
01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 1

Elvir Sabic

On-Line Evolutionary Computation

for Reinforcement Learning

in Stochastic Domains

(Whiteson and Stone 2006)

Hidden

-1 0 1

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 2

Overview

 Introduction

 Recap: NeuroEvolution of Augmenting Topologies (NEAT)

 NEAT in Stochastic Domains

 Policy Selection Methods

 Experimental setups

 Mountain Car

 Server Job Scheduling

 Results

 Conclusion

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 3

Introduction

 Evolutionary computation is one of the most promising

approaches to reinforcement learning

 NEAT (Stanley and Miikkulainen 2002) is one approach

 Intended for off-line learning scenarios

 Problem

 Evolutionary computation is usually used in deterministic domains

but stochastical domains are more practical

 Thus, on-line learning would be preferable

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 4

Introduction

Can we improve evolutionary computation

in stochastic domains?

 Temporal difference (TD) methods are used in on-line

learning scenarios

 They have action selection mechanisms which consider

a balance between ...

 exploration (search for better Policies)

 exploitation (accrue maximal reward)

 Idea:

Integrate the TD selection mechanisms

in evolutionary computation (Here: in NEAT)!

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 5

Recap: NeuroEvolution

of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen 2002)

NEAT …

 … uses evolutionary algorithms (e.g. Genetic algorithm)

to train artificial neural networks

 … allows to optimize and complexify solutions simultaneously

 … minimizes the dimensionality of the weight space

 … focuses on evolving topologies along with weights

rather than optimizing weights directly (e.g. Backpropagation)

Thus, NEAT is a policy search method which uses genetic algorithm

where each individual in the population is a candidate policy

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 6

Example:

MarI/O – NEAT Implementation

in „Super Mario World“

https://www.youtube.com/watch?v=qv6UVOQ0F44

https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=qv6UVOQ0F44

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 7

NEAT Algorithm

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 8

NEAT Algorithm – Parameters

 S = Set of all state variables

 A = Set of all action variables

 p = Population size

 mn = Probability to mutate a node

 ml = Probability to mutate a link

 g = Number of generation

 e = Number of episodes

 per generation

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 9

NEAT Algorithm – Population initialization

 Initializing population by

uniformly sampling p individuals

 Each individual 𝑁 ∈ 𝑃

 … is a neural network with …

 … states as inputs

 … actions as outputs

 … initially has only one link at all

between one state and one action

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 10

NEAT Algorithm – Generation routine

For each generation there is …

1. … an Evaluation Phase

2. … a Breed Phase

1

2

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 11

NEAT Algorithm – Evaluation

 An individual 𝑁 ∈ 𝑃 is selected for

evaluation for an entire run

 The fitness of 𝑁 is the accumulated

sum of rewards

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 12

NEAT Algorithm – Evaluation

 Each individual 𝑁 ∈ 𝑃 will be

evaluated for
𝑒

𝑝
 episodes (at most)

 In deterministic domains,

we can use NEAT with 𝑒 = 𝑝

 In stochastic domains, we need

to evaluate each neural network

many times

 Thus, 𝑒 may be much bigger than 𝑝

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 13

NEAT in stochastic domains

 In on-line learning, evaluating each individual equally

for
𝑒

𝑝
 episodes is not optimal because it is purely exploratory

 Therefore, we need mechanisms to also allow exploitation of

individiuals within a generation

 Again: In TD learning there exist action selectors which

balance exploration and exploitation

 How can we utilize these selection methods?

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 14

NEAT Algorithm – Policy selection

 We can‘t use TD action selectors

directly, because in NEAT there

are no value functions

 But we can transform them into

policy selectors policySelector()

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 15

Policy selection methods

Here, three TD selection methods will be transformed

1. 𝜖-Greedy

2. Softmax

3. Interval Estimation (Upper bound estimate)

In the following slides:

 𝑓(𝑝) is the fitness of the policy 𝑝 averaged over all episodes for

which it has been previously evaluated

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 16

1. 𝝐-Greedy Evolution

Basic idea:

 With probability 1 − 𝜖,

select the best (fittest) policy of 𝑃

 Otherwise,

a random policy is selected

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 17

2. Softmax Evolution

 Every policy 𝑝 ∈ 𝑃 will be run

atleast once

 Each policy has a chance to be

chosen with a certain probability

(higher fitness  higher chance)

 The higher the temperature 𝜏 > 0,

the more equiprobable the policies

are

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 18

3. Interval Estimation Evolution

 As in Softmax,

every policy 𝑝 ∈ 𝑃 will be run atleast once

 𝑧(⋅) is the

standard normal distribution

 Estimation results into

a 100 − 𝛼 % confidence interval

For policy 𝑝

 𝜎(𝑝) is the standard deviation

according to 𝑓(𝑝)

 𝑒(𝑝) is the number of episodes

In a nutshell:

The policy with its highest upper bound

will be selected

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 19

First experimental setup:

Mountain Car

 The task for the agent is to drive

a car to the top of a steep

mountain

 Problem: To overcome gravity,

needs to get enough inertia to

ascend to the goal

 Thus, the agent needs to learn

when to drive fordwards or

backwards

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 20

First experimental setup:

Mountain Car

 Agent‘s state at timestep 𝑡:

 Position 𝑝𝑡

 Velocity 𝑣𝑡

 Reward for each timestep: -1

 Until goal state is reached ( end of episode)

 Actions 1, 0 and -1 correspond to throttle settings

 Car movement control

 𝑝𝑡+1 = 𝑏𝑜𝑢𝑛𝑑𝑝(𝑝𝑡 + 𝑣𝑡+1)

 𝑣𝑡+1 = 𝑏𝑜𝑢𝑛𝑑𝑣 𝑣𝑡 + 0.001𝑎𝑡 − 0.0025 cos 3𝑝𝑡

 𝑏𝑜𝑢𝑛𝑑𝑝(⋅) enforces −1.2 ≤ 𝑝𝑡+1≤ 0.5

 𝑏𝑜𝑢𝑛𝑑𝑣(⋅) enforces −0.07 ≤ 𝑣𝑡+1≤ 0.07

 In each episode, the start position is chosen randomly

 Episode terminates automatically after 2500 timesteps

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 21

First experimental setup:

Mountain Car

 To represent the current state for

the neural network, each state

feature is divided into ten regions

 Thus, one input for each region

 Input is set to 1, if the agents

current state is in that region

 Because each 𝑝𝑡 and 𝑣𝑡 fall into

exact one region, only two inputs

are activated simultaniously

𝑣𝑡
-0.07, −0.05, … … 0.05, 0.07

𝑝𝑡

1 0 -1

Actions

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 22

Second experimental setup:

Server Job Scheduling

 In server job scheduling, we have with …

 … a server (the role of the agent)

 … a list of jobs (job queue)

 The task for the agent is to determine

in what order to process the jobs in the queue

 Thus, its goal is to maximize the aggregate utility

of all jobs the agent processes  Minimize waiting time for jobs

 Problems:

 Utility functions are usually non-linear

 Multiple types of jobs

 By time, random new jobs are added (with a random type)

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 23

Second experimental setup:

Server Job Scheduling

 Four different job types are given

 Each job …

 … can be completed in one timestep

 … ages from timestep 0 to 200

 ... has a utility function

 After job completion, an immediate reward is

determined by its utility function

 #1 and #2 are less urgent

than #3 and #4

 In each episode

 100 Jobs are preloaded

 After each timestep 𝑡, a random job with random

type is added

 The episode ends after 200 timesteps

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 24

Second experimental setup:

Server Job Scheduling

 For the neural Network, we again

divide the range of job ages into

four sections for each job type

 16 state features

 The Job selection is also divided

into four sections for each job type

 16 distinct actions

 Therefore, a job is selected from

one of 16 subsets

Job #1

Job #2

Job #3

Job #4

Job #1

Job #2

Job #3

Job #4

Actions

0 100 150 200 50

𝑡

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 25

Results – Parameters

𝑝 = 100, size of Population

𝑒 = 10000 episodes per generation

Four versions of NEAT were applied

 Original (off-line) NEAT as a baseline

 Each policy in 𝑃 was evaluated
𝑒

𝑝
= 100 times

 (on-line) NEAT with …

 … 𝜖-Greedy Evolution (𝜖 = 0,25)

 … Softmax Evolution (𝜏 = 50 in Mountain Car, 𝜏 = 500 in Server Job Scheduling)

 … Interval Estimation Evolution (𝛼 = 20, resulting in 80% confidence intervals)

 The parameters for the policy selection methods

were found by informal experiments

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 26

Results – Uniform moving average score

per episode

 Uniform moving average (used in on-line metrics) over last 1000 episodes

 In both domains, rewards are negative

 Agents strive to get average reward as close to zero as possible

 Vertical bars on the graph indicate 95% confidence intervals

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 27

Results – Cumulative Reward

 In Mountain Car domain, one can see that the on-line NEAT versions converge

faster than off-line NEAT

 In Server Job Scheduling, Off-Line NEAT receives much less reward than On-Line

NEAT by time

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 28

Results – Final remarks

 The experiments verify that selection mechanisms from TD

methods can improve on-line performance

 Softmax Evolution and Interval Estimation Evolution

also outperform 𝜖-Greedy

 But Softmax-parameter 𝜏 may require problem specific

knowledge

 Harder to tune

 Interval Estimation Evolution may be the best choice

 Easy to tune uncertainty parameter 𝛼

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 29

Conclusion

 TD action selection methods were transformed into policy

selection methods

 These methods were then applied for policies in NEAT

 Expectation: These methods could also improve other

policy search techniques (e.g. policy gradient methods

(Sutton, McAllester et al. 1999))

 But there is also a limitation for policy search techniques

 They do not exploit the specific structure of the

 reinforcement learning problem

 Follow up

 Evolutionary function approximation (Whiteson 2010)

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 30

Evolutionary Function Approximation

Basically NEAT, but with

a reinterpretation

of the output values

01.02.2016 | Dept. of Computer Science | Knowledge Engineering Group | Prof. J. Fürnkranz | 31

Thank you for your attention!

