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Introduction

= Evolutionary computation is one of the most promising
approaches to reinforcement learning
» NEAT (Stanley and Miikkulainen 2002) is one approach

» Intended for off-line learning scenarios

= Problem

= Evolutionary computation is usually used in deterministic domains
but stochastical domains are more practical

=» Thus, on-line learning would be preferable
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Introduction

Can we improve evolutionary computation
in stochastic domains?

» Temporal difference (TD) methods are used in on-line
learning scenarios

» They have action selection mechanisms which consider
a balance between ...
» exploration (search for better Policies)

= exploitation (accrue maximal reward)

ldea:

Integrate the TD selection mechanisms
in evolutionary computation (Here: in NEAT)!
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Recap: NeuroEvolution
of Augmenting Topologies (NEAT)
(Stanley and Miikkulainen 2002)

NEAT ...

= ... uses evolutionary algorithms (e.g. Genetic algorithm)
to train artificial neural networks

= ... allows to optimize and complexify solutions simultaneously
* ... minimizes the dimensionality of the weight space

= ... focuses on evolving topologies along with weights
rather than optimizing weights directly (e.g. Backpropagation)

Thus, NEAT is a policy search method which uses genetic algorithm
where each individual in the population is a candidate policy
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.
Example:

Marl/O — NEAT Implementation
in ,,.Super Mario World*

Fern 34 species 14 genome 14 (37%)

Fitness: 200 Max Fitness: 4322
o =3 gy el i [y LF (g dy F LF
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TITI Il

https://www.youtube.com/watch?v=gv6UVOQO0F44
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NEAT(S,4, p,my,m;,g,e)

1: //S: set of all states, A: set of all actions, p: population size, m,.: node mutation rate
2: // my: link mutation rate, g: number of generations, e: episodes per generation

3:

4: P[] < INIT-POPULATION(S, 4, p) // create new population P with random networks

5: fori— 1togdo

6: for j— ltoedo

7: N,s,s" < P[j % p|, null, INIT-STATE(S) // select next network

8: repeat

9: O[] < EVAL-NET(N,s') // evaluate selected network on current state
10: a — argmax;Qli] // select action with highest activation
11: s,a—s',d
12: r,s' «— TAKE-ACTION(a') // take action and transition to new state
13: N.fitness — N. fitness +r // update total reward accrued by N
14: until TERMINAL-STATE?(s)
15: N.episodes «— N .episodes + 1 // update total number of episodes for N
16:  P'[] < new array of size p // new array will store next generation
17:  for j«— ltopdo
18: P'[j] < BREED-NET(P[]) // make a new network based on fit parents in P
19: with-probability 7,: ADD-NODE-MUTATION(P'[/]) // add node to new network
20: with-probability m;: ADD-LINK-MUTATION(P'[/]) // add link to new network
21: P[P
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NEAT Algorithm — Parameters

NEAT(S, 4, p,my,m;, g, e)

. S = Set of all state variables
& Pl  INIT-POPULATION(S, 4,.2) A = Set of all action variables
5: fori—1togdo
6: forj—1toedo . .
7: N,s,s' < P[j% p], null, INIT-STATE(S) P = POpUlatlon Slze
8: repeat .
o o — EVAL_;T'}T(M) m,, = Probability to mutate a node
. a < argmax;t/|i
11: s,a—s',d — 1 .
o rs' — TAKE-ACTION(d) m, = Probability to mutate a link
13: N.fitness <— N. fitness+r )
14: until TERMINAL-STATE?(s) g = Number of generation
15: N.episodes — N.episodes + 1
16: P  new array of size p e = Number of episodes
17:  for j— 1to p do
18: PI[}] — BRE]E-,[-)—NET(P[]) ‘ per generatlon
19: with-probability m,: ADD-NODE-MUTATION(P'[/])
20: with-probability 7;: ADD-LINK-MUTATION(P'[/])
21: P[] <P
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NEAT Algorithm — Population initialization

TECHNISCHE
UNIVERSITAT
DARMSTADT

NEAT(S, 4, p,my,m;, g, e)

= |nitializing population by
uniformly sampling p individuals

for j— 1toedo
N,s,s" — P[j % p|, null, INIT-STATE(S)
repeat

Q[] — EVAL—NET(N:S!) u EaCh indIVIdual N E P
d — argmax;Q|i] ) )
s,a—s,d = ... IS a neural network with ...
r,s' < TAKE-ACTION(d)) _
N.fitness < N.fitness +r = _.. States as Inputs
until TERMINAL-STATE?(s) _
N.episodes «+ N.episodes + 1 = ... actions as outputs
P[] < new array of size p oo )
for j — 1to p do = ... initially has only one link at all
P'[j] < BREED-NET(P[]) :
with-probability 7,: ADD-NODE-MUTATION(P'[j]) between one state and one action
with-probability 7;: ADD-LINK-MUTATION(P'[/])
P[] — P[]
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NEAT Algorithm — Generation routine

NEAT(S,4, p,my,m;,g,e)

1:
2: For each generation there is ...
3:
4: P[] < INIT-POPULATION(S, 4, p)
5: fori—1togdo
6: or j — .
7: N,s,s" < P[j % p|, null, INIT-STATE(S) 1 ... dn Evaluat|0n Phase
8: repeat
9: O[] < EVAL-NET(N,s')
10: a — argmax;Qli]
11: s,a—s',d
12: r,s' «— TAKE-ACTION(a')
13: N.fitness — N.fitness+r
14: until TERMINAL-STATE?(s)
15: N.episodes «+— N.episodes
16: ‘
17: QRfor j«— 1topdo
8. | P reep-erc)) 2....aBreed Phase
19: with-probability m,: ADD-NODE-MUTATION(P'[/])
20: with-probability m;: ADD-LINK-MUTATION(P'[/])
21: JP[| <P
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NEAT Algorithm — Evaluation

NEAT(S,4, p,my,m;, g, e)

l:

gz = An individual N € P is selected for
4: P[] < INIT-POPULATION(S, 4, p) evaluation for an entire run

5: fori—1togdo

6: for j— 1toedo

7:

. O] EVALNETCV. ) = The fitness of N is the accumulated
10: a — argmax;Qli]

. sa—s.d sum of rewards

12: r.s' «— TAKE-ACTION(a

3:

14: ur RMINAL-STATE /(S

15: N.episodes «— N .episodes + 1

16:  P'[] < new array of size p
17:  for j«— 1top do

18: P'[j] < BREED-NET(P[])

19: with-probability m,: ADD-NODE-MUTATION(P'[/])
20: with-probability m;: ADD-LINK-MUTATION(P'[/])
21: P[] <P
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NEAT Algorithm — Evaluation

NEAT(S, 4, p,my,m;, g, e)

1:
2: = Each individual N € P will be
3:
4: P[] < INIT-POPULATION(S, 4, p) e .
5. fori— 1togdo evaluated for — episodes (at most)
6: Qfor j— 1toedo p
s P null N STATEC) = [n deterministic domains
: repeat !
9: O[] < EVAL-NET(N,s") . _
o 7 argmarOli we can use NEAT withe =p
11: s,a—s'.d . .
12: r,s' «— TAKE-ACTION(d) = |n stochastic domalnS, we need
13: N.fitness — N. fitness +r
14:  until TERMINAL-STATE?(s) to evaluate each neural network
15: N.episodes «— N.episodes + 1 .
16: P[] < new array of size p many times
17:  for j— 1to p do
18: P[] < BREED-NET(P[]) | = Thus, e may be much bigger than p
19: with-probability m,: ADD-NODE-MUTATION(P'[/])
20: with-probability 7;: ADD-LINK-MUTATION(P'[/])

21: P[P
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NEAT In stochastic domains

* |n on-line learning, evaluating each individual equally
for g episodes is not optimal because it is purely exploratory

» Therefore, we need mechanisms to also allow exploitation of
Individiuals within a generation

» Again: In TD learning there exist action selectors which
balance exploration and exploitation

= How can we utilize these selection methods?
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NEAT Algorithm — Policy selection

NEAT(S, 4, p,my,m;, g, e)

1:

gz = We can‘t use TD action selectors
4: P[] < INIT-POPULATION(S, 4, p) directly, because in NEAT there
5: fori—1togdo

6: for j— 1toedo I

7 N,s,s' < iimslligme null, INIT-STATE(S) are no value functions

8: repeat .

0. of] - L\t NET(V. ) = But we can transform them into
10: ' o .

11:  policySelector() policy selectors

12: r,s' «— TAKE-ACTION(a')

13: N.fitness <— N. fitness +r

14: until TERMINAL-STATE?(s)

15: N.episodes «— N .episodes + 1

16: P[] < new array of size p

17:  for j— 1to p do

18: P'[j] < BREED-NET(P[])

19: with-probability m,: ADD-NODE-MUTATION(P'[/])
20: with-probability 7;: ADD-LINK-MUTATION(P'[/])
21: P[] <P
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Policy selection methods

Here, three TD selection methods will be transformed
1. e-Greedy

2. Softmax

3. Interval Estimation (Upper bound estimate)

In the following slides:

* f(p) Is the fitness of the policy p averaged over all episodes for
which it has been previously evaluated
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1. e-Greedy Evolution

Basic idea;

Algorithm 1 e-GREEDY SELECTION(P, €) = \With probab”ity 1 —€,
1: // P: population, e: NEAT’s exploration rate
2.

select the best (fittest) policy of P

3: with-prob(e) return RANDOM(P)
4: else return argmax,c p f(p)

= Otherwise,
a random policy is selected
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2. Softmax Evolution

= Every policy p € P will be run

atleast once

Algorithm 2 SOFTMAX SELECTION(P, T)

1: // P: population, T: softmazx temperature

2: = Each policy has a chance to be

3: if 3pe€ Ple(p) =0 then _ _ -

b fetumnp chosen with a certain probability
% total — ef()/7 : : :

i (higher fitness =» higher chance)
8: with-prob(%) return p .

9 else total — tot i)/ » The higher the temperature t > 0,

the more equiprobable the policies
are
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3. Interval Estimation Evolution
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Algorithm 3 INTERVAL ESTIMATION(P, o)

: // P: population, a: uncertainty in confidence interval
: if 3p € Ple(p) =0 then
return p

else
return a,rgma,xpep[f(p) + z( 102%6a) gi;(g;)]

= As in Softmax,
every policy p € P will be run atleast once

= z(:)is the
standard normal distribution

= Estimation results into
a (100 — a)% confidence interval

For policy p

» g(p) is the standard deviation
according to f(p)

= ¢(p) is the number of episodes

In a nutshell:
The policy with its highest upper bound
will be selected
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First experimental setup.
Mountain Car

» The task for the agent is to drive
a car to the top of a steep

MOUNTAIN CAR Goal mountain
* Problem: To overcome gravity,

needs to get enough inertia to

/ ascend to the goal
ﬁ » Thus, the agent needs to learn
/. when to drive fordwards or
backwards
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MOUNTAIN CAR Goal = Agent's state at timestep t:
= Position p;
= Velocity v,

{f/ Reward for each timestep: -1

/ = Until goal state is reached (= end of episode)

Actions 1, 0 and -1 correspond to throttle settings

= Car movement control

" Pr+1 = bound,(pr + Viyq)

" Viyq = bound,(v; + 0.001a; — 0.0025 cos(3p;))

* bound,(-) enforces —1.2 < p;41< 0.5

= bound,(-) enforces —0.07 < v;,,< 0.07

In each episode, the start position is chosen randomly

Episode terminates automatically after 2500 timesteps
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First experimental setup.
Mountain Car

Pt /G"é" = To represent the current state for
the neural network, each state
{?3/ feature is divided into ten regions
y V¢ _ . .
Ay b Thus, one input for each region
o -0.07,-0.05,... ...0.05, 0.07 _ _
TTTTTTTTT] T T * [nput is set to 1, if the agents

current state is in that region

\ l / = Because each p; and v, fall into

Actions O O exact one region, only two inputs
1 0 -1 are activated simultaniously
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Second experimental setup:
Server Job Scheduling
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* |n server job scheduling, we have with ...
= ... aserver (the role of the agent)

= ... alist of jobs (job queue)

* The task for the agent is to determine
In what order to process the jobs in the queue

» Thus, its goal is to maximize the aggregate utility

of all jobs the agent processes =» Minimize waiting time for jobs
* Problems:

= Utility functions are usually non-linear

= Multiple types of jobs

= By time, random new jobs are added (with a random type)
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Utility

Second experimental setup: TECHNISCHE

Server Job Scheduling DARMSTADT
» Four different job types are given
= Each job ...

Utility Functions forIAII Four Job Types | = can be Completed In one tlmestep

0 el = ... ages from timestep 0 to 200

n \ | = ... has a utility function

ol Jompm\\\ eeheeft | m After job completion, an immediate reward is

determined by its utility function
{= #1 and #2 are less urgent

-80 |

100 |- . Job Type #3
20 | than #3 and #4
Job Type #4 - .
) .\« |neach episode
0, 50 00 150 20 ® 100 Jobs are preloaded

Completion Time

= After each timestep t, a random job with random
type is added

» The episode ends after 200 timesteps
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Second experimental setup:
Server Job Scheduling
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0 50 100 150 200 _
Job #1 divide the range of job ages into
Job#2 | ] ] ] [ ] four sections for each job type
Job #3 . . . . = 16 state features
Job #4
- » The Job selection is also divided
Actions into four sections for each job type

Job #1 =» 16 distinct actions

Job #2
Job #3
Job #4

» Therefore, a job is selected from
one of 16 subsets

@l 0@
ol 0@
@l 0@
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Results — Parameters

p = 100, size of Population
e = 10000 episodes per generation

Four versions of NEAT were applied
» Original (off-line) NEAT as a baseline

» Each policy in P was evaluated % = 100 times

» (on-line) NEAT with ...

» ... e-Greedy Evolution (¢ = 0,25)
= .. Softmax Evolution (r = 50 in Mountain Car, T = 500 in Server Job Scheduling)
= ... Interval Estimation Evolution (a = 20, resulting in 80% confidence intervals)

» The parameters for the policy selection methods
were found by informal experiments
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Results — Uniform moving average score

per episode
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(a) Mountain Car
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In both domains, rewards are negative

1000

Score

-10000

-10500

-11000 -

-11500

-12000

-12500

-13500

-14000

-14500

-15000

-15500

Uniform Moving Average Score Per Episode

-13000
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Softmax
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0

100

200

300 400 500 600 700 800 900 1000

Episode (x1000)

(b) Server Job Scheduling

Uniform moving average (used in on-line metrics) over last 1000 episodes

=>» Agents strive to get average reward as close to zero as possible

Vertical bars on the graph indicate 95% confidence intervals
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Cumulative Reward Cumulative Reward
G T T T T T T T T T 0 T T T T T T T T
Softmax
2e+07 1 Interval Estimation
-2e+09 | -
-4e+07 | -
Be407 |- | -4e+09 | Softmax o ]
Interval Estimation
-Be+07 | Epsilon-Greedy 1l 3
£ -Bes00 |- -
&
-1e+08 | T £
=
E 8e+09 g
-1.2e4+08 |- 7 3
Q
Oft-Line
-1.48+08 |- 7 -1e+10 | 7
1.6es08 | Off-Line i
-1.28+10 | -
-1.8e+08 |- . Epsilon-Greedy
'EE+DS 1 L 1 L 1 L 1 | 1 'I4&+10 L 1 L 1 1 L 1 L 1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 800 700 800 200 1000
Episode (x1000) Episode (x1000)
(a) Mountain Car (b) Server Job Scheduling

* In Mountain Car domain, one can see that the on-line NEAT versions converge
faster than off-line NEAT

» In Server Job Scheduling, Off-Line NEAT receives much less reward than On-Line
NEAT by time
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Results — Final remarks

* The experiments verify that selection mechanisms from TD
methods can improve on-line performance

= Softmax Evolution and Interval Estimation Evolution
also outperform e-Greedy

» But Softmax-parameter t may require problem specific
knowledge
=» Harder to tune

* [nterval Estimation Evolution may be the best choice

= Easy to tune uncertainty parameter «
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Conclusion

» TD action selection methods were transformed into policy
selection methods

» These methods were then applied for policies in NEAT
=» Expectation: These methods could also improve other
policy search techniques (e.g. policy gradient methods
(Sutton, McAllester et al. 1999))

= But there is also a limitation for policy search techniques

» They do not exploit the specific structure of the
reinforcement learning problem

» Follow up
= Evolutionary function approximation (Whiteson 2010)
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Evolutionary Function Approximation
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NEAT+Q(S, 4, ¢, p,my,my, g,e,0, Y, A, &q)

1: //S: set of all states, A: set of all actions, c: output scale, p: population size

2: // m,: node mutation rate, m;: link mutation rate, g: number of generations

3: // e: number of episodes per generation, o.: learning rate, y: discount factor

4: // A: eligibility decay rate, €. exploration rate

5:

6: P[] < INIT-POPULATION(S, 4, p) // create new population P with random networks

7: fori— 1togdo

8 forj—1ltoedo

0: N.,s,s' «— P[j % p], null, INIT-STATE(S) // select next network
10: repeat
11: O[] «— cx EVAL-NET(N,s') // compute value estimates for current state
12:
13: with-prob(g,,) @’ «— RANDOM(A) // select random exploratory action
14: else ¢’ — argmax; Q|£] // or select greedy action
15: if s = null then
16: BACKPROP(N,s,a, (r+ ymax; Q[k]) /c,a, v, 4) // adjust weights
17:
18: s,a+—s,d
19: r,s' «— TAKE-ACTION(a) // take action and transition to new state
20: N.fitness < N. fitness+r // update total reward accrued by N
21: until TERMINAL-STATE?(s)
22: N.episodes «— N.episodes + 1 // update total number of episodes for N
23: P[] < new array of size p // new array will store next generation
24:  for j«— ltopdo
25: P'[j] < BREED-NET(PJ)) // make a new network based on fit parents in P
26: with-probability m,: ADD-NODE-MUTATION(P'[]) // add node to new network
27: with-probability m;: ADD-LINK-MUTATION(P'[/]) // add link to new network
28: P[] — P’[]

Basically NEAT, but with
a reinterpretation
of the output values
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Thank you for your attention!
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