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Transfer Learning – 
With similar MDPs 
Advanced Topics in Reinforcement Learning Seminar
Mike Smyk

[Phillips, 2006]
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Motivation

● Learning optimal policy is time-consuming
● Requires lots of data

 → Use computed policies from other similarsimilar MDP(s)

● Problem:
● What are similar MDPs?

But first: How to transfer knowledge
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Main Transfer Settings

[Wiering, 2012]
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Definition - MDP

Bellman equation:

Optimal Policy:

Markov Decision Process:



January 19, 2016  |  FB 20  | Knowledge Engineering Group  | Mike Smyk  |  5

MDP - Transfer policy

Define mapping (does not have to be one-to-one):

But how good will this work? → Need a metric

[Phillips, 2006]

(source)

(target)
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Definition – Bisimulation Relation

“[...] two states of a process are deemed equivalent if all the 
transitions of one state can be matched by transitions of the 
other state, and the results are themselves bisimilar.”

[Ferns, 2004]

i.e.:

But: equivalence for stochastic processes is problematic 
since it requires the transition probabilities to agree exactly
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Example – Bisimulation Relation
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Definition - Metric

1.

2.

3.

4.
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State similarity metric

● We need distance for reward and transition probabilities

  

Bisimulation relation:

Discount factor Kantorovich probability metric

[Ferns, 2004], [Phillips, 2009]
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Definition – 
Kantorovich Metric T

K
(d)(P,Q)

Intuition: “[The metric] reflects the minimal amount of work that must be 
performed to transform one distribution into the other by moving “distribution 
mass” around.”
[Rubner, 1998]

a.k.a. “Earth mover's distance”

[Ferns, 2004] 
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Similarity Calculation

  

● What we have:
State distance measure

● What we need: 
Measure for performance loss when transferring policy
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MDP - Transfer policy

Mapping: 

(source)

(target)

Now we can upper bound the performance loss by:

Proof: See [Phillips, 2006]

Note: Upper bound depends on quality of        and the mapping 
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Example

Upper bound for

[Phillips, 2006]
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Summary

● Goal: Transfer a policy from one MDP to a similar one
● Problems: 

● How to transfer?
● How to measure the quality of the transfer?

● Solutions:
● Transfer by mapping the states and induce the new poilcy
● Use upper bound of performance loss as quality measure

● Conclusion:
● This was just one special case of transfer learning
● But: “[...] the problem of transfer in RL is far from being solved.” 

[Wiering, 2012]

● Even in 2016 still an open problem (e.g. [Behbood, 2015], [Saito, 2016]) 
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Thanks for your attention!

[Phillips, 2006]


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

