
1 © J. Fürnkranz

Pre-ProcessingPre-Processing

● Databases are typically not made to support analysis with a
data mining algorithm
 pre-processing of data is necessary

● Pre-processing techniques:
 Data Cleaning: remove inconsistencies from the data
 Feature Engineering: find the right features/attribute set

● Feature Subset Selection: select appropriate feature subsets
● Feature Transformation: bring attributes into a suitable form

(e.g., discretization)
● Feature Construction: construct derived features

 Sampling:
● select appropriate subsets of the data

2 © J. Fürnkranz

Unsupervised vs. SupervisedUnsupervised vs. Supervised
Pre-processingPre-processing

● Unsupervised
 do not use information about the learning task

● only prior information (from knowledge about the data)
● and information about the distribution of the training data

● Supervised
 use information about the learning task

● e.g.: look at relation of an attribute to class attribute
● WARNING:

 supervised methods must only look at training data!
 compute pre-processing model from training data
 apply the model to training and test data
 otherwise information from test data may be captured in the pre-

processing step -> biased evaluation

3 © J. Fürnkranz

Feature Subset SelectionFeature Subset Selection
● Databases are typically not made with data mining in

mind
● Many features may be

 irrelevant
 uninteresting
 redundant

● Removing them can
 increase efficiency
 improve accuracy
 prevent overfitting

● Feature Subsect Selection techniques try to determine
appropriate features automatically

4 © J. Fürnkranz

Unsupervised FSSUnsupervised FSS

● Using domain knowledge
 some features may be known to be irrelevant, uninteresting or

redundant
● Random Sampling

 select a random sample of the feature
 may be appropriate in the case of many weakly relevant

features and/or in connection with ensemble methods

5 © J. Fürnkranz

Supervised FSSSupervised FSS
● Filter approaches:

 compute some measure for estimating the ability to
discriminate between classes

 typically measure feature weight and select the best n
features

 problems
● redundant features (correlated features will all have similar

weights)
● dependant features (some features may only be important in

combination (e.g., XOR/parity problems).
● Wrapper approaches

 search through the space of all possible feature subsets
 each search subset is tried with the learning algorithm

6 © J. Fürnkranz

Supervised FSS: FiltersSupervised FSS: Filters

● foreach attribute A
 W[A] = feature weight according to some

measure of discrimination
● e.g., decision tree splitting criteria

(entropy/information gain, gini-index, ...)
● select the n features with highest W[A]

Basic idea: a good attribute should discriminate between the different classes

7 © J. Fürnkranz

RELIEFRELIEF
(Kira & Rendell, ICML-92)(Kira & Rendell, ICML-92)

● set all attribute weights W[A] = 0.0
● for i = 1 to m (← user-settable parameter)

 select a random example R
 find

● H: nearest neighbor of same class (near hit)
● M: nearest neigbor of different class (near miss)

 for each attribute A
● W[A] = W[A] - d(A,H,R)/m + d(A,M,R)/m

where d(A,X,Y) is the distance in attribute A between
examples X and Y (normalized to [0,1]-range).

Basic idea: in a local neighborhood around an example R,
 a good attribute A should have

● identical values for examples H from the same class
● different values for examples M from different classes
→ try to estimate and maximize P AR≠AM −P AR≠AH 

8 © J. Fürnkranz

FSS: Wrapper ApproachFSS: Wrapper Approach
(John, Kohavi, Pfleger, ICML-94)(John, Kohavi, Pfleger, ICML-94)

● Wrapper Approach:
 try a feature subset with the learner
 improve it by modifying the feature sets based on the

result
 repeat

● Advantage:
 find feature set that is tailored to learning algorithm
 considers combinations of features, not only individual

feature weights
 can eliminate redundant features

(picks only as many as the algorithm needs)
● Disadvantage:

 very inefficient: many learning cycles necessary

9 © J. Fürnkranz

FSS: Wrapper ApproachFSS: Wrapper Approach
● Forward selection:

1.start with empty feature set F
2. for each attribute a

a)F = F ∪ {a}
b)Estimate Accuracy of Learning algorithm on F
c) F = F \ {a}

3.F = F ∪ {attribute with highest estimated accuracy}
4. if estimated accuracy is (significantly) increasing goto 2.

● Backward elimination:
 start with full feature set F
 try to remove attributes

10 © J. Fürnkranz

Feature TransformationFeature Transformation

● bring features into a usable form
● numerization

 some algorithms can only use numeric data
 nominal -> binary

● a nominal attribute with n values is converted into n binary attributes
 binary -> numeric

● binary features may be viewed as special cases of numeric
attributes with two values

● discretization
 some algorithms can only use categorical data

● transform numeric attributes into a number of (ordered) categorical
values

11 © J. Fürnkranz

DiscretizationDiscretization

● Supervised vs. Unsupervised:
 Unsupervised:

● only look at the distribution of values of the attribute
 Supervised:

● also consider the relation of attribute values to class values
● Merging vs. Splitting:

 Merging (bottom-up discretization):
● Start with a set of intervals (e.g., each point is an interval)

and successively combine neighboring intervals
 Splitting (top-down discretization):

● Start with a single interval and successively split the interval
into sub-intervals

12 © J. Fürnkranz

Unsupervised DiscretizationUnsupervised Discretization

● domain-dependent:
● suitable discretizations are often known
● age (0-18) ->

baby (0-3), child (3-6), school child (6-10), teenager (11-18)
● equal-width:

● divide value range into a number of intervals with equal width
● age (0,18) -> (0-3, 4-7, 8-11, 12-15, 16-18)

● equal-frequency:
● divide value range into a number of intervals so that (approximately)

the same number of datapoints are in each interval
● e.g., N = 5: each interval will contain 20% of the training data
● good for non-uniform distributions (e.g., salary)

13 © J. Fürnkranz

Supervised Discretization: Supervised Discretization:
 Chi-Merge Chi-Merge (Kerber, AAAI-92)(Kerber, AAAI-92)

● initialization:
 sort examples according to feature value
 construct one interval for each value

● interval merging:
 compute 2 value for each pair of adjacent intervals

Aij = number of examples in i-th interval that are of class j
Eij = expected number of examples in i-th interval that are of class j
 = number of examples in i-th interval * fraction of (all) examples of class j

 merge those with lowest 2 value
● stop

 when the 2 values of all pairs exceed a significance threshold

2=∑
i=1

2

∑
j=1

c Aij−E ij
2

E ij

 Basic Idea: merge neighboring intervals if the class information is
 independent of the interval an example belongs to

14 © J. Fürnkranz

Supervised Discretization: Supervised Discretization:
 Entropy-Split Entropy-Split (Fayyad & Irani, IJCAI-93)(Fayyad & Irani, IJCAI-93)

 Basic Idea: grow a decision tree using a single numeric attribute and
 turn the leaves into ordinal values

● initialization:
 initialize intervals with a single interval covering all examples S
 sort all examples according to the attribute value
 initialize the set of possible split points

 simple: all values
 more efficient: only between class changes in sorted list

● interval splitting:
 select split point with the minimum weighted entropy

 recursively apply Entropy-Split to and
● stop

 when a given number of splits is achieved
 or when splitting would yield too small intervals
 or MDL-based stopping criterion (Fayyad & Irani, 1993)

T max=arg min
T


∣S AT∣
∣S∣

Entropy S AT 
∣S A≥T∣
∣S∣

Entropy S A≥T 

S AT max S A≥T max

15 © J. Fürnkranz

Unsupervised Feature ConstructionUnsupervised Feature Construction

● based on domain knowledge
 Example: Body Mass Index

● automatic
 Examples:

● kernel functions
 may be viewed as feature construction modules
 → support vector machines

● principal components analysis
 transforms an n-dimensional space into a lower-dimensional subspace

w/o losing much information
● GLEM:

 uses an Apriori -like algorithms to compute all conjunctive combinations
of basic features that occur at least n times

 application to constructing evaluation functions for game Othello

BMI= weight kg 
height m2

16 © J. Fürnkranz

Supervised Feature ConstructionSupervised Feature Construction

● use the class information to construct features that help to
solve the classification problem

● Examples:
 Wrapper approach

● use rule or decision tree learning algorithm
● observe frequently co-occurring features or feature values
● encode them as separate features

 Neural Network
● nodes in hidden layers may be interpreted as constructed features

17 © J. Fürnkranz

ScalabilityScalability

● databases are often too big for machine learning algorithms
 ML algorithms require frequent counting operations and multi-

dimensional access to data
 only feasible for data that can be held in main memory

● two strategies to make DM algorithms scalable
 design algorithms that are explicitly targetted towards

minimizing the number of database operations (e.g., Apriori)
 use sampling to work on subsets of the data

18 © J. Fürnkranz

SamplingSampling

● Random Sampling
 Select a random subset of the data

● Progressive Sampling
 start with a small sample
 increase sample size

● arithmetic: increase sample size by fixed number of examples
● geometric: multiply size with a fixed number (e.g., double size)

 stop when convergence is detected

● Sequential sampling
 rule out solution candidates based on significant differences

19 © J. Fürnkranz

WindowingWindowing

● Idea:
 focus the learner on the parts of the search space that are not

yet correctly covered
● Algorithm:

1. Initialize the window with a random subsample of the
available data

2.Learn a theory from the current window
3. If the learned theory correctly classifies all examples (also

those outside of the window), return the theory
4.Add some mis-classified examples to the window and goto 2.

● Properties:
 may learn a good theory from a subset of the data
 problems with noisy data

