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* Learning optimal policy is time-consuming
* Requires lots of data

- Use computed policies from other similar MDP(s)

* Problem:
« What are similar MDPs?

But first: How to transfer knowledge
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Main Transfer Settings

e ————————— ]
T
transfer
Transfer from source task to
target task with fixed domain /

source lask target task

@ /';;;;‘:L
Transfer from source task to @ @)
target task with fixed domain @

source tasks target task

. transfer
Transfer from source task to

target task with different
state-action space

source task target task

[Wiering, 2012]
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Definition - MDP

Markov Decision Process:

M = (S, A, P, R)

Bellman equation:

VT(s) =) m(s,a) % [(R(s,a) +v ) P(s']s,a)V7(s"))]

acA s'eS
Optimal Policy:
V*(s) = max(R(s,a) + v »  P(s']|s,a)V*(s))

aEA
s’'eS
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MDP - Transfer policy

M, = (Ss, A, Py, Ry) (source)
M; = (S, A, Py, Ry) (target)

Define mapping (does not have to be one-to-one):

IOZSSHSt

ms(s,a) = m(p(s),a), with s € Sy

But how good will this work? — Need a metric

[Phillips, 2006]
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Definition — Bisimulation Relation

“[...] two states of a process are deemed equivalent if all the
transitions of one state can be matched by transitions of the
other state, and the results are themselves bisimilar.”

s~ s Vac A.(R(s,a) = R(s',a)
AVC € S/ ~ PO(C) = P%(C))

Where: S/ ~ is the state partition induced by ~ and PZ(C) = Z P(c|s,a)
ceC

But: equivalence for stochastic processes is problematic
since it requires the transition probabilities to agree exactly

[Ferns, 2004]
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Example — Bisimulation Relation

s~s & Vae A(R(s,a) = R(s',a)
AVC € S/ ~ . PY(C) = P4(C))

Where: S/ ~ is the state partition induced by ~ and PZ(C) = Z P(c|s,a)
0.7,0 0.7,0

03,1 03,1

Sy~ 8V
So 4 S, X
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Definition - Metric
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State similarity metric

Bisimulation relation:
s~s & Vae A(R(s,a) = R(s',a)
AVC € S/ ~ .P*(C) = P%(C))

S

* We need distance for reward and transition probabilities

d(s,s’) = max(|R(s,a) — R(s',a)]

acA
+Tk (d)(P(]s,a), Q(|s", a))
Discount factor Kantorovich probability metric

[Ferns, 2004], [Phillips, 2009]
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Definition -
Kantorovich Metric T _(d)(P,Q)

d(s,s") = max(|R(s,a) — R(s',a)|
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S|
max > (P(si) — Q(s0))us
gs0—1... i—1
subject to: Vi, ju; —u; < d(si,s;)
Vil <uy; <1 [Ferns, 2004]

Intuition: “[The metric] reflects the minimal amount of work that must be
performed to transform one distribution into the other by moving “distribution

mass” around.”
[Rubner, 1998]

a.k.a. “Earth mover's distance”
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Similarity Calculation

« What we have:
State distance measure

d(s,s") = I;leaj((’R(S, a) — R(s',a)]

+7 Tk (d)(P(-]s,a), Q(-[s", a))

* What we need:
Measure for performance loss when transferring policy
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MDP - Transfer policy

M, = (Ss, A, Ps, Ry) (source)
M, = (S, A, Py, Ry) (target)
Mapping: p: S5 — S;

ms(s,a) = m(p(s),a), with s € Sy

Now we can upper bound the performance loss by:

U 2 1+7 T
Ts t < d Ts SS
Vi = Vi < T X (SaP(S))‘F—_VHVs V.

Proof: See [Phillips, 2006]

Note: Upper bound depends on quality of 7Ts and the mapping 0

January 19, 2016 | FB 20 | Knowledge Engineering Group | Mike Smyk | 12 @



<73 TECHNISCHE
77~ UNIVERSITAT
DARMSTADT

Example

Upper bound for
V7 =Vl

[Phillips, 2006]
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* Goal: Transfer a policy from one MDP to a similar one

* Problems:
* How to transfer?
* How to measure the quality of the transfer?

* Solutions:
* Transfer by mapping the states and induce the new poilcy
* Use upper bound of performance loss as quality measure

* Conclusion:
* This was just one special case of transfer learning

* But: “[...] the problem of transfer in RL is far from being solved.”
[Wiering, 2012]

* Even in 2016 still an open problem (e.g. [Behbood, 2015], [Saito, 2016])
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Thanks for your attention!

oy X
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