
1 © J. Fürnkranz

Association Rule DiscoveryAssociation Rule Discovery

● Association Rules describe frequent co-occurences in sets
 an item set is a subset A of all possible items I

● Example Problems:
 Which products are frequently bought together by customers?

(Basket Analysis)
● DataTable = Receipts x Products
● Results could be used to change the placements of products in the

market
 Which courses tend to be attended together?

● DataTable = Students x Courses
● Results could be used to avoid scheduling conflicts....

2 © J. Fürnkranz

Association RulesAssociation Rules

● General Form:
A1, A2, ..., An → B1, B2, ..., Bm

● Interpretation:
 When items Ai appear, items Bi also appear with a certain

probability

● Examples:
 Bread, Cheese → RedWine.

Customers that buy bread and cheese, also tend to buy red
wine.

 MachineLearning → WebMining, MLPraktikum.
Students that take 'Machine Learning' also take 'Web Mining'
and the 'Machine Learning Praktikum'

3 © J. Fürnkranz

Basic Quality MeasuresBasic Quality Measures

● Support
 proportion of examples for which both the head and the body

of the rule are true
 How many times does this rule cover?

● Confidence
 proportion of examples for which the head is true among

those for which the body is true
 How strong is the implication of the rule?

● Example:
 Bread, Cheese => RedWine (S = 0.01, C = 0.8)

80% of all customers that bought bread and cheese also bought red wine.
1% of all customers bought all three items.

support A B=support A∪B=
nA∪B

n

confidence A B= support A∪B
support A

=
n A∪B

n A

4 © J. Fürnkranz

Learning ProblemLearning Problem

Find all association rules with a given minimum support smin
and a given minimum confidence cmin

● Frequent itemsets:
 An itemset A is frequent if

● Key Observation (anti-monotonicity of support):
 Adding a condition (specializing the rule) may never increase

support/freqency of a rule (or of its itemset).

 Therefore:
● an itemset can only be frequent if all of its subsets are freqent
● all supersets of an infrequent itemset are also infrequent

support A≥smin

C⊆D⇒ support C ≥support D

5 © J. Fürnkranz

Support/Confidence FilteringSupport/Confidence Filtering

● filter rules that
 cover not enough positive

examples (p < smin)
 are not precise enough

(hprec < cmin)

● effects:
 all but a region around

(0,P) is filtered

6 © J. Fürnkranz

APRIORI Step1:APRIORI Step1:
Finding all Frequent ItemsetsFinding all Frequent Itemsets

1. k = 1

2. C1 = I (all items)

3. while C
k
 > Ø

(a) S
k
 = C

k
 \ all infrequent itemsets in C

k
 ← check on data

(b) C
k+1

 = all sets with k+1 elements that can be formed by forming
the union of two itemsets in S

k

(c) C
k+1

 = C
k+1

 \ all itemsets for which not all k-subsets are in S
k

(d) S = S + S
k

(e) k++
4. return S

Candidate itemsets are stored in efficient data structures such as
hash trees or tries.

7 © J. Fürnkranz

Efficient Candidate GenerationEfficient Candidate Generation

● Step 3(b) of the algorithm:
 combines two frequent k-itemsets to a candidate for a

(k+1)-itemset
 can be performed efficiently:

● assume items are ordered in some way (e.g., alphabetically)
● Then:

● No candidate will be missed because of anti-monotonicity of
support

● Step 3(c) of the algorithm:
 testing all k-item subsets of a k+1-itemset
 can be generated by deleting each of the first k-1 conditions
 delete the candidate set if not all k-item subsets are frequent

C k1={〈 X 1 , ... , X k−1 , X k , X k1〉 : 〈 X 1 , ... , X k−1 , X k 〉∈C k , 〈 X 1 , ... , X k−1 , X k1 ,〉∈C k , X kX k1}

8 © J. Fürnkranz

ExampleExample

● Find all itemsets with smin = 0.25
 C1 = { {beer}, {chips}, {pizza}, {wine} }

S1 = { {beer}, {chips}, {pizza}, {wine} }
 C2 = { {beer, chips}, {beer, pizza}, {beer, wine}, {chips, pizza},

 {chips, wine}, {pizza, wine} }
S2 = { {beer, chips}, {beer, wine}, {chips, pizza}, {chips, wine}, {pizza, wine} }

 C3 = { {beer, chips, wine}, {chips, pizza, wine} }
S3 = { {beer, chips, wine} }

 C4 = 0

beer chips pizza wine
customer 1 1 1 0 1
customer 2 1 1 0 0
customer 3 0 0 1 1
customer 4 0 1 1 0

9 © J. Fürnkranz

Search Space and BorderSearch Space and Border

● Search Space:
 The search space for frequent itemsets can be structured with

the subset relationship

● Border:
 The border are all itemsets for which

● all subsets are frequent
● no superset is frequent

 positive border:
● elements of the border that are frequent

 negative border:
● elements of the border that are infrequent

 Frequent itemsets = subsets of border + positive border

10 © J. Fürnkranz

Search Space and BorderSearch Space and Border

Source: Bart Goethals, Survey on Frequent Pattern Mining, 2002

11 © J. Fürnkranz

APRIORI Step 2:APRIORI Step 2:
Generate Association RulesGenerate Association Rules

● Association rules can be generated from frequent item sets
 for each frequent item set X there are 2|X| possible association rules

of the form Y → Z, with Y ∪ Z = X and Y Ç Z = {}
 confidence of the rule can be computed efficiently from the support

of Y and Z.
● Efficient generation of association rules:

 the generation of all subsets can be made much more efficient by
exploiting the anti-monotonicity property in the heads of the rules

 Confidence Anti-monotonicity:
●

● Warum?
 Thus, rules can be generated with an algorithm similar to FreqSet

(starting with heads with length 1, etc.)
● if a head causes the rule to become unconfident, all supersets of

the head must be unconfident

confidence AB ,C ≤confidence A , BC

12 © J. Fürnkranz

ExampleExample

Source: Bart Goethals, Survey on Frequent Pattern Mining, 2002

13 © J. Fürnkranz

Example 2Example 2

● Find all association rules with smin = 0.5 and cmin = 1.0
1. find frequent itemsets:
 C

1
 = { {bread}, {butter}, {coffee}, {milk}, {sugar} }

S
1
 = { {bread}, {coffee}, {milk}, {sugar} }

 C
2
 = { {bread, coffee}, {bread, milk}, {bread, sugar}, {coffee, milk},

 {coffee, sugar}, {milk, sugar} }
S

2
 = { {bread, sugar}, {coffee, milk}, {coffee, sugar}, {milk, sugar} }

 C
3
 = { {coffee, milk, sugar} }

S
3
 = { {coffee, milk, sugar} }

 C
4
 = 0

bread butter coffee milk sugar
customer 1 1 1 0 0 1
customer 2 0 0 1 1 1
customer 3 1 0 1 1 1
customer 4 0 0 1 1 0

14 © J. Fürnkranz

Example 2 (Ctd.)Example 2 (Ctd.)

2. Find all rules with cmin = 1.0
 bread => sugar (0.5,1.0)
 milk => coffee (0.75,1.0)
 coffee => milk (0.75,1.0)
 milk, sugar => coffee (0.5, 1.0)
 sugar, coffee => milk (0.5, 1.0)

● Other rules have
 too small frequency (filtered out by Step 1)

● butter => bread, sugar (0.25, 1.0)
 too small confidence (filtered out by Step 2)

● milk, coffee => sugar (0.5, 0.67)

15 © J. Fürnkranz

Properties of APRIORIProperties of APRIORI
● Efficiency

 only needs k passes through the database to find all association
rules of length k
● important if database is too big for memory

 bottle-neck:
● large number of itemsets must be tested for each item

● Search space
 significant reduction of search space over searching all possible

rules (2|I| different subsets)
● Results

 generates far too many rules for practical purposes
 further filtering of result sets is necessary

● e.g., sort rules by some measure of interestingness and report the
best n rules

16 © J. Fürnkranz

Filtering Association RulesFiltering Association Rules
● assume rules R1: A, B → C and R2: A → C

● OpusMagnum (Webb, 2000) filters rule R1 if it is
 trivial:

● R2 covers the same examples
 unproductive:

● R2 has an equal or higher confidence
 insignificant:

● R2's confidence is not significantly worse (binomial test)

● Interesting Measures:
 sort rules by some numerical measure of interestingness
 return the n best rules (n set by user)

● it is hard to formalize the notion of „interestingness“

17 © J. Fürnkranz

Interestingness MeasuresInterestingness Measures

● Basic problem:
 support and confidence are not sufficient for capturing

whether a rule is interesting or not
 a rule may have high support and confidence, but still not be

interesting of surprising

● Example:
 diapers => beer (c=0.9)

90% of customers that buy diapers also buy beer.
 looks like an interesting finding
 BUT: if we know that 90% of all customers buy beer, the rule

is not at all interesting

18 © J. Fürnkranz

Lift & LeverageLift & Leverage

● Lift:
 ratio of confidence over a priori expectaction

● Leverage:
 Difference between support and expected support if rule head

and body were independent

 leverage is a lower bound for support
● high leverage implies high support
● optimizing only leverage guarantees a certain minimum support

(contrary to optimizing only confidence or only lift)

lift AB=

n A∪B
nA
n B

n

=
confidence A B

support B
=

support A B
support A support B

leverage AB=support AB−support A support B

19 © J. Fürnkranz

Best-First SearchBest-First Search

● Frequent set based search (Apriori)
 typically far too many rules
 pruning is based on support/frequency, even if interesting

measure is different
 focus on minimizing the number of database scans

● OpusMagnum (Webb, KDD-2000)
 assumes examples fit in main memory
 directly searches for the n best rules in a best-first fashion

● rule quality can be based on a variety of criteria
 many pruning options

● optimistic pruning: prune a rule if the highest possible value of its
successors is too low to be of interest

 syntactic constraints really reduce search space
● for Apriori they only affect phase 2.

20 © J. Fürnkranz

Vertical Database LayoutVertical Database Layout

● horizontal database
 each transaction lists

bought items

● if the vertical database fits into memory
 itemsets can be joined by computing the intersection of the

transactions that bought it
● e.g., { beer } = {1,1,0,0} ∪ { wine } = {1,0,1,0 } → { beer, wine } = {1,0,0,0}

 transactions that appear in no k-item can be deleted
● will not appear in any (k+1)-item

 algorithm works only if database fits into memory!

● vertical database
 each item lists the

transactions that bought it

21 © J. Fürnkranz

Depth-First SearchDepth-First Search

● APriori searches for itemsets in a breadth-first fashion
● There are other algorithms that find frequent item sets

depth-first:
 Eclat (Zaki, 2000)

● recursively generates all item-sets with the same prefix
● uses vertical database layout

 but data can be divided into smaller subsets based on common
prefixes

 FP-Growth (Han, Pei, Yin, 2000)
● quite similar to Eclat, but uses an elaborate data structure, a frequent

pattern tree (FP-tree)
● The Association rule growing phase is the same for these

algorithms

22 © J. Fürnkranz

Representational Extensions Representational Extensions
● Nominal Attributes:

 each n-valued attribute can be transformed into n binary
attributes

 increased efficiency if the algorithm knows that only one of
these n values can appear in an item set

● Abstraction Hierarchies:
 forming groups of items (e.g., dairy products) and using them

as additional items
● Sequences:

 efficient extension of FreqSet to find frequent subsequences
● Rule Schemata:

 the user may restrict the pattern of rules of interest
(e.g., only rules with a certain set of attributes in the head)

23 © J. Fürnkranz

Application Telecommunication Alarm Application Telecommunication Alarm
Sequence Analyzer (TASA)Sequence Analyzer (TASA)

● Goal:
 find temporal dependencies in alarm sequences for

● recognizing redundant alarms
● detecting problems in the networks
● early warning of severe problems

● Data:
 temporal sequence of alarms in a finnish telecommunications

network
 200-10000 alarms/day, 73679 alarms over 50 days, 287

different alarm types
● Find:

 associations in time sequences of a certain length
 IF alarm A and alarm B occur within 5 seconds THEN with

probability 0.7, alarm C will follow within 60 seconds

