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A Sample Database

 No. Education Marital S. Sex. Children? Approved?

1 Primary Single M N -

2 Primary Single M Y -

3 Primary Married M N +

4 University Divorced F N +

5 University Married F Y +

6 Secondary Single M N -

7 University Single F N +

8 Secondary Divorced F N +

9 Secondary Single F Y +

10 Secondary Married M Y +

11 Primary Married F N +

12 Secondary Divorced M Y -

13 University Divorced F Y -

14 Secondary Divorced M N +

Property of Interest
(“class variable”)
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Batch induction

 So far our algorithms looked at 
 all theories at the same time (implicitly through the version space)
 and processed examples incrementally

 We can turn this around:
 work on the theories incrementally
 and process all examples at the same time

 Basic idea:
 try to quickly find a complete and consistent rule
 need not be in either S or G (but in the version space)

→ We can define an algorithm similar to FindG:
 successively refine rule by adding conditions:
 evaluate all refinements and pick the one that looks best

 until the rule is consistent
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Algorithm Batch-FindG

I.  h = most general hypothesis in H
C = set of all possible conditions 

II. while h covers negative examples

I.  hbest = h

II.  for each possible condition c ∈ C
a)  h' = h ∪ {c}

b)  if h' covers
● all positive examples
● and fewer negative examples than hbest

then hbest = h'

III. h = hbest

III.  return hbest

I.  h = most general hypothesis in H
C = set of all possible conditions 

II. while h covers negative examples

I.  hbest = h

II.  for each possible condition c ∈ C
a)  h' = h ∪ {c}

b)  if h' covers
● all positive examples
● and fewer negative examples than hbest

then hbest = h'

III. h = hbest

III.  return hbest

Scan through all examples
in database:
• count covered positives
• count covered negatives

Scan through all examples
in database:
• count covered positives
• count covered negatives

Evaluation of a rule by
# covered positive and
# covered negative
examples

Evaluation of a rule by
# covered positive and
# covered negative
examples
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Properties

 General-to-Specific (Top-Down) Search
 similar to FindG:
 FindG makes an arbitrary selection among possible refinements,

taking the risk that it may lead to an inconsistency later
 Batch-FindG selects next refinement based on all training examples

 Heuristic algorithm
 among all possible refinements, we select the one that leads 

to the fewest number of covered negatives
 IDEA: the more negatives are excluded with the current condition, 

the less have to be excluded with subsequent conditions

 Converges towards some theory in V
 not necessarily towards a theory in G

 Not very efficient, but quite flexible
 criteria for selecting conditions could be exchanged
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Algorithms for Learning a Single Rule

Objective:
 Find the best rule according to some measure h

Algorithms
 Greedy search
 top-down hill-climbing or beam search
 successively add conditions that increase value of h
 most popular approach

 Exhaustive search
 efficient variants 
 avoid to search permutations of conditions more than once
 exploit monotonicity properties for pruning of parts of the search space

 Randomized search
 genetic algorithms etc.
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Top-Down Hill-Climbing

Top-Down Strategy: A rule is successively specialized

1. Start with the universal rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

 Most greedy rule learning systems use a top-down strategy

Beam Search:
 Always remember (and refine) the best b solutions in parallel
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Terminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P

class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n)  P+N

 training examples
 P: total number of positive examples
 N: total number of negative examples

 examples covered by the rule (predicted positive)
 true positives p: positive examples covered by the rule
 false positives n: negative examples covered by the rule

 examples not covered the rule (predicted negative)
 false negatives P-p: positive examples not covered by the rule
 true negatives N-n: negative examples not covered by the rule
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Coverage Spaces 

 good tool for visualizing properties of covering algorithms
 each point is a theory covering p positive and n negative examples
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Coverage Spaces 

 good tool for visualizing properties of covering algorithms
 each point is a theory covering p positive and n negative examples

universal theory:
all examples 
are covered

(most general)

empty theory:
no examples 
are covered

(most specific)

perfect theory:
all positive and 

no negative
examples 

are covered

Random theories:
maintain P/(P+N)% true
positive and N/(P+N)%

false positive examples,

opposite theory:
all negative and

no positive 
examples 

are covered

iso-accuracy:
cover same
amount of
positive

and negative
examples
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Top-Down Hill-Climbing in Coverage Space

 successively extends a rule by adding conditions

 This corresponds to a path in 
coverage space:
 The rule p:-true covers all 

examples (universal theory)
 Adding a condition never 

increases p or n (specialization) 
 The rule p:-false covers 

no examples (empty theory)

 which conditions are selected depends on a heuristic function that 
estimates the quality of the rule
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Rule Learning Heuristics

 Adding a rule should

 increase the number of covered negative examples as little as possible 
(do not decrease consistency)

 increase the number of covered positive examples as much as 
possible (increase completeness)

 An evaluation heuristic should therefore trade off these two 
extremes

 Example: Laplace heuristic 

 grows with 

 grows with 

 Example: Precision 

 is not a good heuristic. Why?

hLap=
p1

pn2

hPrec=
p

pn

p∞
n0
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Example

p n Laplace p-n
2 2 0.5000 0.5000 0

Mild 3 1 0.7500 0.6667 2
4 2 0.6667 0.6250 2
2 3 0.4000 0.4286 -1
4 0 1.0000 0.8333 4

Rain 3 2 0.6000 0.5714 1
3 4 0.4286 0.4444 -1

Normal 6 1 0.8571 0.7778 5
3 3 0.5000 0.5000 0
6 2 0.7500 0.7000 4

Condition Precision
Hot

Temperature =
Cold
Sunny

Outlook = Overcast

Humidity = High

Windy = True
False

 Heuristics Precision and Laplace 
 add the condition Outlook= Overcast to the (empty) rule
 stop and try to learn the next rule

 Heuristic Accuracy / p − n
 adds Humidity = Normal
 continue to refine the rule (until no covered negative)
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3d-Visualization of Precision

2d Coverage Space
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Isometrics in Coverage Space

 Isometrics are lines that connect points for which a function in p 
and n has equal values

 Examples: 
Isometrics for heuristics h

p
 = p and h

n
 = -n
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Precision (Confidence)

 basic idea:
percentage of positive 
examples among 
covered examples

 effects:
 rotation around origin 

(0,0)
 all rules with same 

angle equivalent
 in particular, all rules 

on P/N axes are 
equivalent 

hPrec=
p

pn



V3.0  |  J. FürnkranzMachine Learning and Data Mining | Subgroup Discovery 17

Entropy and Gini Index 

 effects:
 entropy and Gini index are 

equivalent

 like precision, isometrics 
rotate around (0,0)

 isometrics are symmetric 
around 45o line 

 a rule that only covers 
negative examples is as 
good as a rule that only 
covers positives

hEnt=−
p

pn
log2

p
pn


n

pn
log2

n
pn



hGini=1−
p

pn


2

− 
n

pn


2

≃
pn

 pn
2

These will be explained
later (decision trees)
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Accuracy 

 basic idea:
percentage of correct 
classifications 
(covered positives plus 
uncovered negatives)

 effects:
 isometrics are parallel 

to 45o line
 covering one positive 

example is as good as 
not covering one 
negative example

hAcc=
pN− n

PN
≃ p−n Why are they

equivalent?

hAcc=
P

PN

hAcc=
N

PN

hAcc=
1
2



V3.0  |  J. FürnkranzMachine Learning and Data Mining | Subgroup Discovery 19

Weighted Relative Accuracy 

 basic idea:
normalize accuracy with 
the class distribution

 effects:
 isometrics are parallel 

to diagonal
 covering x% of the 

positive examples is
considered to be as 
good as not covering 
x% of the negative 
examples

hWRA=
pn

PN


p
pn

− P
PN

≃
p
P
− n

N

hWRA=0



V3.0  |  J. FürnkranzMachine Learning and Data Mining | Subgroup Discovery 20

Weighted Relative Accuracy

 Two Basic ideas:
 Precision Gain: compare precision to precision of a rule that classifies 

all examples as positive

 Coverage: Multiply with the percentage of covered examples

 Resulting formula:

 one can show that sorts rules in exactly the same way as 

p
pn

− P
PN

pn
PN

hWRA=
pn

PN
⋅ p

pn
− P

PN 

hWRA '=
p
P
− n

N
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Linear Cost Metric

 Accuracy and weighted relative accuracy are only two special 
cases of the general case with linear costs:

 costs c mean that covering 1 positive example is as good as not 
covering c/(1-c) negative examples

 The general form is then
 the isometrics of hcost are parallel lines with slope (1-c)/c

hcost=c⋅p−1−c ⋅n

c measure
½ accuracy

N/(P+N) weighted relative accuracy

0 excluding negatives at all costs

1 covering positives at all costs
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Relative Cost Metric

 Defined analogously to the Linear Cost Metric
 Except that the trade-off is between the normalized values 

of p and n
 between true positive rate p/P and false positive rate n/N

 The general form is then

 the isometrics of hcost are parallel lines with slope (1-c)/c

 The plots look the same as for the linear cost metric
 but the semantics of the c value is different:
 for hcost it does not include the example distribution

 for hrcost it includes the example distribution

hrcost=c⋅
p
P

−1−c ⋅
n
N
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Laplace-Estimate 

 basic idea:
precision, but count 
coverage for positive 
and negative examples 
starting with 1 instead 
of 0

 effects:
 origin at (-1,-1)
 different values on 

p=0 or n=0 axes
 not equivalent to 

precision

hLap=
p1

 p1n1
=

p1
pn2
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m-Estimate 

 basic idea:
initialize the counts with m 
examples in total, distributed 
according to the prior 
distribution P/(P+N) of p and n.

 effects:
 origin shifts to

(-mP/(P+N),-mN/(P+N))
 with increasing m, the lines 

become more and more 
parallel

 can be re-interpreted as a 
trade-off between WRA and 
precision/confidence

hm=

pm
P

PN

 pm
P

PN
nm

N
PN


=

pm
P

PN
pnm
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Generalized m-Estimate

 One can re-interpret the m-Estimate:

 Re-interpret c = N/(P+N) as a cost factor like in the general cost metric

 Re-interpret m as a trade-off between precision and cost-metric

 m = 0: precision (independent of cost factor)

 m  ∞: the isometrics converge towards the parallel isometrics of the cost 
metric

 Thus, the generalized m-Estimate may be viewed as a means of 
trading off between precision and the cost metric
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Correlation

 basic idea:
measure correlation 
coefficient of predictions with 
target

 effects:
 non-linear isometrics
 in comparison to WRA
 prefers rules near the 

edges
 steepness of connection of 

intersections with edges 
increases

 equivalent to χ2

hCorr=
p N−n− P− pn

PN  pnP− pN− n
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Foil Gain

 (c is the precision of the parent rule)

h foil=− plog 2 c− log2
p

pn

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Myopy of Top-Down Hill-Climbing

 Parity problems (e.g. XOR)
 r relevant binary attributes
 s irrelevant binary attributes 
 each of the n = r + s attributes has values 0/1 with probability ½
 an example is positive if the number of 1's in the relevant attributes is 

even, negative otherwise

 Problem for top-down learning:
 by construction, each condition of the form ai = 0 or ai = 1 covers 

approximately 50% positive and 50% negative examples
 irrespective of whether ai is a relevant or an irrelevant attribute

➔ top-down hill-climbing cannot learn this type of concept

 Typical recommendation: 
 use bottom-up learning for such problems
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Bottom-Up Hill-Climbing

 Simple inversion of top-down hill-climbing
 A rule is successively generalized (analogous to Find-S)

1. Start with an empty rule R that covers all examples--

2. Evaluate all possible ways to add a condition to R

3. Choose the best one

4. If R is satisfactory, return it

5. Else goto 2.

a fully specialized a single example

delete
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A Pathology of Bottom-Up Hill-Climbing

att1 att2 att3

+ 1 1 1

 1 0 0

 0 1 0

 0 0 1

 Target concept att1 = 1 is not (reliably) learnable with bottom-up 
hill-climbing
 because no generalization of any seed example will increase coverage
 Hence you either stop or make an arbitrary choice (e.g., delete attribute 1)
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Bottom-Up Rule Learning Algorithms

 AQ-type:
 select a seed example and search the space of its generalizations
 BUT: search this space top-down
 Examples: AQ (Michalski 1969), Progol (Muggleton 1995)

 based on least general generalizations (lggs)
 greedy bottom-up hill-climbing
 BUT: expensive generalization operator 

(lgg/rlgg of pairs of seed examples)
 Examples: Golem (Muggleton & Feng 1990), DLG (Webb 1992), RISE 

(Domingos 1995)

 Incremental Pruning of Rules:
 greedy bottom-up hill-climbing via deleting conditions
 BUT: start at point previously reached via top-down specialization
 Pruning will be covered later
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Descriptive vs. Predictive Rules

 Descriptive Learning
 Focus on discovering patterns that describe (parts of) the data

 Predictive Learning
 Focus on finding patterns that allow to make predictions about the data

 Rule Diversity and Completeness: 
 Predictive rules need to be able to make a prediction for every possible 

instance

 Predictive Evaluation: 
 It is important how well rules are able to predict the dependent variable 

on new data

 Descriptive Evaluation:
 “insight” delivered by the rule
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Subgroup Discovery

 Definition

 Examples

“Given a population of individuals and a property of those individuals that we
are interested in, find population subgroups that are statistically 
'most interesting', e.g., are as large as possible and have the most unusual
distributional characteristics with respect to the property of interest”

(Klösgen 1996; Wrobel 1997) 
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Application Study: 
Life Course Analysis

 Data:
 Fertility and Family Survey 1995/96 for Italians and Austrians
 Features based on general descriptors and variables that describes 

whether (quantum), at which age (timing) and in what order 
(sequencing) typical life course events have occurred.

 Objective:
 Find subgroups that capture typical life courses for either country 

 Examples:
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Rule Length and Comprehensibility

 Some Heuristics tend to learn longer rules
 If there are conditions that can be added without decreasing coverage, 

they heuristics will add them first (before adding discriminative 
conditions)

 Typical intuition:
 long rules are less understandable, therefore short rules are preferable
 short rules are more general, therefore (statistically) more reliable

 Should shorter rules be preferred?
 Not necessarily, because longer rules may capture more information 

about the object
 Related to concepts in FCA, closed vs. free itemsets, discriminative 

rules vs. characteristic rules
 Open question...
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Inverted Heuristics – Motivation

 While the search proceeds top-down
 the evaluation of refinements happens from the point of view of 

the origin (bottom-up)

 Instead, we want to evaluate the refinement from the point of view 
of the predecessor

Figures by J. Stecher
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Inverted Heuristics

 Many heuristics can be “inverted” by replacing changing their 
angle point from the origin to the current rule

 Note: not all heuristics can be inverted
 e.g. WRA is invariant w.r.t. inversion (because of symmetry)

Figures by J. Stecher
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Inverted Heuristics – Example

Figures by J. Stecher
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Implementation

 Modification of a conventional covering algorithm
 CN2-like
 No pruning, no significance test

 Rule refinement proceeds with inverted heuristics
 In each iteration, the best condition is added to the rule until the rule 

covers no more examples

 Rule selection proceeds with regular heuristics
 Among all refinements on the path, the best rule is selected using a 

regular heuristic
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Results: 
Inverted heuristics tend to work better

Figures by J. Stecher
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Results: 
Inverted heuristics tend to work better

Figures by J. Stecher
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Inverted Heuristics – Rule Length

 Inverted Heuristics tend to learn longer rules
 If there are conditions that can be added without decreasing coverage 

on the positive examples, inverted heuristics will add them first 
(before adding discriminative conditions)
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Discriminative Rules

 Allow to quickly discriminate an object of one category from 
objects of other categories

 Typically a few properties suffice

 Example:
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Discriminative Rules

 Allow to quickly discriminate an object of one category from 
objects of other categories

 Typically a few properties suffice

 Example:
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Characteristic Rules

 Allow to characterize an object of a category
 Focus is on all properties that are typical for objects of that 

category

 Example:
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Characteristic Rules

 An alternative view of characteristic rules is to invert the 
implication sign

 All properties that are implied by the category

 Example:
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Example: Mushroom dataset

 The best three rules learned with conventional heuristics

 The best three rules learned with inverted heuristics

IF veil-color = w, gill-spacing = c, bruises? = f,
   ring-number = o, stalk-surface-above-ring = k
THEN poisonous (2192,0)
IF veil-color = w, gill-spacing = c, gill-size = n,
   population = v, stalk-shape = t
THEN poisonous (864,0)
IF stalk-color-below-ring = w, ring-type = p, 
   stalk-color-above-ring = w, ring-number = o, 
   cap-surface = s, stalk-root = b, gill-spacing = c
THEN poisonous (336,0)

IF odor = f THEN poisonous (2160,0) 
IF gill-color = b THEN poisonous (1152,0) 
IF odor = p THEN poisonous (256,0) 
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Summary

 Single Rules can be learned in batch mode from data by searching for 
rules that optimize a trade-off between covered positive and negative 
examples

 Different heuristics can be defined for optimizing this trade-off
 Coverage spaces can be used to visualize the behavior or such 

heuristics
 precision-like heuristics tend to find the steepest ascent
 accuracy-like heuristics assume a cost ratio between positive and 

negative examples
 m-heuristic may be viewed as a trade-off between these two

 Subgroup Discovery is a task of its own ...
 where typically the found description is the important result

 … but subgroups may also be used for prediction
 → learning rule sets to ensure completeness
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