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A Sample Database

 No. Education Marital S. Sex. Children? Approved?

1 Primary Single M N -

2 Primary Single M Y -

3 Primary Married M N +

4 University Divorced F N +

5 University Married F Y +

6 Secondary Single M N -

7 University Single F N +

8 Secondary Divorced F N +

9 Secondary Single F Y +

10 Secondary Married M Y +

11 Primary Married F N +

12 Secondary Divorced M Y -

13 University Divorced F Y -

14 Secondary Divorced M N +

Property of Interest
(“class variable”)
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Batch induction

 So far our algorithms looked at 
 all theories at the same time (implicitly through the version space)
 and processed examples incrementally

 We can turn this around:
 work on the theories incrementally
 and process all examples at the same time

 Basic idea:
 try to quickly find a complete and consistent rule
 need not be in either S or G (but in the version space)

→ We can define an algorithm similar to FindG:
 successively refine rule by adding conditions:
 evaluate all refinements and pick the one that looks best

 until the rule is consistent
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Algorithm Batch-FindG

I.  h = most general hypothesis in H
C = set of all possible conditions 

II. while h covers negative examples

I.  hbest = h

II.  for each possible condition c ∈ C
a)  h' = h ∪ {c}

b)  if h' covers
● all positive examples
● and fewer negative examples than hbest

then hbest = h'

III. h = hbest

III.  return hbest

I.  h = most general hypothesis in H
C = set of all possible conditions 

II. while h covers negative examples

I.  hbest = h

II.  for each possible condition c ∈ C
a)  h' = h ∪ {c}

b)  if h' covers
● all positive examples
● and fewer negative examples than hbest

then hbest = h'

III. h = hbest

III.  return hbest

Scan through all examples
in database:
• count covered positives
• count covered negatives

Scan through all examples
in database:
• count covered positives
• count covered negatives

Evaluation of a rule by
# covered positive and
# covered negative
examples

Evaluation of a rule by
# covered positive and
# covered negative
examples
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Properties

 General-to-Specific (Top-Down) Search
 similar to FindG:
 FindG makes an arbitrary selection among possible refinements,

taking the risk that it may lead to an inconsistency later
 Batch-FindG selects next refinement based on all training examples

 Heuristic algorithm
 among all possible refinements, we select the one that leads 

to the fewest number of covered negatives
 IDEA: the more negatives are excluded with the current condition, 

the less have to be excluded with subsequent conditions

 Converges towards some theory in V
 not necessarily towards a theory in G

 Not very efficient, but quite flexible
 criteria for selecting conditions could be exchanged



V3.0  |  J. FürnkranzMachine Learning and Data Mining | Subgroup Discovery 6

Algorithms for Learning a Single Rule

Objective:
 Find the best rule according to some measure h

Algorithms
 Greedy search
 top-down hill-climbing or beam search
 successively add conditions that increase value of h
 most popular approach

 Exhaustive search
 efficient variants 
 avoid to search permutations of conditions more than once
 exploit monotonicity properties for pruning of parts of the search space

 Randomized search
 genetic algorithms etc.
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Top-Down Hill-Climbing

Top-Down Strategy: A rule is successively specialized

1. Start with the universal rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

 Most greedy rule learning systems use a top-down strategy

Beam Search:
 Always remember (and refine) the best b solutions in parallel
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Terminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P

class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n)  P+N

 training examples
 P: total number of positive examples
 N: total number of negative examples

 examples covered by the rule (predicted positive)
 true positives p: positive examples covered by the rule
 false positives n: negative examples covered by the rule

 examples not covered the rule (predicted negative)
 false negatives P-p: positive examples not covered by the rule
 true negatives N-n: negative examples not covered by the rule
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Coverage Spaces 

 good tool for visualizing properties of covering algorithms
 each point is a theory covering p positive and n negative examples
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Coverage Spaces 

 good tool for visualizing properties of covering algorithms
 each point is a theory covering p positive and n negative examples

universal theory:
all examples 
are covered

(most general)

empty theory:
no examples 
are covered

(most specific)

perfect theory:
all positive and 

no negative
examples 

are covered

Random theories:
maintain P/(P+N)% true
positive and N/(P+N)%

false positive examples,

opposite theory:
all negative and

no positive 
examples 

are covered

iso-accuracy:
cover same
amount of
positive

and negative
examples
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Top-Down Hill-Climbing in Coverage Space

 successively extends a rule by adding conditions

 This corresponds to a path in 
coverage space:
 The rule p:-true covers all 

examples (universal theory)
 Adding a condition never 

increases p or n (specialization) 
 The rule p:-false covers 

no examples (empty theory)

 which conditions are selected depends on a heuristic function that 
estimates the quality of the rule
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Rule Learning Heuristics

 Adding a rule should

 increase the number of covered negative examples as little as possible 
(do not decrease consistency)

 increase the number of covered positive examples as much as 
possible (increase completeness)

 An evaluation heuristic should therefore trade off these two 
extremes

 Example: Laplace heuristic 

 grows with 

 grows with 

 Example: Precision 

 is not a good heuristic. Why?

hLap=
p1

pn2

hPrec=
p

pn

p∞
n0
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Example

p n Laplace p-n
2 2 0.5000 0.5000 0

Mild 3 1 0.7500 0.6667 2
4 2 0.6667 0.6250 2
2 3 0.4000 0.4286 -1
4 0 1.0000 0.8333 4

Rain 3 2 0.6000 0.5714 1
3 4 0.4286 0.4444 -1

Normal 6 1 0.8571 0.7778 5
3 3 0.5000 0.5000 0
6 2 0.7500 0.7000 4

Condition Precision
Hot

Temperature =
Cold
Sunny

Outlook = Overcast

Humidity = High

Windy = True
False

 Heuristics Precision and Laplace 
 add the condition Outlook= Overcast to the (empty) rule
 stop and try to learn the next rule

 Heuristic Accuracy / p − n
 adds Humidity = Normal
 continue to refine the rule (until no covered negative)
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3d-Visualization of Precision

2d Coverage Space
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Isometrics in Coverage Space

 Isometrics are lines that connect points for which a function in p 
and n has equal values

 Examples: 
Isometrics for heuristics h

p
 = p and h

n
 = -n
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Precision (Confidence)

 basic idea:
percentage of positive 
examples among 
covered examples

 effects:
 rotation around origin 

(0,0)
 all rules with same 

angle equivalent
 in particular, all rules 

on P/N axes are 
equivalent 

hPrec=
p

pn
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Entropy and Gini Index 

 effects:
 entropy and Gini index are 

equivalent

 like precision, isometrics 
rotate around (0,0)

 isometrics are symmetric 
around 45o line 

 a rule that only covers 
negative examples is as 
good as a rule that only 
covers positives

hEnt=−
p

pn
log2

p
pn


n

pn
log2

n
pn



hGini=1−
p

pn


2

− 
n

pn


2

≃
pn

 pn
2

These will be explained
later (decision trees)
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Accuracy 

 basic idea:
percentage of correct 
classifications 
(covered positives plus 
uncovered negatives)

 effects:
 isometrics are parallel 

to 45o line
 covering one positive 

example is as good as 
not covering one 
negative example

hAcc=
pN− n

PN
≃ p−n Why are they

equivalent?

hAcc=
P

PN

hAcc=
N

PN

hAcc=
1
2
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Weighted Relative Accuracy 

 basic idea:
normalize accuracy with 
the class distribution

 effects:
 isometrics are parallel 

to diagonal
 covering x% of the 

positive examples is
considered to be as 
good as not covering 
x% of the negative 
examples

hWRA=
pn

PN


p
pn

− P
PN

≃
p
P
− n

N

hWRA=0
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Weighted Relative Accuracy

 Two Basic ideas:
 Precision Gain: compare precision to precision of a rule that classifies 

all examples as positive

 Coverage: Multiply with the percentage of covered examples

 Resulting formula:

 one can show that sorts rules in exactly the same way as 

p
pn

− P
PN

pn
PN

hWRA=
pn

PN
⋅ p

pn
− P

PN 

hWRA '=
p
P
− n

N
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Linear Cost Metric

 Accuracy and weighted relative accuracy are only two special 
cases of the general case with linear costs:

 costs c mean that covering 1 positive example is as good as not 
covering c/(1-c) negative examples

 The general form is then
 the isometrics of hcost are parallel lines with slope (1-c)/c

hcost=c⋅p−1−c ⋅n

c measure
½ accuracy

N/(P+N) weighted relative accuracy

0 excluding negatives at all costs

1 covering positives at all costs
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Relative Cost Metric

 Defined analogously to the Linear Cost Metric
 Except that the trade-off is between the normalized values 

of p and n
 between true positive rate p/P and false positive rate n/N

 The general form is then

 the isometrics of hcost are parallel lines with slope (1-c)/c

 The plots look the same as for the linear cost metric
 but the semantics of the c value is different:
 for hcost it does not include the example distribution

 for hrcost it includes the example distribution

hrcost=c⋅
p
P

−1−c ⋅
n
N
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Laplace-Estimate 

 basic idea:
precision, but count 
coverage for positive 
and negative examples 
starting with 1 instead 
of 0

 effects:
 origin at (-1,-1)
 different values on 

p=0 or n=0 axes
 not equivalent to 

precision

hLap=
p1

 p1n1
=

p1
pn2
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m-Estimate 

 basic idea:
initialize the counts with m 
examples in total, distributed 
according to the prior 
distribution P/(P+N) of p and n.

 effects:
 origin shifts to

(-mP/(P+N),-mN/(P+N))
 with increasing m, the lines 

become more and more 
parallel

 can be re-interpreted as a 
trade-off between WRA and 
precision/confidence

hm=

pm
P

PN

 pm
P

PN
nm

N
PN


=

pm
P

PN
pnm
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Generalized m-Estimate

 One can re-interpret the m-Estimate:

 Re-interpret c = N/(P+N) as a cost factor like in the general cost metric

 Re-interpret m as a trade-off between precision and cost-metric

 m = 0: precision (independent of cost factor)

 m  ∞: the isometrics converge towards the parallel isometrics of the cost 
metric

 Thus, the generalized m-Estimate may be viewed as a means of 
trading off between precision and the cost metric
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Correlation

 basic idea:
measure correlation 
coefficient of predictions with 
target

 effects:
 non-linear isometrics
 in comparison to WRA
 prefers rules near the 

edges
 steepness of connection of 

intersections with edges 
increases

 equivalent to χ2

hCorr=
p N−n− P− pn

PN  pnP− pN− n
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Foil Gain

 (c is the precision of the parent rule)

h foil=− plog 2 c− log2
p

pn
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Myopy of Top-Down Hill-Climbing

 Parity problems (e.g. XOR)
 r relevant binary attributes
 s irrelevant binary attributes 
 each of the n = r + s attributes has values 0/1 with probability ½
 an example is positive if the number of 1's in the relevant attributes is 

even, negative otherwise

 Problem for top-down learning:
 by construction, each condition of the form ai = 0 or ai = 1 covers 

approximately 50% positive and 50% negative examples
 irrespective of whether ai is a relevant or an irrelevant attribute

➔ top-down hill-climbing cannot learn this type of concept

 Typical recommendation: 
 use bottom-up learning for such problems
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Bottom-Up Hill-Climbing

 Simple inversion of top-down hill-climbing
 A rule is successively generalized (analogous to Find-S)

1. Start with an empty rule R that covers all examples--

2. Evaluate all possible ways to add a condition to R

3. Choose the best one

4. If R is satisfactory, return it

5. Else goto 2.

a fully specialized a single example

delete
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A Pathology of Bottom-Up Hill-Climbing

att1 att2 att3

+ 1 1 1

 1 0 0

 0 1 0

 0 0 1

 Target concept att1 = 1 is not (reliably) learnable with bottom-up 
hill-climbing
 because no generalization of any seed example will increase coverage
 Hence you either stop or make an arbitrary choice (e.g., delete attribute 1)
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Bottom-Up Rule Learning Algorithms

 AQ-type:
 select a seed example and search the space of its generalizations
 BUT: search this space top-down
 Examples: AQ (Michalski 1969), Progol (Muggleton 1995)

 based on least general generalizations (lggs)
 greedy bottom-up hill-climbing
 BUT: expensive generalization operator 

(lgg/rlgg of pairs of seed examples)
 Examples: Golem (Muggleton & Feng 1990), DLG (Webb 1992), RISE 

(Domingos 1995)

 Incremental Pruning of Rules:
 greedy bottom-up hill-climbing via deleting conditions
 BUT: start at point previously reached via top-down specialization
 Pruning will be covered later
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Descriptive vs. Predictive Rules

 Descriptive Learning
 Focus on discovering patterns that describe (parts of) the data

 Predictive Learning
 Focus on finding patterns that allow to make predictions about the data

 Rule Diversity and Completeness: 
 Predictive rules need to be able to make a prediction for every possible 

instance

 Predictive Evaluation: 
 It is important how well rules are able to predict the dependent variable 

on new data

 Descriptive Evaluation:
 “insight” delivered by the rule
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Subgroup Discovery

 Definition

 Examples

“Given a population of individuals and a property of those individuals that we
are interested in, find population subgroups that are statistically 
'most interesting', e.g., are as large as possible and have the most unusual
distributional characteristics with respect to the property of interest”

(Klösgen 1996; Wrobel 1997) 
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Application Study: 
Life Course Analysis

 Data:
 Fertility and Family Survey 1995/96 for Italians and Austrians
 Features based on general descriptors and variables that describes 

whether (quantum), at which age (timing) and in what order 
(sequencing) typical life course events have occurred.

 Objective:
 Find subgroups that capture typical life courses for either country 

 Examples:
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Rule Length and Comprehensibility

 Some Heuristics tend to learn longer rules
 If there are conditions that can be added without decreasing coverage, 

they heuristics will add them first (before adding discriminative 
conditions)

 Typical intuition:
 long rules are less understandable, therefore short rules are preferable
 short rules are more general, therefore (statistically) more reliable

 Should shorter rules be preferred?
 Not necessarily, because longer rules may capture more information 

about the object
 Related to concepts in FCA, closed vs. free itemsets, discriminative 

rules vs. characteristic rules
 Open question...
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Inverted Heuristics – Motivation

 While the search proceeds top-down
 the evaluation of refinements happens from the point of view of 

the origin (bottom-up)

 Instead, we want to evaluate the refinement from the point of view 
of the predecessor

Figures by J. Stecher
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Inverted Heuristics

 Many heuristics can be “inverted” by replacing changing their 
angle point from the origin to the current rule

 Note: not all heuristics can be inverted
 e.g. WRA is invariant w.r.t. inversion (because of symmetry)

Figures by J. Stecher
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Inverted Heuristics – Example

Figures by J. Stecher



V3.0  |  J. FürnkranzMachine Learning and Data Mining | Subgroup Discovery 40

Implementation

 Modification of a conventional covering algorithm
 CN2-like
 No pruning, no significance test

 Rule refinement proceeds with inverted heuristics
 In each iteration, the best condition is added to the rule until the rule 

covers no more examples

 Rule selection proceeds with regular heuristics
 Among all refinements on the path, the best rule is selected using a 

regular heuristic
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Results: 
Inverted heuristics tend to work better

Figures by J. Stecher
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Results: 
Inverted heuristics tend to work better

Figures by J. Stecher
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Inverted Heuristics – Rule Length

 Inverted Heuristics tend to learn longer rules
 If there are conditions that can be added without decreasing coverage 

on the positive examples, inverted heuristics will add them first 
(before adding discriminative conditions)
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Discriminative Rules

 Allow to quickly discriminate an object of one category from 
objects of other categories

 Typically a few properties suffice

 Example:
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Discriminative Rules

 Allow to quickly discriminate an object of one category from 
objects of other categories

 Typically a few properties suffice

 Example:
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Characteristic Rules

 Allow to characterize an object of a category
 Focus is on all properties that are typical for objects of that 

category

 Example:
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Characteristic Rules

 An alternative view of characteristic rules is to invert the 
implication sign

 All properties that are implied by the category

 Example:
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Example: Mushroom dataset

 The best three rules learned with conventional heuristics

 The best three rules learned with inverted heuristics

IF veil-color = w, gill-spacing = c, bruises? = f,
   ring-number = o, stalk-surface-above-ring = k
THEN poisonous (2192,0)
IF veil-color = w, gill-spacing = c, gill-size = n,
   population = v, stalk-shape = t
THEN poisonous (864,0)
IF stalk-color-below-ring = w, ring-type = p, 
   stalk-color-above-ring = w, ring-number = o, 
   cap-surface = s, stalk-root = b, gill-spacing = c
THEN poisonous (336,0)

IF odor = f THEN poisonous (2160,0) 
IF gill-color = b THEN poisonous (1152,0) 
IF odor = p THEN poisonous (256,0) 
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Summary

 Single Rules can be learned in batch mode from data by searching for 
rules that optimize a trade-off between covered positive and negative 
examples

 Different heuristics can be defined for optimizing this trade-off
 Coverage spaces can be used to visualize the behavior or such 

heuristics
 precision-like heuristics tend to find the steepest ascent
 accuracy-like heuristics assume a cost ratio between positive and 

negative examples
 m-heuristic may be viewed as a trade-off between these two

 Subgroup Discovery is a task of its own ...
 where typically the found description is the important result

 … but subgroups may also be used for prediction
 → learning rule sets to ensure completeness
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