Data Mining and Machine Learning

TECHNISCHE UNIVERSITÄT DARMSTADT

Concept Learning and Version Spaces

- Introduction
 - Concept Learning
 - Generality Relations
 - Refinement Operators
 - Structured Hypothesis Spaces

- Simple algorithms
 - Find-S
 - Find-G
- Version Spaces
 - Version Spaces
 - Candidate-Elimination Algorithm

Why Rules?

- Rules provide a good (the best?) trade-off between
 - human understandability
 - machine executability
- Used in many applications which will gain importance in the near future
 - Security
 - Spam Mail Filters
 - Semantic Web
- But they are not a universal tool
 - e.g., learned rules sometimes lack in predictive accuracy
 - \rightarrow challenge to close or narrow this gap

Concept

- Attribute-Value Representation
 - each object is represented with a finite number of attributes

Concept

• A *concept* is a subset of all possible objects

Example 1:

- objects are points in a 2-d plane
- a concept can be any subarea in the plane
 - can have many disconnected components
- # objects and # concepts is infinite
- Example 2:
 - all attributes are Boolean, objects are Boolean vectors
 - a concept can be any subset of the set of possible objects
 - # concepts and # objects is finite

Concept Learning

Given:

- Positive Examples E⁺
 - examples for the concept to learn (e.g., days with golf)
- Negative Examples E⁻
 - counter-examples for the concept (e.g., days without golf)
- Hypothesis Space H
 - a (possibly infinite) set of candidate hypotheses
 - e.g., rules, rule sets, decision trees, linear functions, neural networks, ...
- Find:
 - Find the target hypothesis $h \in H$
 - the target hypothesis is the concept that was used (or could have been used) to generate the training examples

Correctness

- What is a good rule?
 - Obviously, a correct rule would be good
 - Other criteria: interpretability, simplicity, efficiency, ...

Problem:

- We cannot compare the learned hypothesis to the target hypothesis because we don't know the target
 - Otherwise we wouldn't have to learn...

Correctness on training examples

- completeness: Each positive example should be covered by the target hypothesis
- consistency: No negative example should be covered by the target hypothesis
- But what we want is correctness on all possible examples!

Coverage

 A rule is said to *cover* an example if the example satisfies the conditions of the rule.

Prediction

If a rule covers an example, the rule's head is predicted for this example.

Propositional Logic

- simple logic of propositions
 - combination of simple facts (features)
 - no variables, no functions, no relations
 (→ predicate calculus)
 - Operators:
 - conjunction \land , disjunction \lor , negation \neg , implication \rightarrow , ...
- rules with attribute/value tests may be viewed as statements in propositional logic
 - because all statements in the rule implicitly refer to the same object
 - each attribute/value pair is one possible condition
- Example:
 - if windy = false and outlook = sunny then golf
 - In propositional logic: ¬ windy ∧ sunny_outlook → golf

Features

• A feature is a Boolean property of an object

Feature types

- Selectors
 - select a nominal value:
 - compare to a numerical value:
- Ordered features
 - the nominal values form an ordered set
- Hierarchical features
 - the nominal values form a hierarchy
- Relational features
 - relate two or more values to each other
- Set-valued features
 - compare to a set of values (e.g., a set of words)

Salary > 100,000

Generality Relation

- Intuitively:
 - A statement is more general than another statement if it refers to a superset of its objects
- Examples:

All students are good in Machine Learning.
All students who took a course in Machine Learning and Data Mining are good in Machine Learning
All students who took course DM&ML at the TU Darmstadt are good in Machine Learning
All students who took course DM&ML at the TU Darmstadt and passed with 2 or better are good in Machine Learning.

Generality Relation for Rules

- Rule r_1 is more general than r_2 $r_1 \ge r_2$
 - if it covers all examples that are covered by r₂.
- Rule r_1 is *more specific* than r_2 $r_1 \le r_2$
 - if r₂ is more general than r₁.
- Rule r_1 is *equivalent* to r_2 $r_1 \equiv r_2$
 - if it is more specific and more general than r₂.

Examples:

- if size > 5 then + if animal = mammal then +
 if size > 3 then + if feeds_children = milk then +
 if outlook = sunny then +
 if outlook = sunny then +
 - if **outlook = sunny** and **windy = false** then +

Generality Relation for Rules

- Rule r_1 is more general than r_2 $r_1 \ge r_2$
 - if it covers all examples that are covered by r₂.
- Rule r_1 is *more specific* than r_2 $r_1 \le r_2$
 - if r₂ is more general than r₁.
- Rule r_1 is *equivalent* to r_2 $r_1 \equiv r_2$
 - if it is more specific and more general than r₂.

```
Examples:
    if size > 5 then +
    if size > 3 then +
    if outlook = sunny then +
```

```
if outlook = sunny and windy = false then +
```

Special Rules

• Most general rule \top

typically the rule that covers all examples

- the rule with the body true
- if disjunctions are allowed: the rule that allows all possible values for all attributes

• Most specific rule \perp

- typically the rule that covers no examples
 - the rule with the body false
 - the conjunction of all possible values of each attribute
 - evaluates to false (only one value per attribute is possible)
- Each training example can be interpreted as a rule
 - body: all attribute-value tests that appear inside the example
 - the resulting rule is an immediate generalization of \perp
 - covers only a single example

Structured Hypothesis Space

The availability of a generality relation allows to structure the hypothesis space:

Testing for Generality

- In general, we cannot check the generality of hypotheses
 - We do not have all examples of the domain available (and it would be too expensive to generate them)
- For single rules, we can approximate generality via a syntactic generality check:
 - Example: Rule r₁ is more general than r₂ if the set of conditions of r₁ forms a subset of the set of conditions of r₂.
 - Why is this only an approximation?
- For the general case, computable generality relations will rarely be available
 - E.g., rule sets
- Structured hypothesis spaces and version spaces are also a theoretical model for learning

Refinement Operators

- A refinement operator modifies a hypothesis
 - can be used to search for good hypotheses
- Generalization Operator:
 - Modify a hypothesis so that it becomes more general
 - e.g.: remove a condition from the body of a rule
 - necessary when a positive example is uncovered
- Specialization Operator:
 - Modify a hypothesis so that it becomes more specific
 - e.g., add a condition to the body of a rule
 - necessary when a negative examples is covered
- Other Refinement Operators:
 - in some cases, the hypothesis is modified in a way that neither generalizes nor specializes
 - e.g., stochastic or genetic search

Generalization Operators for Symbolic Attributes

There are different ways to generalize a rule, e.g.:

Subset Generalization

- a condition is removed
- used by most rule learning algorithms

Disjunctive Generalization

 another option is added to the test

Hierarchical Generalization

 a generalization hierarchy is exploited

```
shape = square & color = blue \rightarrow +
```

```
color = blue \rightarrow +
```

```
shape = square & color = blue \rightarrow +

\Rightarrow

shape = (square v rectangle)

& color = blue \rightarrow +
```

```
shape = square & color = blue \rightarrow +
\Rightarrow
shape = quadrangle & color = blue \rightarrow +
```

Minimal Refinement Operators

- In many cases it is desirable, to only make minimal changes to a hypothesis
 - specialize only so much as is necessary to uncover a previously covered negative example
 - generalize only so much as is necessary to cover a previously uncovered positive example
- Minimal Generalization of a rule r relative to an example e:
 - Find a generalization g of rule r and example e so that
 - g covers example e (r did not cover e)
 - there is no other rule g' so that $e \leq g' < g$ and $g' \geq r$
 - need not be unique
- Minimal Specialization of a rule r relative to an example e:
 - Analogously (specialize r so that it does not cover e)

Minimal Generalization/Specialization

- least general generalization (lgg) of two rules
 - for Subset Generalization: the intersection of the conditions of the rules (or a rule and an example)
- most general specialization (mgs) of two rules
 - for Subset Generalization: the union of the conditions of the rules

Algorithm Find-S

Note: when the first positive example is encountered, step II.b) amounts to converting the example into a rule (The most specific hypothesis can be written as a conjunction of all possible values of each attribute.)

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

H_0 : if false then +

if (sky = sunny & sky = rainy & ... & forecast = same & forecast = change) then +
<Ø,Ø,Ø,Ø,Ø,Ø>

- H₁: <sunny, hot, normal, strong, warm, same>
- H₂: <sunny, hot, ?, strong, warm, same>
- H₃: <sunny, hot, ?, strong, warm, same>
- H₄: <sunny, hot, ?, strong, ?, ? >

Short-hand notation:

- only body (head is +)
- one value per attribute
- Ø for false (full conjunction)
- ? for true (full disjunction)

Properties of Find-S

completeness:

- h covers all positive examples
- consistency:
 - h will not cover any negative training examples
 - but only if the hypothesis space contains a target concept (i.e., there is a single conjunctive rule that describes the target concept)

Properties:

- no way of knowing whether it has found the target concept (there might be more than one theory that are complete and consistent)
- it only maintains one specific hypothesis (in other hypothesis languages there might be more than one)
- Find-S prefers more specific hypotheses (hence the name) (it will never generalize unless forced by a training example)

Can we also find the most general hypothesis?

Algorithm Find-G

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change change	no
4	sunny	hot	high	strong	cool	change	yes

 H_0 : if true then + if (sky = sunny || sky = rainy) & ... & (forecast = same || forecaset = change) then + <?, ?, ?, ?, ?, ?> H₁: <?, ?, ?, ?, ?, ?> H₂: <?, ?, ?, ?, ?, ?> Other possibilities: H₃: <?, ?, ?, ?, same> • <?, hot, ?, ?, ?, ?> • <sunny, ?, ?, ?, ?, ?> There is no way to refine H_3 H₄: ???? so that it covers example 4.

Uniqueness of Refinement Operators

- Subset Specialization is not unique
 - we could specialize any condition in the rule that currently covers the negative example
 - we could specialize it to any value other than the one that is used in the example
 - \rightarrow a wrong choice may lead to an impasse
- Possible Solutions:
 - more expressive hypothesis language (e.g., disjunctions of values)
 - backtracking
 - remember all possible specializations and remove bad ones later \rightarrow Find-GSet algorithm
- Note: Generalization operators also need not be unique!
 - depends on the hypothesis language

Algorithm Find-GSet

I. h = most general hypothesis in H (covering all examples)

II. $G = \{h\}$

III. for each training example *e*

- a) if e is positive
 - remove all $h \in G$ that do not cover e
- b) if e is negative
 - for all hypotheses $h \in G$ that cover e
 - $G = G \setminus \{h\}$
 - for every condition *c* in *e* that is not part of *h*
 - for all conditions *c*' that negate *c*
 - $h' = h \cup \{c'\}$
 - if *h*' covers all previous positive examples
 - $G = G \cup \{h'\}$

IV.return G

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

 G_4 : { <sunny, ?, ?, ?, ?, ?>, <?, hot, ?, ?, ?>}

Correct Hypotheses

• Find-GSet:

- finds most general hypotheses that are correct on the data
- \rightarrow has a bias towards general hypotheses
- Find-SSet:
 - can be defined analogously
 - finds most specific hypotheses that are correct on the data
 - \rightarrow has a bias towards specific hypotheses
- Thus, the hypotheses found by Find-GSet or Find-SSet are not necessarily identical!
 - → Could there be hypotheses that are correct but are neither found by Find-GSet nor by Find-SSet?

Version Space

- The version space is the set of hypothesis that are correct (complet and consistent) on the training examples
 - in our example consists of 6 hypotheses

- Find-GSet will find the rules in G
 - G are the most general rules in the version space
- Find-SSet will find the rules in S
 - S are the most specific rules in the version space

Version Space

- The Version Space V is the set of all hypotheses that
 - cover all positive examples (completeness)
 - do not cover any negative examples (consistency)
- For structured hypothesis spaces there is an efficient representation consisting of
 - the <u>general boundary</u> G
 - all hypotheses in V for which no generalization is in V
 - the <u>specific boundary</u> S
 - all hypotheses in V for which no specialization is in V
- a hypothesis in *V* that is neither in *G* nor in *S* is
 - a generalization of at least one hypothesis in S
 - a specialization of at least one hypothesis in G

Candidate Elimination Algorithm

- G = set of maximally general hypotheses
- *S* = set of maximally specific hypotheses
- For each training example *e*
 - if e is positive
 - For each hypothesis *g* in *G* that <u>does not cover</u> *e*
 - remove g from G
 - For each hypothesis s in *S* that <u>does not cover</u> *e*
 - remove s from S
 - $S = S \cup$ all hypotheses h such that
 - \succ h is a minimal generalization of s
 - \succ h covers e
 - \succ some hypothesis in G is more general than h
 - remove from S any hypothesis that is more general than another hypothesis in S

Candidate Elimination Algorithm (Ctd.)

if e is negative

- For each hypothesis *s* in *S* that <u>covers</u> *e*
 - remove s from S
- For each hypothesis *g* in *G* that <u>covers</u> *e*
 - remove g from G
 - $G = G \cup all$ hypotheses h such that
 - h is a minimal <u>specialization</u> of g
 - h does not cover e
 - > some hypothesis in S is more specific than h
 - remove from G any hypothesis that is less general than another hypothesis in G

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

Example

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
1	sunny	hot	normal	strong	warm	same	yes
2	sunny	hot	high	strong	warm	same	yes
3	rainy	cool	high	strong	warm	change	no
4	sunny	hot	high	strong	cool	change	yes

How to Classify these Examples?

Version Space:

How to Classify these Examples?

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
5	sunny	hot	normal	strong	cool	change	?
6	rainy	cool	normal	light	warm	same	?
7	sunny	hot	normal	light	warm	same	?
8	sunny	cool	normal	strong	warm	same	?

How to Classify these Examples?

Version Space:

How to Classify these Examples?

No.	Sky	Temperature	Humidity	Windy	Water	Forecast	sport?
5	sunny	hot	normal	strong	cool	change	yes
6	rainy	cool	normal	light	warm	same	no
7	sunny	hot	normal	ligh <mark>t</mark>	warm	same	?
8	sunny	cool	normal	strong	warm	same	maybe no

Properties

- Convergence towards target theory
 - convergence as soon as S = G
- Reliable classification with partially learned concepts
 - an example that matches all elements in S must be a member of the target concept
 - an example that matches no element in G cannot be a member of the target concept
 - examples that match parts of S and G are undecidable
- no need to remember examples (incremental learning)
- Assumptions
 - no errors in the training set
 - the hypothesis space contains the target theory
 - practical only if generality relation is (efficiently) computable

Generalization Operators for Numerical Attributes

- Subset Generalization
 - generalization works as in symbolic case
 - specialization is difficult as there are infinitely many different values to specialize to
- Disjunctive Generalization
 - specialization and generalization as in symbolic case
 - problematic if no repetition of numeric values can be expected
 - generalization will only happen on training data
 - no new unseen examples are covered after a generalization
- Interval Generalization
 - the range of possible values is represented by an open or a closed interval
 - generalize by widening the interval to include the new point
 - specialize by shortening the interval to exclude the new point

Other Generality Relations

- First-Order
 - generalize the arguments of each pair of literals of the same relation
- Hierarchical Values
 - generalization and specialization for individual attributes follows the ontology

Summary

- The hypothesis space of rules (typically) consists of conjunctions of propositional features
 - Other rule representations are possible (e.g., disjunctive rules)
- It can be structured via a generality relation between rules, which can in many cases be checked syntactically
 - i.e., without explicitly looking at the covered examples
- The version space is the set of theories that are complete and consistent with the training examples
- In a structured search space it can be found by identifying the set of most general and most specific hypotheses
 - The candidate elimination algorithm does that
- Not all concepts can be represented with single rules