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Introduction 

 Evolutionary computation is one of the most promising 

approaches to reinforcement learning  

 NEAT (Stanley and Miikkulainen 2002) is one approach 

 Intended for off-line learning scenarios 

 

 Problem 

 Evolutionary computation is usually used in deterministic domains 

but stochastical domains are more practical 

 Thus, on-line learning would be preferable 
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Introduction 

Can we improve evolutionary computation  

in stochastic domains? 

 

 Temporal difference (TD) methods are used in on-line 

learning scenarios 

  They have action selection mechanisms which consider  

a balance between ...  

 exploration (search for better Policies)  

 exploitation (accrue maximal reward)  

 Idea:  

Integrate the TD selection mechanisms  

in evolutionary computation (Here: in NEAT)! 
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Recap: NeuroEvolution  

of Augmenting Topologies (NEAT) 

(Stanley and Miikkulainen 2002) 

NEAT … 

 … uses evolutionary algorithms (e.g. Genetic algorithm)  

to train artificial neural networks 

 … allows to optimize and complexify solutions simultaneously 

 … minimizes the dimensionality of the weight space 

 … focuses on evolving topologies along with weights  

rather than optimizing weights directly (e.g. Backpropagation) 

 

Thus, NEAT is a policy search method which uses genetic algorithm 

where each individual in the population is a candidate policy 
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Example:  

MarI/O – NEAT Implementation  

in „Super Mario World“ 

https://www.youtube.com/watch?v=qv6UVOQ0F44  

https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=qv6UVOQ0F44
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NEAT Algorithm 
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NEAT Algorithm – Parameters 

  S  = Set of all state variables 

  A  = Set of all action variables 

  p  = Population size 

 mn  = Probability to mutate a node 

  ml  = Probability to mutate a link 

  g = Number of generation 

  e = Number of episodes  

    per generation 
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NEAT Algorithm – Population initialization 

 Initializing population by  

uniformly sampling p individuals 

 

 Each individual 𝑁 ∈ 𝑃  

 … is a neural network with … 

 … states as inputs  

 … actions as outputs 

 … initially has only one link at all 

between one state and one action 
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NEAT Algorithm – Generation routine 

For each generation there is … 

 

1. … an Evaluation Phase  

 

 

 

 

2. … a Breed Phase 

1 

2 
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NEAT Algorithm – Evaluation 

 An individual 𝑁 ∈ 𝑃 is selected for 

evaluation for an entire run 

 

 The fitness of 𝑁 is the accumulated 

sum of rewards 
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NEAT Algorithm – Evaluation 

 Each individual 𝑁 ∈ 𝑃 will be 

evaluated for 
𝑒

𝑝
 episodes (at most) 

 In deterministic domains,  

we can use NEAT with 𝑒 = 𝑝 

 In stochastic domains, we need 

to evaluate each neural network 

many times 

 Thus, 𝑒 may be much bigger than 𝑝 
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NEAT in stochastic domains 

 In on-line learning, evaluating each individual equally  

for 
𝑒

𝑝
 episodes is not optimal because it is purely exploratory 

 Therefore, we need mechanisms to also allow exploitation of 

individiuals within a generation 

 Again: In TD learning there exist action selectors which  

balance exploration and exploitation 

 

 How can we utilize these selection methods? 
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NEAT Algorithm – Policy selection 

 We can‘t use TD action selectors 

directly, because in NEAT there 

are no value functions  

 But we can transform them into 

policy selectors policySelector() 
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Policy selection methods 

Here, three TD selection methods will be transformed 

1.  𝜖-Greedy 

2.  Softmax 

3.  Interval Estimation (Upper bound estimate)  

 

In the following slides: 

 𝑓(𝑝) is the fitness of the policy 𝑝 averaged over all episodes for 

which it has been previously evaluated 
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1. 𝝐-Greedy Evolution 

Basic idea: 

 With probability 1 − 𝜖,  

select the best (fittest) policy of 𝑃 

 Otherwise,  

a random policy is selected 
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2. Softmax Evolution 

 Every policy 𝑝 ∈ 𝑃 will be run  

atleast once 

 Each policy has a chance to be 

chosen with a certain probability 

(higher fitness  higher chance) 

 The higher the temperature 𝜏 > 0, 

the more equiprobable the policies 

are 
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3. Interval Estimation Evolution 

 As in Softmax,  

every policy 𝑝 ∈ 𝑃 will be run atleast once 

 𝑧(⋅) is the  

standard normal distribution 

 Estimation results into 

a 100 − 𝛼 % confidence interval  

 

For policy 𝑝 

 𝜎(𝑝) is the standard deviation  

according to 𝑓(𝑝) 

 𝑒(𝑝) is the number of episodes 

 

In a nutshell: 

The policy with its highest upper bound  

will be selected 
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First experimental setup:  

Mountain Car 

 The task for the agent is to drive 

a car to the top of a steep 

mountain 

 Problem: To overcome gravity, 

needs to get enough inertia to 

ascend to the goal 

 Thus, the agent needs to learn 

when to drive fordwards or 

backwards 
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First experimental setup:  

Mountain Car 

 Agent‘s state at timestep 𝑡: 

 Position 𝑝𝑡  

 Velocity 𝑣𝑡 

 Reward for each timestep: -1 

 Until goal state is reached ( end of episode) 

 Actions 1, 0 and -1 correspond to throttle settings 

 

 Car movement control 

 𝑝𝑡+1 = 𝑏𝑜𝑢𝑛𝑑𝑝(𝑝𝑡 + 𝑣𝑡+1) 

 𝑣𝑡+1 = 𝑏𝑜𝑢𝑛𝑑𝑣 𝑣𝑡 + 0.001𝑎𝑡  − 0.0025 cos 3𝑝𝑡  

 𝑏𝑜𝑢𝑛𝑑𝑝(⋅) enforces −1.2 ≤ 𝑝𝑡+1≤ 0.5 

 𝑏𝑜𝑢𝑛𝑑𝑣(⋅) enforces −0.07 ≤ 𝑣𝑡+1≤ 0.07 

 

 In each episode, the start position is chosen randomly 

 Episode terminates automatically after 2500 timesteps 
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First experimental setup:  

Mountain Car 

 To represent the current state for 

the neural network, each state 

feature is divided into ten regions 

 Thus, one input for each region 

 Input is set to 1, if the agents 

current state is in that region 

 

 Because each 𝑝𝑡 and 𝑣𝑡 fall into 

exact one region, only two inputs 

are activated simultaniously 

 

𝑣𝑡 
-0.07, −0.05, … … 0.05, 0.07 

𝑝𝑡 

1 0 -1 

Actions 
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Second experimental setup:  

Server Job Scheduling 

 In server job scheduling, we have with … 

 … a server (the role of the agent) 

 … a list of jobs (job queue) 

 The task for the agent is to determine  

in what order to process the jobs in the queue 

 Thus, its goal is to maximize the aggregate utility  

of all jobs the agent processes  Minimize waiting time for jobs 

 Problems: 

 Utility functions are usually non-linear 

 Multiple types of jobs 

 By time, random new jobs are added (with a random type) 
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Second experimental setup:  

Server Job Scheduling 

 Four different job types are given 

 Each job …  

 … can be completed in one timestep 

 … ages from timestep 0 to 200 

 ... has a utility function 

 After job completion, an immediate reward is 

determined by its utility function 

 #1 and #2 are less urgent  

than #3 and #4 

 In each episode 

 100 Jobs are preloaded 

 After each timestep 𝑡, a random job with random 

type is added 

 The episode ends after 200 timesteps 
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Second experimental setup:  

Server Job Scheduling 

 For the neural Network, we again 

divide the range of job ages into 

four sections for each job type  

 16 state features 

 

 The Job selection is also divided 

into four sections for each job type 

 16 distinct actions 

 

 Therefore, a job is selected from 

one of 16 subsets 

Job #1 

Job #2 

Job #3 

Job #4 

Job #1 

Job #2 

Job #3 

Job #4 

Actions 

0 100 150 200 50 

𝑡 
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Results – Parameters 

𝑝 = 100, size of Population 

𝑒 = 10000 episodes per generation 

 

Four versions of NEAT were applied 

 Original (off-line) NEAT as a baseline 

 Each policy in 𝑃 was evaluated 
𝑒

𝑝
= 100 times 

 (on-line) NEAT with … 

 … 𝜖-Greedy Evolution (𝜖 = 0,25) 

 … Softmax Evolution (𝜏 = 50 in Mountain Car, 𝜏 = 500 in Server Job Scheduling) 

 … Interval Estimation Evolution (𝛼 = 20, resulting in 80% confidence intervals) 

 

 The parameters for the policy selection methods  

were found by informal experiments 
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Results – Uniform moving average score  

per episode 

 Uniform moving average (used in on-line metrics) over last 1000 episodes 

 In both domains, rewards are negative  

 Agents strive to get average reward as close to zero as possible 

 Vertical bars on the graph indicate 95% confidence intervals 
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Results – Cumulative Reward 

 In Mountain Car domain, one can see that the on-line NEAT versions converge 

faster than off-line NEAT 

 In Server Job Scheduling, Off-Line NEAT receives much less reward than On-Line 

NEAT by time   
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Results – Final remarks 

 The experiments verify that selection mechanisms from TD 

methods can improve on-line performance 

 Softmax Evolution and Interval Estimation Evolution 

also outperform 𝜖-Greedy 

 But Softmax-parameter 𝜏 may require problem specific 

knowledge 

 Harder to tune 

 Interval Estimation Evolution may be the best choice 

 Easy to tune uncertainty parameter 𝛼 
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Conclusion 

 TD action selection methods were transformed into policy 

selection methods 

 These methods were then applied for policies in NEAT 

 Expectation: These methods could also improve other 

policy search techniques (e.g. policy gradient methods 

(Sutton, McAllester et al. 1999)) 

 

 But there is also a limitation for policy search techniques 

 They do not exploit the specific structure of the 

 reinforcement learning problem 

 Follow up  

 Evolutionary function approximation (Whiteson 2010) 



01.02.2016  |  Dept. of Computer Science  |  Knowledge Engineering Group  |  Prof. J. Fürnkranz  |  30 

Evolutionary Function Approximation 

Basically NEAT, but with  

a reinterpretation  

of the output values 
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Thank you for your attention! 


