
V2.0 | J. Fürnkranz V2.0 | J. Fürnkranz

Data Mining und Maschinelles Lernen

 Data Mining
 Motivation
 Data Mining Process
Models

 Pre-Processing
 Supervised vs.
Unsupervised

 Feature Subset Selection
 Filter and Wrapper

Approaches
 Discretization

 Bottom-Up (Chi-Merge) and
Top-Down (Entropy-Split)

 Sampling
 Windowing

 Data Cleaning
 Outlier Detection and Noise

Filtering

Data Pre-Processing

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 5

Knowledge Discovery in Databases:
Key Steps

Key steps in the Knowledge Discovery cycle:
1. Data Cleaning: remove noise and inconsistent data

2. Data Integration: combine multiple data sources

3. Data Selection: select the part of the data that are relevant for the
problem

4. Data Transformation: transform the data into a suitable format (e.g.,
a single table, by summary or aggregation operations)

5. Data Mining: apply machine learning and machine discovery
techniques

6. Pattern Evaluation: evaluate whether the found patterns meet the
requirements (e.g., interestingness)

7. Knowledge Presentation: present the mined knowledge to the user
(e.g., visualization)

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 6

Data Mining is a Process !

Source: http://alg.ncsa.uiuc.edu/tools/docs/d2k/manual/dataMining.html, after Fayyad, Piatetsky-Shapiro, Smyth, 1996

The steps are not followed linearly, but in an iterative process.

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 7

Another Process Model

Source: http://www.crisp-dm.org/

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 8

Pre-Processing

 Databases are typically not made to support analysis with a data
mining algorithm
 pre-processing of data is necessary

 Pre-processing techniques:
 Feature Engineering:

find the right features/attribute set
 Feature Subset Selection: select appropriate feature subsets
 Feature Transformation: bring attributes into a suitable form (e.g.,

discretization)
 Feature Construction: construct derived features

 Data Cleaning:
 remove inconsistencies from the data

 Sampling:
 select appropriate subsets of the data

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 9

Unsupervised vs. Supervised
Pre-processing

 Unsupervised
 do not use information about the learning task

 only prior information (from knowledge about the data)
 and information about the distribution of the training data

 Supervised
 use information about the learning task

 e.g.: look at relation of an attribute to class attribute

 WARNING:
 pre-processing may only use information from training data!
 compute pre-processing model from training data
 apply the model to training and test data
 otherwise information from test data may be captured in the pre-

processing step → biased evaluation

 in particular: apply pre-processing to every fold in cross-validation

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 10

Feature Subset Selection

 Databases are typically not collected with data mining in mind

 Many features may be
 irrelevant

 uninteresting

 redundant

 Removing them can
 increase efficiency

 improve accuracy

 prevent overfitting

 Feature Subsect Selection techniques try to determine
appropriate features automatically

file://./

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 11

Unsupervised FSS

 Using domain knowledge
 some features may be known to be irrelevant, uninteresting or

redundant

 Random Sampling
 select a random sample of the feature
 may be appropriate in the case of many weakly relevant features

and/or in connection with ensemble methods

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 12

Supervised FSS

 Filter approaches:
 compute some measure for estimating the ability to discriminate

between classes
 typically measure feature weight and select the best n features
 problems

 redundant features (correlated features will all have similar weights)
 dependent features (some features may only be important in combination

(e.g., XOR/parity problems).

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 13

Supervised FSS: Filters

 Feature Weighting
 a good attribute should

discriminate between classes
 use a measure of discrimination

for determining the importance
of attributes
 decision tree splitting criteria

(entropy/information gain, gini-index, …)
 attribute weighting criteria (Relief, ...), etc.

 Advantage
 very fast

 Disadvantage
 quality of each attribute is measured in isolation
 some attributes may only be useful in combination with others

 foreach attribute A
 W[A] = feature weight

according to some measure
of discrimination

 select the n features with
highest W[A]

 foreach attribute A
 W[A] = feature weight

according to some measure
of discrimination

 select the n features with
highest W[A]

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 14

Supervised FSS

 Filter approaches:
 compute some measure for estimating the ability to discriminate

between classes
 typically measure feature weight and select the best n features
 problems

 redundant features (correlated features will all have similar weights)
 dependent features (some features may only be important in combination

(e.g., XOR/parity problems).

 Wrapper approaches
 search through the space of all possible feature subsets
 each search subset is tried with the learning algorithm

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 15

FSS: Wrapper Approach
(John, Kohavi, Pfleger, ICML-94)

 Wrapper Approach:
 try a feature subset with the learner
 improve it by modifying the feature sets based on the result
 repeat

Figure by Kohavi & John

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 16

FSS: Wrapper Approach

 Forward selection:

1. start with empty feature set F

2. for each attribute A
● Estimate Accuracy of Learning algorithm on F ∪{A}

3. F = F ∪ {attribute with highest estimated accuracy}

4. goto 2. until n features have been found

 Backward elimination:

 start with full feature set F
 try to remove attributes

 Bi-directional search is also possible

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 17

Example: Forward Search for Best 3 Features

Figure by John, Kohavi & Pfleger

Attrs: current set of attributes
Est: accuracy estimated by wrapper
Real: „real“ accuracy

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 18

Stopping Criteria for Wrapper algorithms

 Select the best n attributes
 Like pseudo-code on the previous slide

 Add an attribute if it increases accuracy
 Might be too greedy
 e.g., in the previous example, the search would have stopped after

adding the first attribute

 Add an attribute until the last k added attributes did not increase
attribute
 e.g., for k = 2, the last example would have found the final 3-value set

 Add an attribute if it does not significantly decrease accuracy
 Significance test can be performed with → sign test or → t-test

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 19

Wrapper Approaches - Discussion

 Advantage:

 find feature set that is tailored to learning algorithm
 considers combinations of features, not only individual feature weights
 can eliminate redundant features

(picks only as many as the algorithm needs)

 Disadvantage:
 very inefficient: many learning cycles necessary

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 20

Comparison Wrapper / Filter(Relief)

Figure by John, Kohavi & Pfleger

Note: RelieveD is a version of Relief that uses all examples instead of a random sample

 on these datasets:
 forward selection reduces attributes w/o error increase

 in general, it may also reduce error

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 21

Feature Transformation

 numerization
 some algorithms can only use numeric data
 nominal → binary

 a nominal attribute with n values is converted into n binary attributes
 binary → numeric

 binary features may be viewed as special cases of numeric attributes with
two values

 standardization
 normalize numerical attributes to useful ranges
 sometimes logarithmic transformations are necessary

 discretization
 some algorithms can only use categorical data

 transform numeric attributes into (ordered) categorical values

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 22

Discretization

 Supervised vs. Unsupervised:
 Unsupervised:

 only look at the distribution of values of the attribute

 Supervised:
 also consider the relation of attribute values to class values

 Merging vs. Splitting:
 Merging (bottom-up discretization):

 Start with a set of intervals (e.g., each point is an interval) and successively
combine neighboring intervals

 Splitting (top-down discretization):
 Start with a single interval and successively split the interval into sub-

intervals

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 23

Unsupervised Discretization

 domain-dependent:
 suitable discretizations are often known
 age (0-18) →

baby (0-3), child (3-6), school child (6-10), teenager (11-18)

 equal-width:

 divide value range into a number of intervals with equal width
 age (0-18) → (0-3, 4-7, 8-11, 12-15, 16-18)

 equal-frequency:

 divide value range into a number of intervals so that (approximately) the
same number of datapoints are in each interval

 e.g., N = 5: each interval will contain 20% of the training data
 good for non-uniform distributions (e.g., salary)

V2.1 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 24

Supervised Discretization:
 Chi-Merge (Kerber, AAAI-92)

● initialization:
 sort examples according to feature value
 construct one interval for each value

● interval merging:
 compute 2 value for each pair of adjacent intervals

Aij = number of examples in i-th interval that are of class j

Eij = expected number of examples in i-th interval that are of class j

 = examples in i-th interval Ni × fraction of examples of class j

 merge those with lowest 2 value

● stop
 when the 2 values of all pairs exceed a significance threshold

● initialization:
 sort examples according to feature value
 construct one interval for each value

● interval merging:
 compute 2 value for each pair of adjacent intervals

Aij = number of examples in i-th interval that are of class j

Eij = expected number of examples in i-th interval that are of class j

 = examples in i-th interval Ni × fraction of examples of class j

 merge those with lowest 2 value

● stop
 when the 2 values of all pairs exceed a significance threshold

2=∑
i=1

2

∑
j=1

c Aij−E ij
2

E ij

 Basic Idea: merge neighboring intervals if the class information is
 independent of the interval an example belongs to

E ij=N i

C j

N 1N 2 N i=∑
j=1

c

Aij

C j=A1jA2j

where

in both intervals

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 25

Supervised Discretization:
 Entropy-Split (Fayyad & Irani, IJCAI-93)

 Basic Idea: grow a decision tree using a single numeric attribute and
 use the value ranges in the leaves as ordinal values

● initialization:
 initialize intervals with a single interval covering all examples S
 sort all examples according to the attribute value
 initialize the set of possible split points

 simple: all values
● interval splitting:

 select split point with the minimum weighted entropy

 recursively apply Entropy-Split to and
● stop

 when a given number of splits is achieved
 or when splitting would yield too small intervals
 or MDL-based stopping criterion (Fayyad & Irani, 1993)

● initialization:
 initialize intervals with a single interval covering all examples S
 sort all examples according to the attribute value
 initialize the set of possible split points

 simple: all values
● interval splitting:

 select split point with the minimum weighted entropy

 recursively apply Entropy-Split to and
● stop

 when a given number of splits is achieved
 or when splitting would yield too small intervals
 or MDL-based stopping criterion (Fayyad & Irani, 1993)

T max=arg min
T ∣S AT∣

∣S∣
Entropy S AT

∣S A≥T∣

∣S∣
Entropy S A≥T

S AT max
S A≥T max

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 26

Example

Play

Temperature

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Play

Temperature

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Slide taken from Witten & Frank

V2.1 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 27

Example

Slide adapted from Witten & Frank

 Possible Split points:
64.5, 66.5, 68.5, 69.5, 70.5, 71.5, 73.5, 77.5, 80.5, 82.0, 84.0

 Compute Information gain for every split point
 As in decision tree induction for numeric attributes

 Select the point with the highest information gain
 In this case 84.0 (→ point A in graph in previous slide)

 Repeat in both successor nodes until a full decision tree is grown
 In the example only the left branch contains examples

Note:
 One can proof that a split point can only lie on a change between

classes, i.e., we would only have to consider split points
64.5, 66.5, 70.5, 71.5, 73.5, 77.5, 80.5, 84.0
(we cannot split the yes/no examples at 72.0, so we have to split left and right of it)

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 28

Resulting Tree

Note:Note:
 The tree structure does not

always degenerate to a list
 But there is a selection bias

towards split points near the
end of the value ranges

 Leafs of the resulting tree
correspond to intervals

 Generate one discrete value for
each interval
 In this example we get

a nominal attribute
with 7 values

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 29

Unsupervised Feature Construction

 based on domain knowledge
 Example: Body Mass Index

 automatic
 Examples:

 kernel functions
 may be viewed as feature construction modules
 → support vector machines

 principal components analysis
 transforms an n-dimensional space into a lower-dimensional subspace w/o losing

much information

 GLEM:
 uses an Apriori-like algorithms to compute all conjunctive combinations of basic

features that occur at least n times
 application to constructing evaluation functions for game Othello

BMI =
weight (kg)

height (m)
2

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 30

Supervised Feature Construction

 use the class information to construct features that help to solve
the classification problem

 Examples:
 Wrapper approach

 use rule or decision tree learning algorithm
 observe frequently co-occurring features or feature values
 encode them as separate features

 Neural Network
 nodes in hidden layers may be interpreted as constructed features

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 31

Scalability

 databases are often too big for machine learning algorithms
 ML algorithms require frequent counting operations and multi-

dimensional access to data
 only feasible for data that can be held in main memory

 two strategies to make DM algorithms scalable
 design algorithms that are explicitly targetted towards minimizing the

number of database operations (e.g., Apriori)
 use sampling to work on subsets of the data

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 32

Windowing

 Idea:
 focus the learner on the parts of the search space that are not yet

correctly covered

 Algorithm:

1. Initialize the window with a random subsample of the available data

2. Learn a theory from the current window

3. If the learned theory correctly classifies all examples (including those
outside of the window), return the theory

4. Add some mis-classified examples to the window and goto 2.

 Properties:

 may learn a good theory from a subset of the data
 problems with noisy data

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 33

Outlier Detection

unsupervised Data Cleaning method

 Goal:
 detect examples which deviate a lot from other examples
 they are probably due to measurement errors

 2-Sigma Rule:
 common statistical Method for outlier detection
 An example is classified as an outlier if

 there exists one (numerical) attribute A
 whose value deviates from the mean by more than two standard deviations

∣x A−x A∣2⋅ A

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 34

Identifying Mislabeled Examples
(Friedl & Brodley, 1999)

 Identify noisy examples
 correct them or remove them from the database
 train the classifier on a corrected database

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 35

Robust Decision Trees
(John, KDD-95)

 supervised data cleaning method

1. train a decision tree T

2. remove all training examples that are misclassified by T

3. learn a new tree from the remaining examples

4. repeat until convergence

 thus the final tree is trained on a subset of original data

 but may not only be simpler but also more accurate

 may be viewed as an inverse windowing

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 36

Ensemble Filters

 Generalization of the previous approach to ensembles
 filter an example if ≥c% of the base classifiers misclassify it

 Majority Filter
 filter if more than half of the classifiers mislabel the example

 Consensus Filter

 special case where only unanimous misclassifications count

V2.0 | J. FürnkranzData Mining und Maschinelles Lernen | Pre-Processing 37

Experimental Comparison
(Friedl & Brodley, 1999)

Typical results:

 majority performs best
 consensus is too conversative

 not enough examples removed

 single algorithm filter (≈ robust decision trees) is too loose
 too many examples removed

	Folie 1
	Folie 5
	DM Process
	Another Process Model
	Folie 8
	unsupervised vs. supervised
	FSS
	Unsupervised FSS
	FSS-Filter
	Folie 13
	Folie 14
	Folie 15
	FSS: Wrapper
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Feature Transformation
	Folie 22
	Unsupervised Discretization
	Supervised Discretization
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Unsupervised Feaaature Construction
	Feature Construction
	Scalability
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37

