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Introduction

Goal

Algorithm for real time targeted Exploration in large domains

General idea

intelligent Exploration

Sample efficient algorithm, which tries to explore a minimal number

of states necessary to learn a good policy
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Related Work

There are a number of algorithms that address the exploration

problem

A few examples are R-MAX, SPITI, Bayesian RL methods or the

Gaussian Process

All have drawbacks, why they can‘t explore large domains in real 

time 
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Background – Markov Decision Process

set of States S

set of Actions A

reward function R(s,a)

transition function P(s‘|s,a)

discrete state is represented by a vector of n discrete variables

 nxxxs ,...,, 21
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Background – Bellman equation

 of a state-action pair is an estimate of the future reward

that can be obtained from (s,a)

 is determined by solving the Bellman equation :

Optimal policy
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Algorithm – Modul Learning

Easier to generalize the transition effect (relative change) than the

exact outcome across states

Learn seperate prediction of each of the n state features and put

them together to a complete model

The probability of the transition effect is the product of the

probabilities of its n state features :
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Algorithm – Modul Learning

assumes that each state feature can be predicted

independently

Each model is build by using a random forest

 each decision tree is trained on a subset of the agent

experiences

Final prediction is the average of all tree outcomes

Each tree is build recursively using the C4.5 algorithm
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Algorithm – Modul Learning
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Algorithm - Exploration

Agent is given instrinsic rewards based on the variance of

the models predictions

 is the original prediction of the model

 is the variance in the model‘s predictions
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Algorithm - Exploration

b is a coefficent either adding or subtracting intrinsic

rewards from the model based on the variance

b < 0, the agent will avoid uncertain states

b > 0, the agent being driven to explore uncertain states

b = 0, the agent will act greedily with respect to its model
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Algorithm - Planning

Algorithm needs to replan what the best action is, by using the

UTC algorithm

Provide basic knowledge of the structure of the domain

Seeding the agent with a few saple experiences from the domain
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Experiments - Environment

21 x 31 cells

61 possible energy levels

8 possible actions

 317.688 state-actions

Agent fuel level between 0 and 60

State vector s is made up to

three features: Row, Col and Fuel

Fuel station reward

 x = column, base = reward for that row, a = variation of the costs

across the columns

axbasexR )5mod()( 
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Experiments - Environment

Low variation fuel world :

a = 1.0, base = -18.0/-21.0 bottom/top row reward = -18.0 to -25.0

High variation fuel world :

a = 5.0, base = -10.0/-23.0 bottom/top row reward = -10.0 to -33.0
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Experiments - Results
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The End

Thank you for your Attention
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Discussion

Any questions ?


