## **Data Mining and Machine Learning**



#### **Learning Individual Rules and Subgroup Discovery**

- Introduction
  - Batch Learning
  - Terminology
  - Coverage Spaces
- Algorithms
  - Top-Down Hill-Climbing
  - Bottom-Up Hill-Climbing
- Rule Evaluation Heuristics
  - Linear
  - Non-linear

- Descriptive vs. Predictive Rule Learning
  - Characteristic vs discriminative rules



# **A Sample Database**



| No. | Education  | Marital S. | Sex. | Children? | Approved? |
|-----|------------|------------|------|-----------|-----------|
| 1   | Primary    | Single     | M    | N         | -         |
| 2   | Primary    | Single     | M    | Υ         | -         |
| 3   | Primary    | Married    | M    | N         | +         |
| 4   | University | Divorced   | F    | N         | +         |
| 5   | University | Married    | F    | Y         | +         |
| 6   | Secondary  | Single     | M    | N         | -         |
| 7   | University | Single     | F    | N         | +         |
| 8   | Secondary  | Divorced   | F    | N         | +         |
| 9   | Secondary  | Single     | F    | Υ         | +         |
| 10  | Secondary  | Married    | M    | Υ         | +         |
| 11  | Primary    | Married    | F    | N         | +         |
| 12  | Secondary  | Divorced   | M    | Υ         | -         |
| 13  | University | Divorced   | F    | Υ         | -         |
| 14  | Secondary  | Divorced   | M    | N         | +         |

Property of Interest ("class variable")

#### **Batch induction**



- So far our algorithms looked at
  - all theories at the same time (implicitly through the version space)
  - and processed examples incrementally
- We can turn this around:
  - work on the theories incrementally
  - and process all examples at the same time
- Basic idea:
  - try to quickly find a complete and consistent rule
  - need not be in either S or G (but in the version space)
- → We can define an algorithm similar to FindG:
  - successively refine rule by adding conditions:
    - evaluate all refinements and pick the one that looks best
  - until the rule is consistent

# **Algorithm Batch-FindG**



- I. h = most general hypothesis in HC = set of all possible conditions
- II. while h covers negative examples
  - I.  $h_{best} = h$
  - II. for each possible condition  $c \in C$ 
    - a)  $h' = h \cup \{c\}$
    - b) if h' covers
      - all positive examples
      - and fewer negative examples than  $h_{best}$  then  $h_{best} = h'$

III. 
$$h = h_{best}$$

III. return  $h_{best}$ 

Scan through all examples in database:

- count covered positives
- count covered negatives

Evaluation of a rule by # covered positive and # covered negative examples

## **Properties**



- General-to-Specific (Top-Down) Search
  - similar to FindG:
    - FindG makes an arbitrary selection among possible refinements, taking the risk that it may lead to an inconsistency later
    - Batch-FindG selects next refinement based on all training examples
- Heuristic algorithm
  - among all possible refinements, we select the one that leads to the fewest number of covered negatives
    - IDEA: the more negatives are excluded with the current condition, the less have to be excluded with subsequent conditions
- Converges towards some theory in V
  - not necessarily towards a theory in G
- Not very efficient, but quite flexible
  - criteria for selecting conditions could be exchanged



## Algorithms for Learning a Single Rule



## Objective:

Find the best rule according to some measure h

## **Algorithms**

- Greedy search
  - top-down hill-climbing or beam search
    - successively add conditions that increase value of h
    - most popular approach
- Exhaustive search
  - efficient variants
    - avoid to search permutations of conditions more than once
    - exploit monotonicity properties for pruning of parts of the search space
- Randomized search
  - genetic algorithms etc.



## **Top-Down Hill-Climbing**



## Top-Down Strategy: A rule is successively specialized

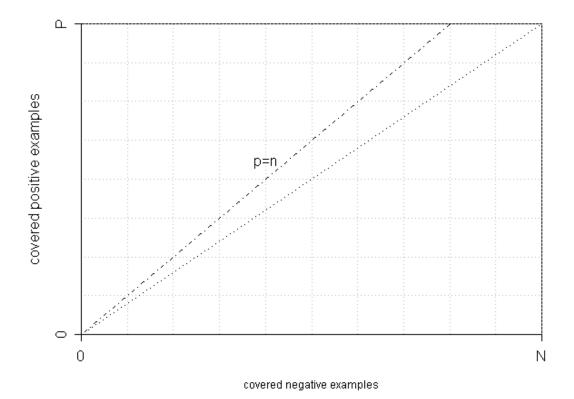
- 1. Start with the universal rule R that covers all examples
- 2. Evaluate all possible ways to add a condition to R
- 3. Choose the best one (according to some heuristic)
- 4. If R is satisfactory, return it
- 5. Else goto 2.
- Most greedy rule learning systems use a top-down strategy

#### Beam Search:

Always remember (and refine) the best b solutions in parallel

## **Terminology**



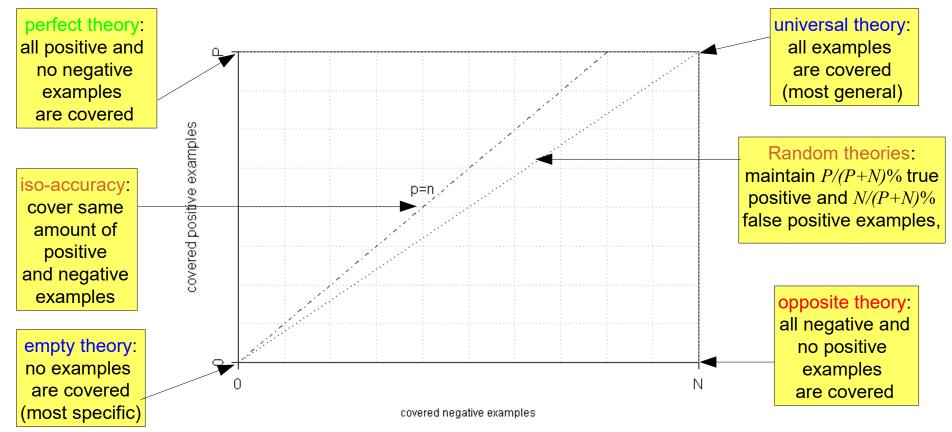

- training examples
  - P: total number of positive examples
  - N: total number of negative examples
- examples covered by the rule (predicted positive)
  - true positives p: positive examples covered by the rule
  - false positives n: negative examples covered by the rule
- examples not covered the rule (predicted negative)
  - false negatives *P-p*: positive examples not covered by the rule
  - true negatives N-n: negative examples not covered by the rule

|         | predicted +         | predicted -           |     |
|---------|---------------------|-----------------------|-----|
| class + | p (true positives)  | P-p (false negatives) | P   |
| class - | n (false positives) | N-n (true negatives)  | N   |
|         | p + n               | P+N-(p+n)             | P+N |

## **Coverage Spaces**



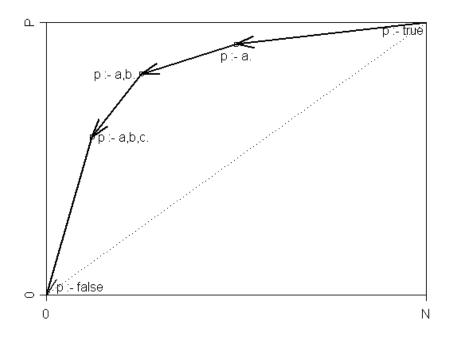
- good tool for visualizing properties of covering algorithms
  - each point is a theory covering p positive and n negative examples






## **Coverage Spaces**




- good tool for visualizing properties of covering algorithms
  - each point is a theory covering p positive and n negative examples



## **Top-Down Hill-Climbing in Coverage Space**



- successively extends a rule by adding conditions
- This corresponds to a path in coverage space:
  - The rule p:-true covers all examples (universal theory)
  - Adding a condition never increases p or n (specialization)
  - The rule p:-false covers no examples (empty theory)



 which conditions are selected depends on a heuristic function that estimates the quality of the rule

## **Rule Learning Heuristics**

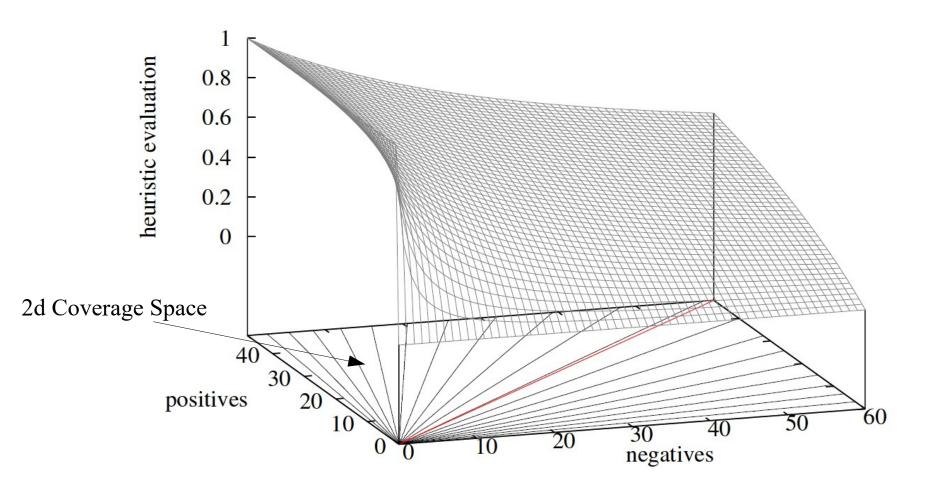


- Adding a rule should
  - increase the number of covered negative examples as little as possible (do not decrease consistency)
  - increase the number of covered positive examples as much as possible (increase completeness)
- An evaluation heuristic should therefore trade off these two extremes
  - Example: Laplace heuristic  $h_{Lap} = \frac{p+1}{p+n+2}$ 
    - grows with  $p \rightarrow \infty$
    - grows with  $n \rightarrow 0$
  - Example: Precision  $h_{Prec} = \frac{1}{p}$ 
    - is not a good heuristic. Why?



## **Example**

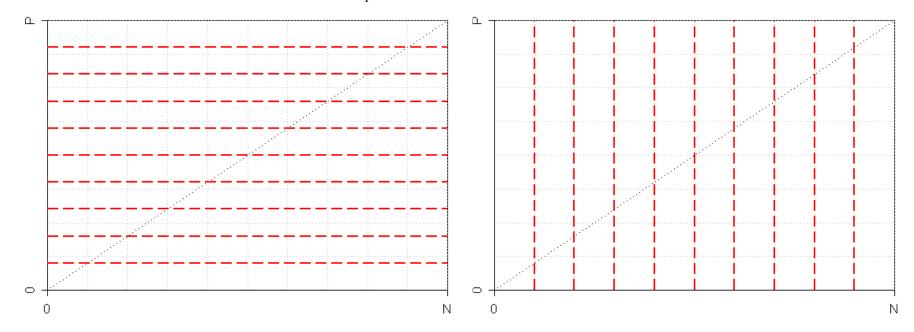



| Condition     |          | р | n | Precision | Laplace | p-n |
|---------------|----------|---|---|-----------|---------|-----|
|               | Hot      | 2 | 2 | 0.5000    | 0.5000  | 0   |
| Temperature = | Mild     | 3 | 1 | 0.7500    | 0.6667  | 2   |
|               | Cold     | 4 | 2 | 0.6667    | 0.6250  | 2   |
|               | Sunny    | 2 | 3 | 0.4000    | 0.4286  | -1  |
| Outlook =     | Overcast | 4 | 0 | 1.0000    | 0.8333  | 4   |
|               | Rain     | 3 | 2 | 0.6000    | 0.5714  | 1   |
| Humidity =    | High     | 3 | 4 | 0.4286    | 0.4444  | -1  |
|               | Normal   | 6 | 1 | 0.8571    | 0.7778  | 5   |
| Windy =       | True     | 3 | 3 | 0.5000    | 0.5000  | 0   |
|               | False    | 6 | 2 | 0.7500    | 0.7000  | 4   |

- Heuristics Precision and Laplace
  - add the condition Outlook= Overcast to the (empty) rule
  - stop and try to learn the next rule
- Heuristic Accuracy / p n
  - adds Humidity = Normal
  - continue to refine the rule (until no covered negative)



## **3d-Visualization of Precision**

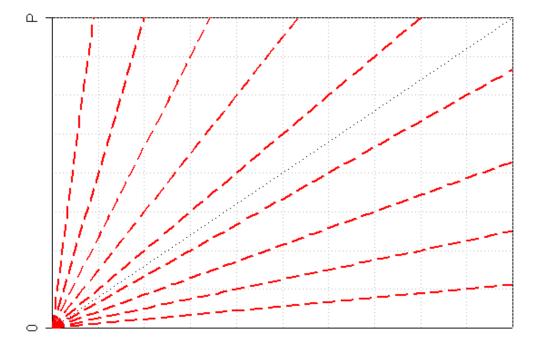





## **Isometrics in Coverage Space**



- Isometrics are lines that connect points for which a function in p and n has equal values
  - Examples: Isometrics for heuristics  $h_p = p$  and  $h_n = -n$




## **Precision (Confidence)**

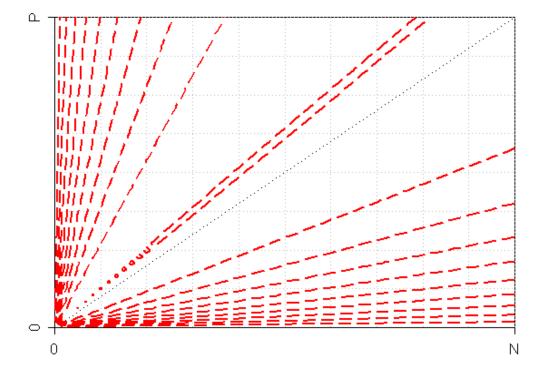


$$h_{Prec} = \frac{p}{p+n}$$

- basic idea: percentage of positive examples among covered examples
- effects:
  - rotation around origin (0,0)
  - all rules with same angle equivalent
  - in particular, all rules on P/N axes are equivalent



## **Entropy and Gini Index**



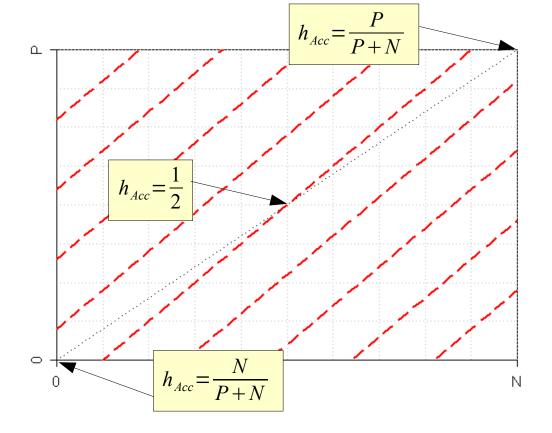

$$h_{Ent} = -\left(\frac{p}{p+n}\log_2\frac{p}{p+n} + \frac{n}{p+n}\log_2\frac{n}{p+n}\right)$$

$$h_{Gini} = 1 - \left(\frac{p}{p+n}\right)^2 - \left(\frac{n}{p+n}\right)^2 \simeq \frac{pn}{(p+n)^2}$$

These will be explained later (decision trees)

- effects:
  - entropy and Gini index are equivalent
  - like precision, isometrics rotate around (0,0)
  - isometrics are symmetric around 45° line
  - a rule that only covers negative examples is as good as a rule that only covers positives



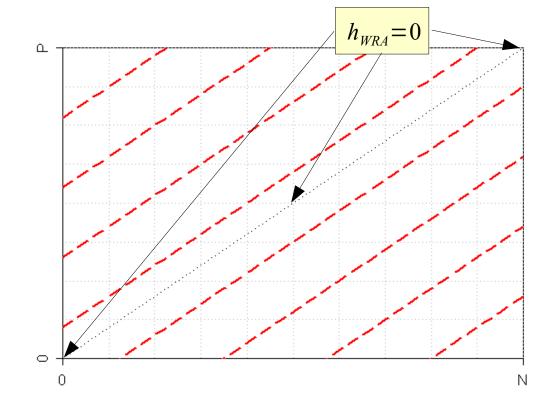

## **Accuracy**



$$h_{Acc} = \frac{p + (N - n)}{P + N} \stackrel{\checkmark}{\simeq} p - n$$

Why are they equivalent?

- basic idea:
   percentage of correct
   classifications
   (covered positives plus
   uncovered negatives)
- effects:
  - isometrics are parallel to 45° line
  - covering one positive example is as good as not covering one negative example




## **Weighted Relative Accuracy**



$$h_{WRA} = \frac{p+n}{P+N} \left( \frac{p}{p+n} - \frac{P}{P+N} \right) \simeq \frac{p}{P} - \frac{n}{N}$$

- basic idea: normalize accuracy with the class distribution
- effects:
  - isometrics are parallel to diagonal
  - covering x% of the positive examples is considered to be as good as not covering x% of the negative examples



## **Weighted Relative Accuracy**



- Two Basic ideas:
  - Precision Gain: compare precision to precision of a rule that classifies all examples as positive
    p
    P

 $\frac{p}{p+n} - \frac{P}{P+N}$ 

Coverage: Multiply with the percentage of covered examples

$$\frac{p+n}{P+N}$$

Resulting formula:

$$h_{WRA} = \frac{p+n}{P+N} \cdot \left(\frac{p}{p+n} - \frac{P}{P+N}\right)$$

one can show that sorts rules in exactly the same way as

$$h_{WRA}' = \frac{p}{P} - \frac{n}{N}$$



#### **Linear Cost Metric**



- Accuracy and weighted relative accuracy are only two special cases of the general case with linear costs:
  - costs c mean that covering 1 positive example is as good as not covering c/(1-c) negative examples

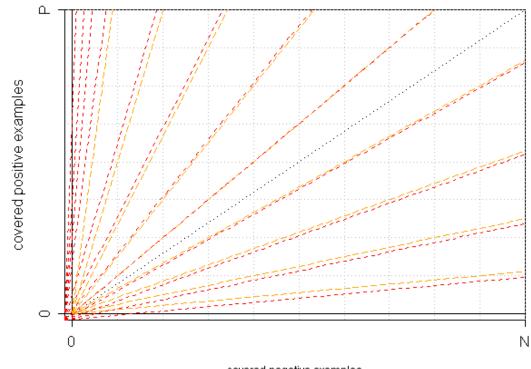
| С       | measure                          |
|---------|----------------------------------|
| 1/2     | accuracy                         |
| N/(P+N) | weighted relative accuracy       |
| 0       | excluding negatives at all costs |
| 1       | covering positives at all costs  |

- The general form is then  $h_{cost} = c \cdot p (1-c) \cdot n$ 
  - the isometrics of  $h_{cost}$  are parallel lines with slope (1-c)/c



#### **Relative Cost Metric**

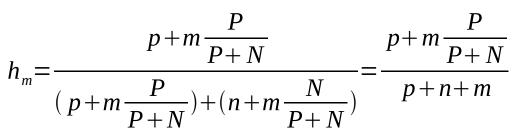


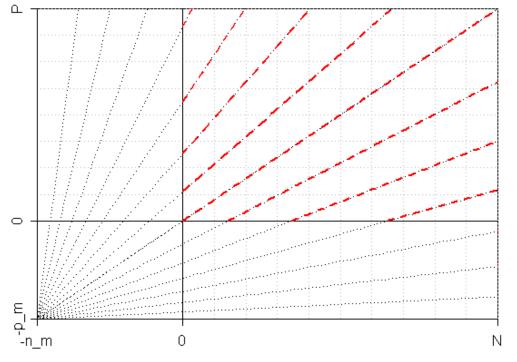

- Defined analogously to the Linear Cost Metric
- Except that the trade-off is between the normalized values of p and n
  - between true positive rate p/P and false positive rate n/N
- The general form is then  $h_{rcost} = c \cdot \frac{p}{P} (1 c) \cdot \frac{n}{N}$ 
  - the isometrics of  $h_{cost}$  are parallel lines with slope (1-c)/c
- The plots look the same as for the linear cost metric
  - but the semantics of the c value is different:
    - for h<sub>cost</sub> it does not include the example distribution
    - for h<sub>rcost</sub> it includes the example distribution

## **Laplace-Estimate**



- basic idea: precision, but count coverage for positive and negative examples starting with 1 instead of 0
- effects:
  - origin at (-1,-1)
  - different values on p=0 or n=0 axes
  - not equivalent to precision


$$h_{Lap} = \frac{p+1}{(p+1)+(n+1)} = \frac{p+1}{p+n+2}$$




#### m-Estimate



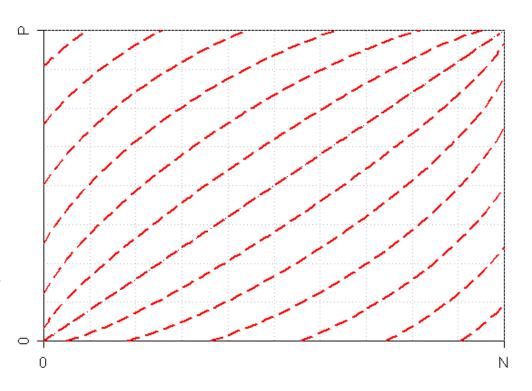
- basic idea: initialize the counts with m examples in total, distributed according to the prior distribution P/(P+N) of p and n.
- effects:
  - origin shifts to (-mP/(P+N), -mN/(P+N))
  - with increasing m, the lines become more and more parallel
  - can be re-interpreted as a trade-off between WRA and precision/confidence





#### **Generalized m-Estimate**



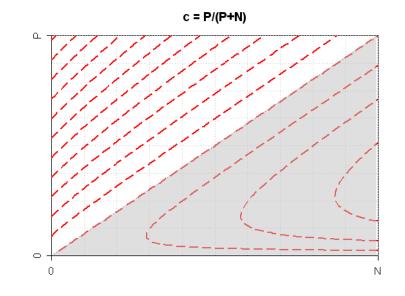

- One can re-interpret the m-Estimate:
  - Re-interpret c = N/(P+N) as a cost factor like in the general cost metric
  - Re-interpret m as a trade-off between precision and cost-metric
    - m = 0: precision (independent of cost factor)
    - $m \to \infty$ : the isometrics converge towards the parallel isometrics of the cost metric
- Thus, the generalized m-Estimate may be viewed as a means of trading off between precision and the cost metric

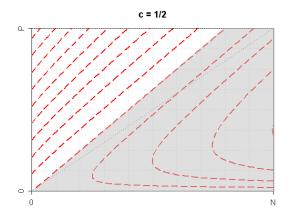
#### Correlation

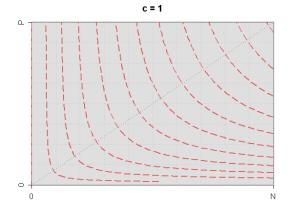


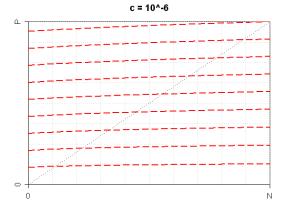
- basic idea: measure correlation coefficient of predictions with target
- effects:
  - non-linear isometrics
  - in comparison to WRA
    - prefers rules near the edges
    - steepness of connection of intersections with edges increases
  - equivalent to χ²

$$h_{Corr} = \frac{p(N-n) - (P-p)n}{\sqrt{PN(p+n)(P-p+N-n)}}$$





## **Foil Gain**





$$h_{foil} = -p(\log_2 c - \log_2 \frac{p}{p+n})$$

(c is the precision of the parent rule)









## **Myopy of Top-Down Hill-Climbing**



- Parity problems (e.g. XOR)
  - r relevant binary attributes
  - s irrelevant binary attributes
  - each of the n = r + s attributes has values 0/1 with probability  $\frac{1}{2}$
  - an example is positive if the number of 1's in the relevant attributes is even, negative otherwise
- Problem for top-down learning:
  - by construction, each condition of the form  $a_i = 0$  or  $a_i = 1$  covers approximately 50% positive and 50% negative examples
  - irrespective of whether  $a_i$  is a relevant or an irrelevant attribute
    - top-down hill-climbing cannot learn this type of concept
- Typical recommendation:
  - use bottom-up learning for such problems



## **Bottom-Up Hill-Climbing**



- Simple inversion of top-down hill-climbing
- A rule is successively generalized (analogous to Find-S)

a fully specialized

a single example

- Start with an empty rule R that covers all examples delete
- 2. Evaluate all possible ways to add a condition to R
- 3. Choose the best one
- 4. If R is satisfactory, return it
- 5. Else goto 2.

## A Pathology of Bottom-Up Hill-Climbing



|   | att1 | att2 | att3 |
|---|------|------|------|
| + | 1    | 1    | 1    |
| + | 1    | 0    | 0    |
| _ | 0    | 1    | 0    |
| _ | 0    | 0    | 1    |

- Target concept att1 = 1 is not (reliably) learnable with bottom-up hill-climbing
  - because no generalization of any seed example will increase coverage
  - Hence you either stop or make an arbitrary choice (e.g., delete attribute 1)

## **Bottom-Up Rule Learning Algorithms**



- AQ-type:
  - select a seed example and search the space of its generalizations
  - BUT: search this space top-down
  - <u>Examples:</u> AQ (Michalski 1969), Progol (Muggleton 1995)
- based on least general generalizations (Iggs)
  - greedy bottom-up hill-climbing
  - BUT: expensive generalization operator (*lgg/rlgg* of *pairs* of seed examples)
  - <u>Examples:</u> Golem (Muggleton & Feng 1990), DLG (Webb 1992), RISE (Domingos 1995)
- Incremental Pruning of Rules:
  - greedy bottom-up hill-climbing via deleting conditions
  - BUT: start at point previously reached via top-down specialization
  - Pruning will be covered later



## **Descriptive vs. Predictive Rules**



#### Descriptive Learning

Focus on discovering patterns that describe (parts of) the data

#### Predictive Learning

Focus on finding patterns that allow to make predictions about the data

#### Rule Diversity and Completeness:

Predictive rules need to be able to make a prediction for every possible instance

#### Predictive Evaluation:

It is important how well rules are able to predict the dependent variable on new data

#### Descriptive Evaluation:

"insight" delivered by the rule



## **Subgroup Discovery**



#### Definition

"Given a population of individuals and a property of those individuals that we are interested in, **find population subgroups** that are statistically 'most interesting', e.g., are as large as possible and have the most unusual distributional characteristics with respect to the property of interest"

(Klösgen 1996; Wrobel 1997)

#### Examples

| AND        | MaritalStatus = single<br>Sex = male<br>Approved = no          | yes (0/9) no (3/5) |
|------------|----------------------------------------------------------------|--------------------|
| IF<br>THEN | MaritalStatus = married<br>Approved = yes                      | yes (4/9) no (0/5) |
|            | MaritalStatus = divorced<br>HasChildren = yes<br>Approved = no | yes (0/9) no (2/5) |



# **Application Study: Life Course Analysis**



- Data:
  - Fertility and Family Survey 1995/96 for Italians and Austrians
  - Features based on general descriptors and variables that describes whether (quantum), at which age (timing) and in what order (sequencing) typical life course events have occurred.
- Objective:
  - Find subgroups that capture typical life courses for either country

| Examples: | IF<br>THEN | LeftHome < Marriage<br>AUT                 | AUT (3476/5325) | ITA (976/5782)  |
|-----------|------------|--------------------------------------------|-----------------|-----------------|
|           |            | Union = Marriage<br>Education <= 14<br>ITA | AUT (9/5325)    | ITA (1308/5782) |
|           |            | Union = Marriage<br>Education >= 22<br>ITA | AUT (64/5325)   | ITA (541/5782)  |

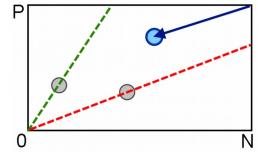


## Rule Length and Comprehensibility

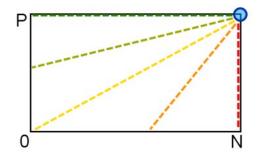


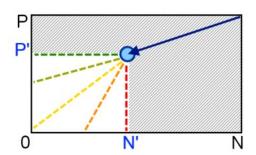
- Some Heuristics tend to learn longer rules
  - If there are conditions that can be added without decreasing coverage, they heuristics will add them first (before adding discriminative conditions)
- Typical intuition:
  - long rules are less understandable, therefore short rules are preferable
  - short rules are more general, therefore (statistically) more reliable
- Should shorter rules be preferred?
  - Not necessarily, because longer rules may capture more information about the object
  - Related to concepts in FCA, closed vs. free itemsets, discriminative rules vs. characteristic rules
  - Open question...




#### **Inverted Heuristics – Motivation**



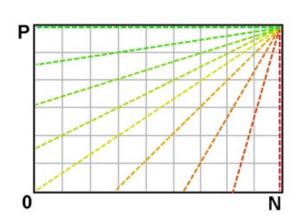

While the search proceeds top-down


the evaluation of refinements happens from the point of view of

the origin (bottom-up)



 Instead, we want to evaluate the refinement from the point of view of the predecessor







#### **Inverted Heuristics**



Many heuristics can be "inverted" by replacing changing their angle point from the origin to the current rule



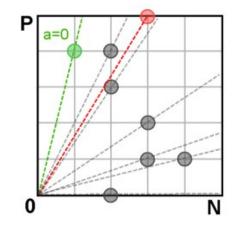
$$h'_{precision}(p, n, P, N) = \frac{N-n}{(P+N)-(p+n)}$$

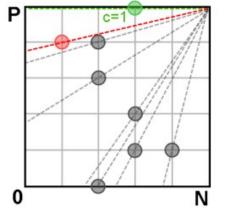


$$h'_{precision}(p, n, P, N) = \frac{N - n}{(P + N) - (p + n)} \qquad h'_{m-Estimate}(p, n, P, N) = \frac{N - n + m \cdot \frac{P}{P + N}}{(P + N) - (p + n - m)}$$

- **Note:** not all heuristics can be inverted
  - e.g. WRA is invariant w.r.t. inversion (because of symmetry)




## **Inverted Heuristics – Example**




#### First refinement step in small example dataset

4 Attributes, 10 data points, binary-class

| а | b | С | d | С |
|---|---|---|---|---|
| 0 | 1 | 1 | 1 | + |
| 0 | 1 | 1 | 1 | + |
| 0 | 0 | 1 | 0 | - |
| 1 | 1 | 1 | 0 | - |
| 1 | 0 | 0 | 1 | - |
| 0 | 1 | 1 | 0 | + |
| 0 | 0 | 1 | 1 | + |
| 1 | 1 | 1 | 0 | - |
| 1 | 0 | 1 | 1 | + |
| 1 | 0 | 0 | 1 | - |





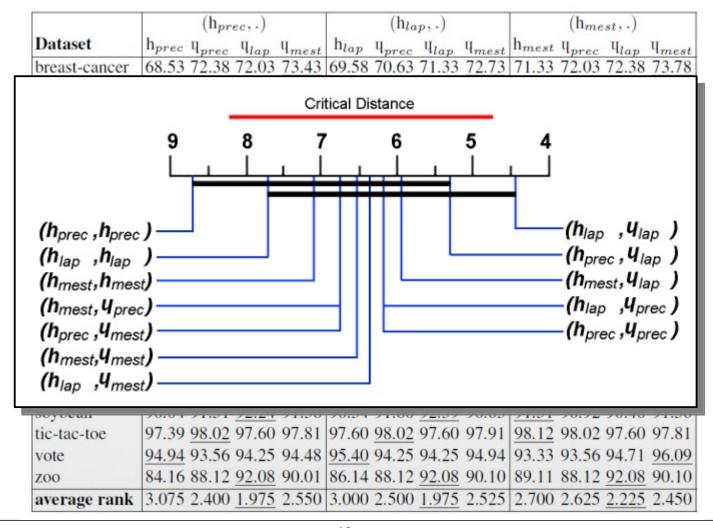
Inverted heuristic function (right image) selects preferable refinement condition  $\,c\!=\!1\,$  with coverage of  $(p\,,n)\!=\!(5,3)$ 

## **Implementation**



- Modification of a conventional covering algorithm
  - CN2-like
  - No pruning, no significance test
- Rule refinement proceeds with inverted heuristics
  - In each iteration, the best condition is added to the rule until the rule covers no more examples
- Rule selection proceeds with regular heuristics
  - Among all refinements on the path, the best rule is selected using a regular heuristic

# Results: Inverted heuristics tend to work better


Machine Learning and Data Mining | Subgroup Discovery



|                | $(h_{prec},.)$ |            |           |                     | $(h_{lap},.)$ |               |              |                     | $(h_{mest},.)$    |               |                    |                     |
|----------------|----------------|------------|-----------|---------------------|---------------|---------------|--------------|---------------------|-------------------|---------------|--------------------|---------------------|
| Dataset        | $h_{prec}$     | $q_{prec}$ | $q_{lap}$ | $\mathbf{q}_{mest}$ | $h_{lap}$     | $\eta_{prec}$ | $\eta_{lap}$ | $\mathbf{q}_{mest}$ | h <sub>mest</sub> | $\eta_{prec}$ | $\mathbf{q}_{lap}$ | $\mathbf{q}_{mest}$ |
| breast-cancer  | 68.53          | 72.38      | 72.03     | 73.43               | 69.58         | 70.63         | 71.33        | 72.73               | 71.33             | 72.03         | 72.38              | 73.78               |
| car            | 90.10          | 90.34      | 90.51     | 88.66               | 90.45         | 91.20         | 91.73        | 91.20               | 89.64             | 90.45         | 90.28              | 87.91               |
| contact-lenses | 79.17          | 87.50      | 87.50     | 83.33               | 79.17         | 87.50         | 87.50        | 83.33               | 87.50             | 87.50         | 87.50              | 83.33               |
| futebol        | 28.57          | 64.29      | 57.14     | 42.88               | 28.57         | 64.29         | 57.14        | 42.88               | 50.00             | 64.29         | 57.14              | 42.86               |
| glass          | 56.54          | 65.89      | 68.69     | 62.15               | 61.22         | 65.89         | 68.69        | 62.15               | 69.16             | 67.29         | 71.50              | 63.55               |
| hepatitis      | 78.07          | 79.36      | 80.00     | 76.77               | 78.71         | 79.36         | 80.00        | 76.74               | 78.07             | 79.36         | 80.00              | 76.77               |
| hypothyroid    | 98.23          | 98.61      | 98.74     | 98.83               | 98.39         | 98.61         | 98.74        | 98.83               | 98.80             | 98.61         | 98.74              | 98.83               |
| horse-colic    | 72.01          | 79.35      | 79.35     | 77.99               | 70.65         | 79.35         | 80.16        | 77.99               | 77.45             | 79.35         | 78.80              | 77.99               |
| idh            | 62.07          | 82.76      | 75.86     | 75.86               | 62.07         | 82.76         | 75.86        | 75.86               | 68.97             | 82.76         | 75.86              | 75.86               |
| iris           | 92.67          | 93.33      | 95.33     | 94.67               | 94.00         | 93.33         | 95.33        | 94.67               | 94.00             | 93.33         | 95.33              | 94.67               |
| ionosphere     | 95.16          | 82.62      | 83.19     | 89.46               | 94.87         | 82.62         | 93.19        | 89.46               | 91.74             | 82.91         | 83.19              | 91.17               |
| labor          | 91.23          | 80.70      | 82.46     | 89.47               | 91.23         | 80.70         | 82.46        | 89.47               | 85.97             | 80.70         | 82.46              | 89.47               |
| lymphography   | 83.78          | 77.70      | 84.46     | 83.11               | 85.14         | 77.70         | 84.46        | 83.11               | 75.00             | 76.35         | 81.08              | 83.78               |
| mushroom       | 100.0          | 100.0      | 100.0     | 100.0               | 100.0         | 100.0         | 100.0        | 100.0               | 100.0             | 100.0         | 100.0              | 100.0               |
| monk3          | 87.71          | 82.79      | 82.79     | 84.43               | 88.53         | 85.25         | 84.43        | 86.89               | 81.15             | 79.51         | 81.15              | 82.79               |
| primary-tumor  | 33.63          | 39.23      | 35.10     | 30.97               | 32.45         | 39.23         | 35.99        | 30.38               | 33.92             | 37.76         | 34.51              | 30.68               |
| soybean        | 90.04          | 91.51      | 92.24     | 91.36               | 90.34         | 91.80         | 92.39        | 90.63               | 91.51             | 90.92         | 90.48              | 91.36               |
| tic-tac-toe    | 97.39          | 98.02      | 97.60     | 97.81               | 97.60         | 98.02         | 97.60        | 97.91               | 98.12             | 98.02         | 97.60              | 97.81               |
| vote           | 94.94          | 93.56      | 94.25     | 94.48               | 95.40         | 94.25         | 94.25        | 94.94               | 93.33             | 93.56         | 94.71              | 96.09               |
| Z00            | 84.16          | 88.12      | 92.08     | 90.01               | 86.14         | 88.12         | 92.08        | 90.10               | 89.11             | 88.12         | 92.08              | 90.10               |
| average rank   | 3.075          | 2.400      | 1.975     | 2.550               | 3.000         | 2.500         | 1.975        | 2.525               | 2.700             | 2.625         | 2.225              | 2.450               |

## Results: Inverted heuristics tend to work better





## **Inverted Heuristics – Rule Length**

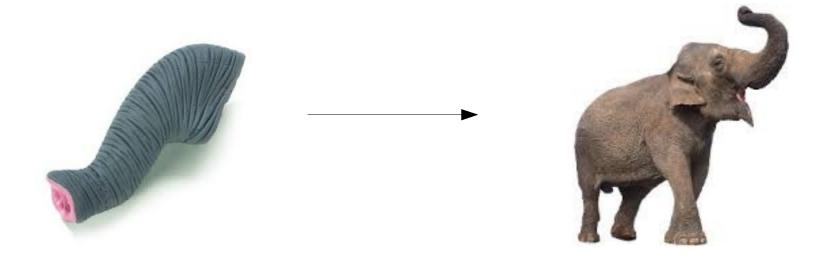


- Inverted Heuristics tend to learn longer rules
  - If there are conditions that can be added without decreasing coverage on the positive examples, inverted heuristics will add them first (before adding discriminative conditions)

|                | (h <sub>lap</sub> | $(h_{lap})$ | (h <sub>lap</sub> | $(h'_{lap})$ |               | (h <sub>lap</sub> | $, h_{lap})$ | $(h_{lap})$ | $, h'_{lap})$ |
|----------------|-------------------|-------------|-------------------|--------------|---------------|-------------------|--------------|-------------|---------------|
| Dataset        | R                 | L           | R                 | L            | Dataset       | R                 | L            | R           | L             |
| breast-cancer  | 25                | 67          | 38                | 173          | ionosphere    | 17                | 25           | 8           | 42            |
| car            | 107               | 495         | 107               | 506          | labor         | 5                 | 7            | 3           | 12            |
| contact-lenses | 5                 | 14          | 5                 | 15           | lymphography  | 18                | 42           | 11          | 47            |
| futebol        | 4                 | 7           | 2                 | 5            | monk3         | 13                | 38           | 11          | 32            |
| glass          | 50                | 103         | 14                | 83           | mushroom      | 11                | 13           | 7           | 35            |
| hepatitis      | 13                | 26          | 7                 | 46           | primary-tumor | 80                | 319          | 72          | 518           |
| horse-colic    | 44                | 114         | 19                | 111          | soybean       | 62                | 134          | 45          | 195           |
| hypothyroid    | 27                | 65          | 9                 | 69           | tic-tac-toe   | 22                | 84           | 16          | 69            |
| iris           | 7                 | 15          | 5                 | 17           | vote          | 13                | 48           | 12          | 58            |
| idh            | 4                 | 5           | 2                 | 5            | Z00           | 19                | 19           | 6           | 14            |
| averages       |                   |             |                   |              |               | 28.2              | 85.6         | 20.6        | 106.2         |

#### **Discriminative Rules**



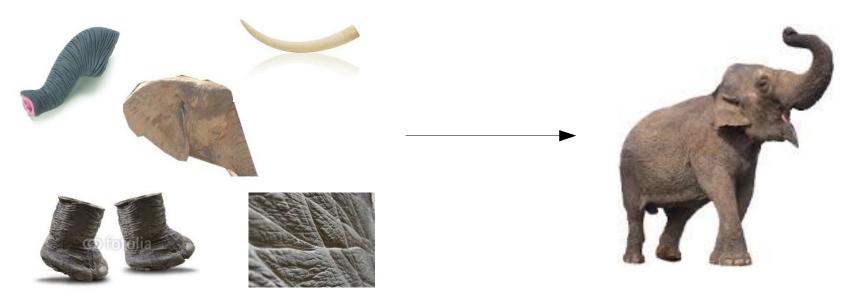

- Allow to quickly discriminate an object of one category from objects of other categories
- Typically a few properties suffice
- Example:



#### **Discriminative Rules**



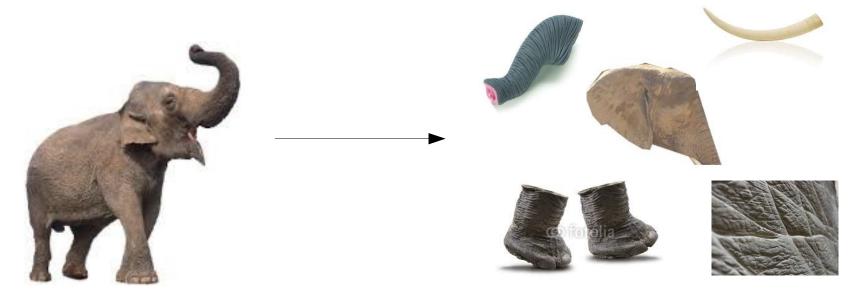
- Allow to quickly discriminate an object of one category from objects of other categories
- Typically a few properties suffice
- Example:




#### **Characteristic Rules**



- Allow to characterize an object of a category
- Focus is on all properties that are typical for objects of that category


### Example:



#### **Characteristic Rules**



- An alternative view of characteristic rules is to invert the implication sign
- All properties that are implied by the category
- Example:



## **Example: Mushroom dataset**



The best three rules learned with conventional heuristics

The best three rules learned with inverted heuristics

```
IF veil-color = w, gill-spacing = c, bruises? = f,
    ring-number = o, stalk-surface-above-ring = k

THEN poisonous (2192,0)

IF veil-color = w, gill-spacing = c, gill-size = n,
    population = v, stalk-shape = t

THEN poisonous (864,0)

IF stalk-color-below-ring = w, ring-type = p,
    stalk-color-above-ring = w, ring-number = o,
    cap-surface = s, stalk-root = b, gill-spacing = c

THEN poisonous (336,0)
```

## **Summary**



- Single Rules can be learned in batch mode from data by searching for rules that optimize a trade-off between covered positive and negative examples
- Different heuristics can be defined for optimizing this trade-off
- Coverage spaces can be used to visualize the behavior or such heuristics
  - precision-like heuristics tend to find the steepest ascent
  - accuracy-like heuristics assume a cost ratio between positive and negative examples
  - m-heuristic may be viewed as a trade-off between these two
- Subgroup Discovery is a task of its own ...
  - where typically the found description is the important result
- ... but subgroups may also be used for prediction
  - → learning rule sets to ensure completeness

