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Instance Based Classifiers

 No model is learned
 The stored training instances themselves represent the knowledge
 Training instances are searched for instance that most closely 

resembles new instance

→ lazy learning

 Examples:
 Rote-learner
 Memorizes entire training data and performs classification only if attributes 

of record match one of the training examples exactly
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Rote Learning

Day Temperature  Outlook  Humidity  Windy Play Golf?

07-05 hot  sunny  high false  no 

07-06 hot  sunny  high true  no 

07-07 hot  overcast  high false  yes 

07-09 cool  rain  normal false  yes 

07-10 cool  overcast  normal true  yes 

07-12 mild  sunny  high false  no 

07-14 cool  sunny  normal false  yes 

07-15 mild  rain  normal false  yes 

07-20 mild  sunny  normal true  yes 

07-21 mild  overcast  high true  yes 

07-22 hot  overcast  normal false  yes 

07-23 mild  rain  high true  no 

07-26 cool  rain  normal true  no 

07-30 mild  rain  high false  yes 

today cool sunny normal false yes
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Instance Based Classifiers

 No model is learned
 The stored training instances themselves represent the knowledge
 Training instances are searched for instance that most closely 

resembles new instance

→ lazy learning

 Examples:
 Rote-learner
 Memorizes entire training data and performs classification only if attributes 

of record match one of the training examples exactly

 Nearest-neighbor classifier
 Uses k “closest” points (nearest neigbors) for performing classification
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Nearest Neighbor Classification

Day Temperature  Outlook  Humidity  Windy Play Golf?

07-05 hot  sunny  high false  no 

07-06 hot  sunny  high true  no 

07-07 hot  overcast  high false  yes 

07-09 cool  rain  normal false  yes 

07-10 cool  overcast  normal true  yes 

07-12 mild  sunny  high false  no 

07-14 cool  sunny  normal false  yes 

07-15 mild  rain  normal false  yes 

07-20 mild  sunny  normal true  yes 

07-21 mild  overcast  high true  yes 

07-22 hot  overcast  normal false  yes 

07-23 mild  rain  high true  no 

07-26 cool  rain  normal true  no 

12-30 mild  rain  high false  yes 

tomorrow mild sunny normal false yes
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?

Training

Classification
New Example

K-Nearest Neighbor 
algorithms classify a new 

example by comparing it to all 
previously seen examples. 
The classifications of the k 
most similar previous cases 
are used for predicting the 
classification of the current 

example.

The training examples 
are used for 

• providing a library of 
sample cases 

• re-scaling the similarity 
function to maximize 

performance

Nearest Neighbor Classifier
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Nearest Neighbors

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

    k nearest neighbors of an example x are the data points that 
have the k smallest distances to x
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Prediction

The predicted class is determined from the nearest neighbor list

 classification

 take the majority vote of class labels among the k-nearest neighbors

 can be easily be extended to regression
 predict the average value of the class value of the k-nearest 

neighbors
y=

1
k∑ i=1

k
yi

y=maxc∑ i=1

k {1 if y i=c
0 if y i≠ c

=maxc∑ i=1

k
1 yi=c

indicator function
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Weighted Prediction

 Often prediction can be improved if the influence of each neighbor 
is weighted 

 Weights typically depend on distance, e.g.

 Note:
 with weighted distances, we could use all examples for classifications 

(→ Inverse Distance Weighting)

y=
∑ i=1

k
w i⋅y i

∑ i=1

k
w i

w i=
1

d x i , x
2
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Nearest-Neighbor Classifiers

 Require three things
 The set of stored examples
 Distance Metric to compute 

distance between examples
 The value of k, the number of 

nearest neighbors to retrieve

 To classify an unknown example:

 Compute distance to other training 
examples

 Identify k nearest neighbors 
 Use class labels of nearest 

neighbors to determine the class 
label of unknown example 
(e.g., by taking majority vote)

unknown example
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Voronoi Diagram

 shows the regions
of points that are 
closest to a given
set of points

 boundaries of these
regions correspond
to potential decision
boundaries of 1NN
classifier
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Lazy Learning Algorithms

 kNN is considered a lazy learning algorithm
 Defers data processing until it receives a request to classify an 

unlabelled example
 Replies to a request for information by combining its stored training 

data
 Discards the constructed answer and any intermediate results

 Other names for lazy algorithms
 Memory-based, Instance-based , Exemplar-based , Case-based, 

Experiencebased

 This strategy is opposed to eager learning algorithms which
 Compiles its data into a compressed description or model
 Discards the training data after compilation of the model
 Classifies incoming patterns using the induced model
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Choosing the value of k
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Choosing the value of k

 If k is too small
 sensitive to noise in the data (misclassified examples)

 If k is too large
 neighborhood may include 

points from other classes
 limiting case: 
 all examples are considered
 largest class is predicted

 good values can be found
 e.g, by evaluating various 

values with cross-validation on the training data

k≥∣D∣
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Distance Functions 

 Computes the distance between two examples
 so that we can find the “nearest neighbor” to a given example

 General Idea:

 reduce the distance d (x1, x2) of two examples to the distances

d A (v1, v2) between two values for attribute A

 Popular choices
 Euclidean Distance:
 straight-line between two points

 Manhattan or City-block Distance:
 sum of axis-parallel line segments

d  x1, x2=∑ A
d Av1, A , v2, A

2

d  x1, x2=∑ A
d Av1, A , v2, A
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Distance Functions for Numerical Attributes

 Numerical Attributes:
 distance between two attribute values

 Normalization:
 Different attributes are measured on different scales 

→ values need to be normalized in [0,1]:

 Note: 
 This normalization assumes a (roughly) uniform distribution of attribute 

values
 For other distributions, other normalizations might be preferable
 e.g.: logarithmic for salaries?

vi=
vi−min v j

max v j−min v j

d Av1, v2=∣v1− v2∣
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Distance Functions for Symbolic Attributes

 0/1 distance

 Value Difference Metric (VDM) (Stanfill & Waltz 1986)

 two values are similar if they have approximately the same distribution 
over all classes (similar relative frequencies in all classes)

 sum over all classes the difference of the percentage of examples 
with value v1 in this class and examples with value v2 in this class

 used in PEBLS with k = 1 
(Parallel Exemplar-Based Learning System; Cost & Salzberg, 1993)

d Av1, v2={0 if v1=v2

1 if v1≠ v2

d Av1, v2=∑ c∣n1, c

n1

−
n2,c

n2
∣

k
k is a user-settable
parameter (e.g., k=2)
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VDM Example

Distance between values:

d(Refund=Yes,Refund=No)

     = | 0/3 – 3/7 | + | 3/3 – 4/7 | = 6/7

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Class Refund

Yes No

Yes 0 3

No 3 4
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VDM Example

Distance between values:

d(Single,Married) 

      =  | 2/4 – 0/4 | + | 2/4 – 4/4 | =  1

d(Single,Divorced) 

      =  | 2/4 – 1/2 | + | 2/4 – 1/2 | =  0

d(Married,Divorced) 

      =  | 0/4 – 1/2 | + | 4/4 – 1/2 | =  1

Class Marital Status

Single Married Divorced

Yes 2 0 1

No 2 4 1

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Other Distance Functions

 Other distances are possible
 hierarchical attributes
 distance of the values in the hiearchy 

 e.g., length of shortest path form v1 to v2

d (Canada , USA)=2 , d (Canada , Japan )=4
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Other Distance Functions

 Other distances are possible
 hierarchical attributes
 distance of the values in the hiearchy 

 e.g., length of shortest path form v1 to v2

 string values
 edit distance

d (Virginia , Vermont )=5
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Other Distance Functions

 Other distances are possible
 hierarchical attributes
 distance of the values in the hiearchy 

 e.g., length of shortest path form v1 to v2

 string values
 edit distance

 in general
 distances are domain-dependent
 can be chosen appropriately

Distances for Missing Values

 not all attribute values may be specified for an example
 Common policy: 
 assume missing values to be maximally distant 
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Feature Weighting

 Not all dimensions are equally important
 comparisons on some dimensions might even be completely 

irrelevant for the prediction task
 straight-forward distance functions give equal weight to all dimensions

 Idea:
 use a weight for each attribute to denote its importance
 e.g., Weighted Euclidean Distance:

 weights wA can be set by user or determined automatically

 Survey of feature weighting algorithms:
Dietrich Wettschereck, David W. Aha, Takao Mohri: 
A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms. 
Artificial Intelligence Review 11(1-5): 273-314 (1997)

d ( x1, x2)=√∑ A
wA⋅d A(v1, A , v2, A)

2

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.1003
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Basic idea: 
in a local neighborhood around an example x a good attribute A should
 allow to discriminate x from all examples of different classes 

(the set of misses)
 therefore the probability that the attribute has a different value for x and a 

miss m should be high 

 have the same value for all examples of the same class as x 
(the set of hits)

 therefore the probability that the attribute has a different value for x and a
hit h should be low

→ try to estimate and maximize

     where vx is the value of attribute A in example x

 this probability can be estimated via the average distance

RELIEF
(Kira & Rendell, ICML-92)

wA=Pr v x≠ vm− Pr v x≠ vh
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RELIEF
(Kira & Rendell, ICML-92)

1.set all attribute weights wA = 0.0

2.for i = 1 to r    (← user-settable parameter)
 select a random example x
 find

 h: nearest neighbor of same class (near hit)
 m: nearest neighbor of different class (near miss)

 for each attribute A

where dA(x,y) is the distance in attribute A between examples x and y 
(normalized to [0,1]-range).

1.set all attribute weights wA = 0.0

2.for i = 1 to r    (← user-settable parameter)
 select a random example x
 find

 h: nearest neighbor of same class (near hit)
 m: nearest neighbor of different class (near miss)

 for each attribute A

where dA(x,y) is the distance in attribute A between examples x and y 
(normalized to [0,1]-range).

wA  wA
1
r
⋅d Am , x −d Ah , x

Note: when used for feature weighting, all wA < 0.0 are set to 0 in the end.
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 Only those instances involved in a decision need to be stored
 Noisy instances should be filtered out

 Idea: 
 only use prototypical examples

Learning Prototypes
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Learning Prototypes: IB-algorithms

 Case Study for prototype selection 
 Aha, Kibler and Albert: Instance-based learning. Machine Learning,1991.

 IB1: Store all examples
 high noise tolerance
 high memory demands

 IB2: Store new example only if misclassified by stored examples
 low noise tolerance
 low memory demands

 IB3: like IB2, but 
 maintain a counter for the number of times the example participated

in correct and incorrect classifications
 use a significant test for filtering noisy examples
 improved noise tolerance
 low memory demands 
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Instance Weighting

 Idea:
 we assign a weight to each instance
 instances with lower weights are always distant
 hence have a low impact on classification
 instance weight              completely ignores this instance x

→ Selecting instances is a special case of instance weighting

 Similarity function used in PEBLS (Cost & Salzberg, 1993)

where 

           if instance x predicts well
           if instance x does not predict well

d  x1, x2=
1

w x1
⋅w x2

⋅∑ A
d Av1, v2

k

w x=
Number of times x  has correctly predicted the class
Number of times x  has been used for prediction

w x≈ 1

w x1

w x=0
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Efficiency of NN algorithms

 very efficient in training
 only store the training data

 not so efficient in testing
 computation of distance measure to every training example
 much more expensive than, e.g., rule learning

 Note that kNN and 1NN are equal in terms of efficiency
 retrieving the k nearest neighbors is (almost) no more expensive than 

retrieving a single nearest neighbor
 k nearest neighbors can be maintained in a queue
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Finding nearest neighbors efficiently

 Simplest way of finding nearest neighbour: 
 linear scan of the data
 classification takes time proportional to the product of the number of 

instances in training and test sets

 Nearest-neighbor search can be done more efficiently using 
appropriate data structures
 kD-trees
 ball trees
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kD-Trees

 common setting (others possible)
 each level corresponds to one of the attributes
 order of attributes can be arbitrary, fixed, and cyclic

 each level splits according to its attribute
 ideally use the median value (results in balanced trees)
 often simply use the value of the next example

at
tr

ib
ut

es
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Building kD-trees incrementally

 Big advantage of instance-based learning: classifier can be 
updated incrementally
 Just add new training instance after it arrives!

 Can we do the same with kD-trees?

 Heuristic strategy:
 Find leaf node containing new instance
 If leaf is empty
 place instance into leaf 

 Else
 split leaf according to the next dimension
 Alternatively: split according to the longest dimension 
 idea: preserve squareness

 Tree should be re-built occasionally 
 e.g., if depth grows to twice the optimum depth
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Using kD-trees: example

 The effect of a kD-tree is to partition the (multi-dimensional) 
sample space according to the underlying data distribution 
 finer partitioning in regions with high density
 coarser partitioning in regions with low density

 For a given query point
 descending the tree to find the 

data points lying in the cell that 
contains the query point

 examine surrounding cells if they overlap 
the ball centered at the query point and 
the closest data point so far
 recursively back up one level and 

check distance to the split point
 if overlap also search other branch 

→ only a few cells have to be searched
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Using kD-trees: example

 Assume we have example [1,5]
 Unweighted Euclidian distance

 sort the example down the tree:

 ends in the left successor of [4,7]

 compute distance to example in the leaf

 

 now we have to look into rectangles 
that may contain a nearer example

 remember the difference to the
closest example

.

17

54d e1, e2=∑ A
d Ae1, e2

2

d  [1,5 ] , [4,7 ]=1− 425−72=13

d min=13

d min

14
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Using kD-trees: example

 go up one level (to example [4,7])
 compute distance to the closest point

on this split (difference only on X)

 If the difference is smaller than 
the current best difference

 then we could have a closer
example in the right subtree of [4,7]
 which in our case does not contain

any example → done

.

17

d ([1,5 ] , [4,* ])=√(4−1)2+02=3

d mind ([1,5 ] , [4,* ])=3<√13=d min
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Using kD-trees: example

 go up one level (to example [5,4])
 compute distance to the closest point

on this split (difference only on Y)

 if the difference is smaller than 
the current best difference

 then we could have a closer
example in area Y < 4.
 go down the other branch
 and repeat recursively

.

17

d  [1,5 ] , [*,4 ]=025−42=1

d min
d ([1,5 ] , [*,4 ])=1<√13=d min
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Using kD-trees: example

 go down to leaf [2,3]

 compute distance to example in
this leaf

 if the difference is smaller than 
the current best difference

 then the example in the leaf is 
the new nearest neighbor and

 this is recursively repeated until
we have processed the root node
 no more distances have to be computed

.

17

d ([1,5 ] , [2,3 ])=√(1−2)2+(5−3)2=√5

d min

d ([1,5 ] , [2,3 ])=√5<√13=d min

d min

d min=513
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Ball trees

 Problem in kD-trees: corners
 Observation: 

 There is no need to make sure 
that regions don't overlap 

→ We can use balls 
(hyperspheres) instead of 
hyperrectangles

 A ball tree organizes the data 
into a tree of k-dimensional 
hyperspheres

 Normally allows for a better fit 
to the data and thus more 
efficient search
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non-overlapping rectangles nested rectangles

Nearest Hyper-Rectangle

 Nearest-Neighbor approaches can be extended to compute the 
distance to the nearest hyper-rectangle
 a hyper-rectangle corresponds to a rule

 conditions are intervals along each dimension

 To do so, we need to adapt the distance measure 
 distance of a point to a rectangle instead of point-to-point distance 
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Rectangle-to-Point Distance

d x , R=0

A

B

d x , R=d A  x , R

d x , R=d B x , R
d  x , R =

d A  x , R d B  x , R

d A x , R 

d A x , R 

d B x , R

d B x , R
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Rectangle-to-Point Attribute Distance

 numeric Attributes
 distance of the point to the closest edge of the rectangle along this 

attribute (i.e., distance to the upper/lower bound of the interval)

if rule R uses                              as condition for attribute A

 symbolic attributes
 0/1 distance

if rule R uses             as condition for attribute A

d Av , R={ 0 if vmin , AR
≤ v≤ vmax , AR

v− vmax , AR
if vvmax , AR

vmin , AR
− v if vvmin , AR

vmin , AR
≤ A≤ vmax , AR

d Av , R={0 if v=v AR

1 if v≠ v AR

A=v AR

One can also adapt
other distances. 

RISE uses a version
of the VDM.
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NEAR (Salzberg, 1991)

1. randomly choose r seed examples
 convert them into rules

2. for each example x
 choose rule 

 if x is classified correctly by Rmin

 enlarge the condition of Rmin so that x is covered 

 for each numeric attribute enlarge the interval if necessary
 for each symbolic attribute delete the condition if necessary

 else if x is classified incorrectly by Rmin

 add example x as a new rule 

1. randomly choose r seed examples
 convert them into rules

2. for each example x
 choose rule 

 if x is classified correctly by Rmin

 enlarge the condition of Rmin so that x is covered 

 for each numeric attribute enlarge the interval if necessary
 for each symbolic attribute delete the condition if necessary

 else if x is classified incorrectly by Rmin

 add example x as a new rule 

Rmin=arg min R d x , R

NEAR uses both instance and feature weighting

d (x , R)=w x√∑ A
w A

2 d A( x , R)
2
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Instance and Feature Weighting in NEAR

Instance Weighting as in PEBLS

Feature Weights are computed incrementally
 if an example is incorrectly classified

 the weights of all matching attributes are increased by a fixed 
percentage (20%)
 this has the effect of moving the example farther away along these 

dimensions

 the weights of all attributes that do not match are decreased by a 
fixed percentage (20%)

 if an example is correctly classified
 do the opposite (decrease matching and increase non-matching 

weights analogously)
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Second Chance Heuristic

An improved version used a Second Chance Heuristic

 if the nearest rule did not classify correctly, try the second one

 if this one matches → expand it to cover the example
 if not → add the example as a new rule 

 this can lead to the generation of nested rules
 i.e., rectangles inside of other rectangles
 at classification time, use the smallest matching rectangle 
 but this did not work well (overfitting?)

 such nested rules may be interpreted as rules with exceptions
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RISE (Domingos, 1996)

1. turn each example into a rule resulting in a theory T

2. repeat
 for each rule R in T

i.  choose uncovered example 
ii.  R' = minimalGeneralisation(R,xmin)

iii.  replace R with R' if this does not decrease the accuracy of T

iv.  delete R' if it is already part of T (duplicate rule)

3. until no further increase in accuracy

1. turn each example into a rule resulting in a theory T

2. repeat
 for each rule R in T

i.  choose uncovered example 
ii.  R' = minimalGeneralisation(R,xmin)

iii.  replace R with R' if this does not decrease the accuracy of T

iv.  delete R' if it is already part of T (duplicate rule)

3. until no further increase in accuracy

xmin=arg min x d ( x , R)

● RISE uses the simple distance function

d  x , R=∑ A
d Ax , R

k

(Rule Induction from a Set of Exemplars)
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RISE (Domingos, 1996)

 Classification of an example:
 use the rule that is closest to the example
 if multiple rules have the same distance, use the one with the highest 

Laplace-corrected precision

 Leave-one-out estimation of accuracy of a theory:
 For classifying an example, the rule that encodes it is ignored 
 but only if it has not been generalized yet

 can be computed efficiently if each examples remembers the distance 
to the rule by which it is classified
 if a rule is changed, go once through all examples and see if the new rule 

classifies any examples that were classified by some other rule before
 count the improvements (+1) or mistakes (-1) only for those examples, and 

see whether their sum is > 0 or < 0.
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Differences NEAR and RISE 

 NEAR
 focuses on examples 
 incremental training
 instance weighted and 

feature-weighted Euclidean 
distance

 tie breaking using the 
smallest rule

 RISE
 focuses on rules
 batch training
 straight-forward Manhattan 

distance

 tie breaking with Laplace 
heuristic
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Discussion 

 Nearest Neighbor methods are often very accurate
 Assumes all attributes are equally important
 Remedy: attribute selection or weights

 Possible remedies against noisy instances
 Take a majority vote over the k nearest neighbors
 Removing noisy instances from dataset (difficult!)

 Statisticians have used k-NN since early 1950s
 If n   and k/n  0, error approaches minimum
 can model arbitrary decision boundaries

 ...but somewhat inefficient (at classification time)
 straight-forward application maybe too slow
 kD-trees become inefficient when number of attributes is too large 

(approximately > 10)
 Ball trees work well in higher-dimensional spaces

 several similarities with rule learning
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