than another
hypothesis in G
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Example

No. Sky Temperature Humidity Windy Water Forecast sport?
1 sunny hot normal strong warm same yes
2 sunny hot high strong warm same yes
3 rainy cool high strong warm change no
4 sunny hot high strong cool change yes
So: { <0,0,0,0,0,0> } S;: { <sunny, hot, ?, strong, warm,same> }
Gg: {<7,2,2,2,0,7> } Gj: { <sunny, ?,?,?,?7,7>

<?,hot, ?,?,?,?7>
<?,?7,?,?,7?, same > }
Si: { <sunny, hot, normal, strong, warm,same> }
Gi:{<2,72,7,7,07>}
S4: { <sunny, hot, ?, strong, ?,? >}
Gy: { <sunny, ?,?,?,7,7>

S,: { <sunny, hot, ?. strong., warm.same>
2 AR ’ } <2,hot, 2,2, 2, 7>

Gy {<2,2,2,2,2,7> )
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How to Classify these Examples?

® \ersion Space:

<sunny ‘?‘??‘7?> <7hot?‘?‘?‘7>

<sunny, ?, ?, strong, ?, 7> <sunny, hot, ?, 7, ?, 7> <?, hot, ?, strong, ?, 7>

Tl e e

S <sunny, hot, ?, strong, ?, ? >

® How to Classify these Examples?

No. Sky Temperature Humidity Windy Water Forecast sport?
5 sunny hot normal strong cool change yes
6 rainy cool normal light warm same no
7 sunny hot normal light warm same ?
8 sunny cool normal strong warm same maybe no
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Properties

Convergence towards target theory
» [fS=G
Using partially learned concepts

= an example that matches all elements in S must be a member
of the target concept

= an example that matches no element in G cannot be a
member of the target concept

= examples that match parts of S and G are undecidable
no need to remember examples (incremental learning)
Assumptions

= no errors in the training set
= the hypothesis space contains the target theory
= practical only if generality relation is (efficiently) computable
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Terminology

® training examples
e P: total number of positive examples
® N: total number of negative examples
® examples covered by the rule (predicted positive)

o p: positive examples covered by the rule
® false positives n: negative examples covered by the rule

® examples not covered the rule (predicted negative)

® false negatives P-p: positive examples not covered by the rule
o N-n. negative examples not covered by the rule

predicted + predicted -

WENSR  p (true positives) P-p (false negatives)

class - n (false positives) N-n (true negatives)
p+tn P+N— (p+n)
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Coverage Spaces

® good tools for visualizing properties of covering algorithms
® each point is a theory covering p positive and » negative examples

: universal theory:
all positive and N 4 | allexamples

no negative are covered
examples

are covered

£ i default distribution:
. : = maintain P/(P+N)
e B . positive and N/(P+N)
amount of 2 - negative examples
positive B
and negative =
examples U opposite theory:

all negative and

empty theory: no positive
no examples - examples
are covered are covered

=4

covered negative examples
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Learning Rule Sets

® many datasets cannot be solved with a single rule
= not even the simple weather dataset
= they need a rule set for formulating a target theory
¢ finding a computable generality relation for rule sets is not
trivial
= adding a condition to a rule specializes the theory
= adding a new rule to a theory generalizes the theory
® practical algorithms use different approaches
= covering or separate-and-conquer algorithms
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Separate-and-Conquer
Rule Learning

m | earn a set of rules, one by one

1. Start with an empty theory T and training set E

2. Learn a single (consistent) rule R from E and add itto T
3. If T Is satisfactory (complete), return T

4. Else:

- Separate: Remove examples explained by R from E

- Conquer: If E is non-empty, goto 2.

= One of the oldest family of learning algorithms

® goes back AQ (Michalski, 60s)

® FRINGE, PRISM and CN2: relation to decision trees (80s)
® popularized in ILP (FOIL and PROGOL, 90s)

® RIPPER brought in good noise-handling

= Different learners differ in how they find a single rule
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® lJanguage bias:

+ which type of
conditions are allowed
(static)

¢ which combinations of
condictions are
allowed (dynamic)

search bias:
search heuristics

search algorithm
(greedy, stochastic,
exhaustive)

search strategy (top-
down, bottom-up)
® overfitting avoidance
bias:
¢ pre-pruning
(stopping criteria)
¢ post-pruning



Covering Strategy

® Covering or Separate-and-Conquer
rule learning learning algorithms
learn one rule at a time L R

® This corresponds to a path in
coverage space:

The empty theory R, (no rules) R
corresponds to (0,0)

Adding one rule never

decreases p or n because
adding a rule covers more
examples (generalization)

The universal theory R+ (all ) N
examples are positive)
corresponds to (N,P)
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Top-Down Hill-Climbing

® Top-Down: A rule is successively specialized

1. Start with an empty rule R that covers all examples
2. Evaluate all possible ways to add a condition to R
3. Choose the best one (according to some heuristic)
4. If R is satisfactory, return it

5. Else goto 2.

® Almost all greedy s&c rule learning systems use this
strategy
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Top-Down Hill-Climbing

® Successively extends a rule by adding conditions

o

e
® This corresponds to a path in b p-a
—ab.
coverage space: i

= The rule p:-true covers all
examples (universal theory)

= Adding a condition never
increases p or n (specialization)

= Therule p:-false covers
no examples (empty theory)

n-abc

o ¥P- false

0 M

® which conditions are selected depends on a heuristic function that
estimates the quality of the rule
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Rule Learning Heuristics

® Adding a rule should

= increase the number of covered negative examples as little as

possible (do not decrease )
= increase the number of covered positive examples as much
as possible (increase )

® An evaluation heuristic should therefore trade off these two
extremes

. 1
u Example hLap:pf_:+2
® grows with p—©
® grows with n—0
= Note: Precision is not a good heuristic. Why?
po =D

Prec™

p+n
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Example

[Condition P n Precision Laplace p-n
Hot 2 2 0.5000 0.5000 0
Temperature = Mild 3 1 0.7500 0.6667 2
Cold 4 2 0.6667 0.6250 2
Sunny 2 3 0.4000 0.4286 -1
[Outlook = Overcast 4 0 1.0000 0.8333 4
Rain 3 2 0.6000 0.5714 1
Humidity = High 3 4 0.4286 0.4444 -1
Normal 6 1 0.8571 0.7778 )
IWindy = True 3 3 0.5000 0.5000 0
False 6 2 0.7500 0.7000 4

® Heuristics Precision and Laplace

= add the condition Outlook= Overcast to the (empty) rule

= stop and try to learn the next rule

® Heuristic Accuracy / p-n
= adds Humidity = Normal

= continue to refine the rule (until no covered negative)

27
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Isometrics in Coverage Space

® |[sometrics are lines that connect points for which a
function in p and n has equal values

=-n

n

p

s Examples: Isometrics for heuristics 4 =p and /4

e | — i — o — o — o i o ]

— " — — — — — — — — —— — i o i o

— e — i ¢ — ¢ i o ]

— ¢ — — — — — — — — — — o o
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Precision (Confidence)

® pasic idea:
percentage of positive
examples among covered
examples

® cffects:

= rotation around origin
(0,0)

= all rules with same
angle equivalent

= |n particular, all rules
on P/N axes are
equivalent

hPrec: p
p+n
(R T
Lo / / i
! / / / s P
[ / / / 7/ .
IR I 4 s i
| / /s /f P o
A R SR i -
R R ) -
/ Lo ..#"f ..-""'"H
Ly /’f P ff T T
II.\'.;F’/ fff ff-"‘ _..--""'-—----_- ddddddddd
e T I T T

—
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Entropy and Gini Index

__ (D p n n
hy,=—(——1 + I
Ent (p-l-n Og2p+n ptn ngp-l-n)
2 2
PGini™= —( £ —( L S L
¢ p+n) p+n’ (p+n)
- effeCtS. 0 ii”: T y 7
Jtrt “y
C / ! /
= entropy and Gini index are H” iy Joa J _',;,f”
equivalent (YRR P A
: .. : _ Wripert ;0 2 L5
= like precision, isometrics it/ [ 1/ el
rotate around (0,0) i ) [ s ey
. . . Iy gl =
= isometrics are symmetric it/ L - _
ol Whity F; s - B
around 45° line e, 7 - P L
= arule that only covers Wi o0 e e T e T =T
negative examplesisas . -2 z-ZZZZZZZIIT-ooCZIIio—o
good as a rule that only '

covers positives



Accuracy

_p+(N—n)

Acc

® pasic idea:
percentage of correct
classifications
(covered positives plus
uncovered negatives)

e cffects:

= [sometrics are parallel
to 45° line

= covering one positive
example is as good as
not covering one
negative example

P+N

e g LA
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Weighted Relative Accuracy

Nﬁ_
)_P

n
N

ho= ptn, p P
< P+N ' p+n P+N
® basic idea: 0
normalize accuracy with s
the class distribution Rad
e effects: e
= jsometrics are parallel }~
to diagonal e
= covering x% of the e
positive examples is as e
good as not covering R
x% of the negative T

examples
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Linear Cost Metric

® Accuracy and weighted relative accuracy are only two
special cases of the general case with linear costs:

= costs ¢ mean that covering 1 positive example is
equivalent to not covering (1-c)/c negative examples

C
Yo accuracy
=) weighted relative accuracy
0 excluding negatives at al costs
1 covering positivesat all costs

= The general form is then %, ,=cp—(1—c)n
e the isometrics of /2 __ are parallel lines with slope (1-¢)/c

cost
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Laplace-Estimate

_ p+l1
Lr p+n+2
® basic idea: S — - .
precision, but count
coverage for positive N
and negative examples sy ’

starting with 1 instead
of 0
¢ effects: A

covered positive examples

= origin at (-1,-1) | :
= different values on e I ot N I
p=0 or n=0 axes

= not equivalent to 0 N
preC|S|0n covered negative examples
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® pasic idea:
initialize the counts with
examples in total, distrib
according to the prior
distribution P/(P+N) of p
n.

¢ effects:
= origin shifts to

(-mP/(P+N),-mN/(P+N))

= with increasing m, the

lines become more and

more parallel
= can be re-interpreted

trade-off between WRA

and confidence

m-Estimate

P P
p+m p+m
m P+N P+N
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Generalized m-Estimate

® One can re-interpret the m-Estimate:

= Re-interpret ¢ = N/(P+N) as a cost factor like in the general
cost metric

= Re-interpret m as a trade-off between precision and cost-
metric

® m = (: precision (independent of cost factor)

® m—oo. the isometrics converge towards the parallel
Isometrics of the cost metric

® Thus, the m-Estimate may be viewed as a means of
trading off between precision and the cost metric
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Optimizing Precision

® Precision tries to pick the steepest continuation of the

curve
= does not

(o

assume any costs

ry ]
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Optimizing Accuracy

® Accuracy assumes the same costs in all subspaces

= a local optimum in a sub-space is also a global optimum in

the entire space

o
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Summary of Rule Learning Heuristics

® There are two basic types of (linear) heuristics.
= precision: rotation around the origin
= cost metrics: parallel lines

®* They have different goals

= precision picks the steepest continuation for the curve for
unkown costs

= |inear cost metrics pick the best point according to known or
assumed costs

® The m-heuristic may be interpreted as a trade-off
between the two prototypes
= parameter ¢ chooses the cost model
= parameter m chooses the “degree of parallelism”
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Foil Gain

PI(P+N)

CcC=

)

P
pt+n

hfoil:_p (log,c—log,
(c is the precision of the parent clause)

c=10"-6

c=1/2
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A Pathology for
Top-Down Learning

¢ Parity problems (e.g. XOR)
= 1 relevant binary attributes
= sirrelevant binary attributes
= each of the n=r + sattributes has values 0/1 with probability %>

= an example is positive if the number of 1's in the relevant
attributes is even, negative otherwise

Problem for top-down learning:
by construction, each condition of the forma =0ora =1
covers approximately 50% positive and 50% negative
examples
Irrespective of whether a is a relevant or an irrelevant attribute

= top-down hill-climbing cannot learn this type of concept
Typical recommendation:

use bottom-up learning for such problems
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Bottom-Up Approach: Motivation

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

T=hot

T=hot

T=hot

T=cool
T=cool
T=mild
T=cool
T=mild
T=mild
T=mild
T=hot

T=mild
T=cool
T=mild

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

H=high
H=high
H=high
H=normal
H=normal
H=high
H=normal
H=normal
H=normal
H=high
H=normal
H=high
H=normal
H=high

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

O=sunny AND W=false THEN
O=sunny AND W-=true THEN
O=overcast AND W=false THEN
O=rain AND W-=false THEN
O=overcast AND W-=true THEN
O=sunny AND W=false THEN
O=sunny AND W=false THEN
O=rain AND W-=false THEN
O=sunny AND W=true THEN
O=overcast AND W-=true THEN
O=overcast AND W=false THEN
O=rain AND W=true [THEN
O=rain AND  W=true ITHEN
O=rain AND W=false THEN

42

no
no

yes
yes
yes

no

yes
yes
yes
yes
yes

no
no

yes
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Bottom-Up Hill-Climbing

m Simple inversion of top-down hill-climbing
®m A rule is successively generalized

a fully specialized a single example

1. Start with an%mp%y rule R that covers allexamples

_ delete .
2. Evaluate all possible ways to ac< a condition to R

3. Choose the best one

4. If R is satisfactory, return it

5. Else goto 2.
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A Pathology of Bottom-Up
Hill-Climbing

att2 att3

1 1

0 0
1 0
0 1

= Target concept att1 = 1 not (reliably) learnable with
bottom-up hill-climbing

= because no generalization of a seed example will increase
coverage

= Hence you either stop or make an arbitrary choice (e.g.,
delete attribute 1)
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Bottom-Up Rule Learning Algorithms

* AQ-type:
= select a seed example and search the space of its
generalizations
= BUT: search this space top-down
= Examples: AQ (Michalski 1969), Progol (Muggleton 1995)
® based on least general generalizations (lggs)
= greedy bottom-up hill-climbing
= BUT: expensive generalization operator
(Igg/rigg of pairs of seed examples)

= Examples: Golem (Muggleton & Feng 1990), DLG (Webb 1992), RISE
(Domingos 1995)

® |ncremental Pruning of Rules:
= greedy bottom-up hill-climbing via deleting conditions
= BUT: start at point previously reached via top-down specialization
= Examples: I-REP (Firnkranz & Widmer 1994), Ripper (Cohen 1995)
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Overfitting

¢ Overfitting

= Given
e a fairly general model class
® enough degrees of freedom

= you can always find a model that explains the data

® even if the data contains error (noise in the data)
® in rule learning: each example is a rule

® Such concepts do not generalize well!
= — Pruning
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Pre-Pruning

® keep a theory simple while it is
learned
® decide when to stop adding
conditions to a rule

(relax consistency gy iy @ )
constraint) o =

® decide when to stop adding i );
rules to a theory CO-—0 OO

(relax completeness
constraint)

= efficient but not accurate

i . Literals R Post—F tuning Decisiohs i ... Pre—Pruning Decisichs
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Pre-Pruning Heuristics

® Threshold

= require a certain minimum value of the search heuristic
= e.g.: Laplace > 0.8.
¢ Foil's Minimum Description Length Criterion

= the length of the theory plus the exceptions (misclassified
examples) must be shorter than the length of the examples by
themselves

= lengths are measured in bits (information content)
® CNZ2's Significance Test

= tests whether the distribution of the examples covered by a
rule deviates significantly from the distribution of the examples
In the entire training set

= if not, discard the rule
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Minimum Coverage Filtering

filter rules that do not cover a minimum number of

positive examples all examples

[ o — — — — — — — — — — — — — — — — — — — — — — —

[ o — — — — — — — — — — — — — — — — — — e — — — —

[ o — — — — — — — — — — — — — — — — — — — — — — —
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Support/Confidence Filtering

® filter rules that

= cover not enough positive
examples (p < suppuin)

= are not precise enough
(hprec < COnfmin)
¢ effects:

= all but a region around
(0,P) is filtered
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CN2's likelihood ratio statistics

hLRS=2(plog£+nlog£)
e e

P g e, =(p+n) =(pn)

® pasic idea:
measure significant deviation
from prior probability
distribution

® cffects:

= non-linear isometrics

® similar to m-estimate
® but prefer rules near the
edges
= distributed y’

= significance levels 95%
(dark) and 99% (light grey)
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Fossil's Correlation

h

p(N—n)=(P—p)n

® basic idea:
measure correlation coefficient
of predictions with target

® cffects:

= non-linear isometrics
= in comparison to WRA

® prefers rules near the
edges

® steepness of connection
of intersections with
edges increases

= equivalent to i’
= grey area = cutoff of 0.3

Corr™ VPN (p+n)(P—p+N —n)
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Foil's MDL-based Stopping Criterion

hypr=10g,(P+N)+log,

P+N)

® pasic idea:
compare the encoding length
of the rule /(r) to the encoding
length 4,5, of the example.

= we assume /(r) = c constant
® effects:

= equivalent to filtering on
support
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Anomaly of Foil's Stopping criterion

®* \We have tacitly assumed N > P...

® /yp. @ssumes its maximum at p = (P+N)/2
= thus, for P > N, the maximum is not on top!

- !

® there may be rules

e of equal length

® covering the same number of negative
examples

* the rule covering fewer positive examples is
acceptable

* but the rule covering more positive
examples is not!
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Pre-Pruning Systems

e Foll:
s Search heuristic: Foil Gain
= Pruning: MDL-Based

e CN2:

= Search heuristic: Laplace/m-heuristic
= Pruning: Likelihood Ratio

® Fossil:

s Search heuristic: Correlation
= Pruning: Threshold
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How Foil Works

- Foil (almost) implements Support/Confidence Filtering

= filtering of rules with no
information gain -

® after each refinement ste
the region of acceptable
rules is adjusted as in
precision/confidence
filtering

= filtering of rules that
exceed the rule length

e after each refinement ste
the region of acceptable !
rules is adjusted as in 0 N
support filtering




Post Pruning

¢ simplify a theory after it has been learned

® Reduced Error Pruning

= anaologous to decision trees

® Reserve part of the data for validation (pruning set)
® |earn arule set

e Simplify rule set by deleting rules and conditions as long as this
does not decrease accuracy on the validation set

® accurate but not efficient
m O(n4)
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Reduced Error Pruning

C=-— 0 (O () N &
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() .. Litetals 5 . Post—Proni ng Decisions | ... Pte—Pruning Decisions
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Incremental
Reduced Error Pruning

®* Prune each rule right after it is learned:

1. split data into a training and a pruning set
2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does
not increase

4. 1f the rule i1s better than the default rule, add it to the rule set
and goto 1.

® More accurate, much more efficient
= pecause it does not learn overly complex intermediate concept
= REP: On") I-REP: O(n log’n)

® Subsequently used in the RIPPER (JRip in Weka) rule
learner (Cohen, 1995)
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AcouUracy
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Multi-class problems

GOAL: discriminate ¢
classes from each other

PROBLEM: many learning L ox " Lo, ¢t
algorithms are only suitable = x* x 1+ 7
for binary (2-class) x X x o Lo
problems SE T N
SOLUTION: S N
"Class binarization": ST S S P IR
Transform an c-class S S
problem into a series of 2- -~ yemmTTT -
class problems Ty T
P # & 1
.’ # ## . Y
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Class Binarization for Rule Learning

None

= class of a rule is defined by the majority of covered
examples

= decision lists, CN2 (Clark & Niblett 1989)
One-against-all / unordered

= foreach class c: label its examples positive, all others
negative

= CN2 (Clark & Boswell 1991), Ripper -a unordered
Ordered

= sort classes - learn first against rest - remove first - repeat

= Ripper (Cohen 1995)

Error Correcting Output Codes (Dietterich & Bakiri, 1995)
= generalized by (Allwein, Schapire, & Singer, JMLR 2000)
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One-against-all binarization

| + +
X ! + X +
|
X +
x X I + 4 7 X + 4
X x I + X . .
X X | + X X + +
+ + + + +
X k X -
X x ¥ . + X x X ’ +
0 * o " » * *
o ~ - o [+] +
0 > + I ¢ o - +
0 % © -7 ‘o o 0 .
0 ! ° 8 ! -
0% o \ 00 o ,
[#] [#] o o
O o 1 o !
[#] 0
o 0 |1 o} Fi
o 0
o] i 0 -
1 __.--"".
# ft
#Pow s F o4 "
g 2" LA
4 # # #
# # # #
# #

Treat each class as a separate concept:
= C binary problems, one for each class
= |label examples of one class positive, all others negative

64 © J. Furnkranz



Round Robin Learning
(aka Pairwise Classification)

= ¢(c-1)/2 problems o
= each class against each xS
other class A T
v smaller training sets
v simpler decision
P : boundaries
# # .

oty v larger margins
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Accuracy

Ripper
dataset unord. ordered R? ratio <
abalone 81.03 82,18 7299 (.888 ++
covertype 35.37 38.00  33.20 0.862 ++
letter 15.22 15.75 T7.85 0.498 ++
sat 14.25  17.05 11.15 0.65{ ++
shuttle 0.03 006 002 4375 =
vowel 64.94 53.25 3346 L4 =
Car 5.79 1215 226 (.186 ++
glass 35.51 3458 25.70 0.74F  ++
image 4.15 4290 346 0.808 4+
Ir spectrometer | 64.22 61.39 53.11 (LB65F ++
optical 7.79 948 374 0.394 ++
page-blocks 2.85 3.38 276 0.816 ++
solar flares (c) 15.91 1591 1577 0.831 =
solar flares (m) 4.90 247 S 4821 =
soybean 8.79 8.79 630 4717 ++
thyroid {hyper) 1.25 149 111 (.74% +
thyroid (hypo) 0.64 0a6 053 0955 =
thyroid (repl.) 117 098 101 1026 =
vehicle 28.25 30.38  20.08 0.957 =
yeast, 44.00 42,39 41.78 (.98 =
averape 21.80 2190 1852 Q.T70
66

® error rates on 20
datasets with 4 or

more classes

10 significantly
better (p > 0.99,
McNemar)

2 significantly
better (p > 0.95)

8 equal

never
(significantly)
worse
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Yes, but isn't that expensive?

We have O(c®) learning problems...

but
the total training effort is smaller than for the c learning
problems in the one-against-all setting!

® Fine Print :
= single round robin
® more rounds add a constant factor
= training effort only
® test-time and memory are still quadratic
e BUT: theories to test may be simpler
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Advantages of Round Robin

* Accuracy ¢ Understandability
= never lost against one- = simpler boundaries/concepts
against-all = similar to pairwise ranking as
= often significantly more recommended by Pyle (1999)
accurate e Example Size Reduction
e Efficiency = each binary task is
= proven to be faster than, considerably smaller than
e.g., one-against-all, original data
ECOC, boosting... = subtasks might fit into
= higher gains for slower memory where entire task
base algorithms does not

¢ Easily parallelizable

= each task is independent of
all other tasks
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