
Data Mining and Machine Learning

 Rote Learning
 k Nearest-Neighbor Classification
 Prediction, Weighted Prediction
 choosing k
 feature weighting (RELIEF)
 instance weighting (PEBLS)
 efficiency
 kD-trees

 IBL and Rule Learning
 NEAR: Nearest Nested Hyper-

Rectangles
 RISE

Acknowledgements:
Some slides adapted from

 Tom Mitchell
 Eibe Frank & Ian Witten
 Kan, Steinbach, Kumar
 Ricardo Gutierrez-Osuna
 Gunter Grieser

Instance-Based Learning

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 2

Instance Based Classifiers

 No model is learned
 The stored training instances themselves represent the knowledge
 Training instances are searched for instance that most closely

resembles new instance

→ lazy learning

 Examples:
 Rote-learner
 Memorizes entire training data and performs classification only if attributes

of record match one of the training examples exactly

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 3

Rote Learning

Day Temperature Outlook Humidity Windy Play Golf?

07-05 hot sunny high false no

07-06 hot sunny high true no

07-07 hot overcast high false yes

07-09 cool rain normal false yes

07-10 cool overcast normal true yes

07-12 mild sunny high false no

07-14 cool sunny normal false yes

07-15 mild rain normal false yes

07-20 mild sunny normal true yes

07-21 mild overcast high true yes

07-22 hot overcast normal false yes

07-23 mild rain high true no

07-26 cool rain normal true no

07-30 mild rain high false yes

today cool sunny normal false yes

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 4

Instance Based Classifiers

 No model is learned
 The stored training instances themselves represent the knowledge
 Training instances are searched for instance that most closely

resembles new instance

→ lazy learning

 Examples:
 Rote-learner
 Memorizes entire training data and performs classification only if attributes

of record match one of the training examples exactly

 Nearest-neighbor classifier
 Uses k “closest” points (nearest neigbors) for performing classification

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 5

Nearest Neighbor Classification

Day Temperature Outlook Humidity Windy Play Golf?

07-05 hot sunny high false no

07-06 hot sunny high true no

07-07 hot overcast high false yes

07-09 cool rain normal false yes

07-10 cool overcast normal true yes

07-12 mild sunny high false no

07-14 cool sunny normal false yes

07-15 mild rain normal false yes

07-20 mild sunny normal true yes

07-21 mild overcast high true yes

07-22 hot overcast normal false yes

07-23 mild rain high true no

07-26 cool rain normal true no

12-30 mild rain high false yes

tomorrow mild sunny normal false yes

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 6

?

Training

Classification
New Example

K-Nearest Neighbor
algorithms classify a new

example by comparing it to all
previously seen examples.
The classifications of the k
most similar previous cases
are used for predicting the
classification of the current

example.

The training examples
are used for

• providing a library of
sample cases

• re-scaling the similarity
function to maximize

performance

Nearest Neighbor Classifier

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 7

Nearest Neighbors

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

 k nearest neighbors of an example x are the data points that
have the k smallest distances to x

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 8

Prediction

The predicted class is determined from the nearest neighbor list

 classification

 take the majority vote of class labels among the k-nearest neighbors

 can be easily be extended to regression
 predict the average value of the class value of the k-nearest

neighbors
y=

1
k∑ i=1

k
yi

y=maxc∑ i=1

k {1 if y i=c
0 if y i≠ c

=maxc∑ i=1

k
1 yi=c

indicator function

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 9

Weighted Prediction

 Often prediction can be improved if the influence of each neighbor
is weighted

 Weights typically depend on distance, e.g.

 Note:
 with weighted distances, we could use all examples for classifications

(→ Inverse Distance Weighting)

y=
∑ i=1

k
w i⋅y i

∑ i=1

k
w i

w i=
1

d x i , x
2

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 10

Nearest-Neighbor Classifiers

 Require three things
 The set of stored examples
 Distance Metric to compute

distance between examples
 The value of k, the number of

nearest neighbors to retrieve

 To classify an unknown example:

 Compute distance to other training
examples

 Identify k nearest neighbors
 Use class labels of nearest

neighbors to determine the class
label of unknown example
(e.g., by taking majority vote)

unknown example

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 11

Voronoi Diagram

 shows the regions
of points that are
closest to a given
set of points

 boundaries of these
regions correspond
to potential decision
boundaries of 1NN
classifier

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 12

Lazy Learning Algorithms

 kNN is considered a lazy learning algorithm
 Defers data processing until it receives a request to classify an

unlabelled example
 Replies to a request for information by combining its stored training

data
 Discards the constructed answer and any intermediate results

 Other names for lazy algorithms
 Memory-based, Instance-based , Exemplar-based , Case-based,

Experiencebased

 This strategy is opposed to eager learning algorithms which
 Compiles its data into a compressed description or model
 Discards the training data after compilation of the model
 Classifies incoming patterns using the induced model

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 13

Choosing the value of k

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 14

Choosing the value of k

 If k is too small
 sensitive to noise in the data (misclassified examples)

 If k is too large
 neighborhood may include

points from other classes
 limiting case:
 all examples are considered
 largest class is predicted

 good values can be found
 e.g, by evaluating various

values with cross-validation on the training data

k≥∣D∣

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 15

Distance Functions

 Computes the distance between two examples
 so that we can find the “nearest neighbor” to a given example

 General Idea:

 reduce the distance d (x1, x2) of two examples to the distances

d A (v1, v2) between two values for attribute A

 Popular choices
 Euclidean Distance:
 straight-line between two points

 Manhattan or City-block Distance:
 sum of axis-parallel line segments

d  x1, x2=∑ A
d Av1, A , v2, A

2

d  x1, x2=∑ A
d Av1, A , v2, A

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 16

Distance Functions for Numerical Attributes

 Numerical Attributes:
 distance between two attribute values

 Normalization:
 Different attributes are measured on different scales

→ values need to be normalized in [0,1]:

 Note:
 This normalization assumes a (roughly) uniform distribution of attribute

values
 For other distributions, other normalizations might be preferable
 e.g.: logarithmic for salaries?

vi=
vi−min v j

max v j−min v j

d Av1, v2=∣v1− v2∣

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 17

Distance Functions for Symbolic Attributes

 0/1 distance

 Value Difference Metric (VDM) (Stanfill & Waltz 1986)

 two values are similar if they have approximately the same distribution
over all classes (similar relative frequencies in all classes)

 sum over all classes the difference of the percentage of examples
with value v1 in this class and examples with value v2 in this class

 used in PEBLS with k = 1
(Parallel Exemplar-Based Learning System; Cost & Salzberg, 1993)

d Av1, v2={0 if v1=v2

1 if v1≠ v2

d Av1, v2=∑ c∣n1, c

n1

−
n2,c

n2
∣

k
k is a user-settable
parameter (e.g., k=2)

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 18

VDM Example

Distance between values:

d(Refund=Yes,Refund=No)

 = | 0/3 – 3/7 | + | 3/3 – 4/7 | = 6/7

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Class Refund

Yes No

Yes 0 3

No 3 4

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 19

VDM Example

Distance between values:

d(Single,Married)

 = | 2/4 – 0/4 | + | 2/4 – 4/4 | = 1

d(Single,Divorced)

 = | 2/4 – 1/2 | + | 2/4 – 1/2 | = 0

d(Married,Divorced)

 = | 0/4 – 1/2 | + | 4/4 – 1/2 | = 1

Class Marital Status

Single Married Divorced

Yes 2 0 1

No 2 4 1

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 20

Other Distance Functions

 Other distances are possible
 hierarchical attributes
 distance of the values in the hiearchy

 e.g., length of shortest path form v1 to v2

d (Canada , USA)=2 , d (Canada , Japan)=4

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 21

Other Distance Functions

 Other distances are possible
 hierarchical attributes
 distance of the values in the hiearchy

 e.g., length of shortest path form v1 to v2

 string values
 edit distance

d (Virginia , Vermont)=5

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 22

Other Distance Functions

 Other distances are possible
 hierarchical attributes
 distance of the values in the hiearchy

 e.g., length of shortest path form v1 to v2

 string values
 edit distance

 in general
 distances are domain-dependent
 can be chosen appropriately

Distances for Missing Values

 not all attribute values may be specified for an example
 Common policy:
 assume missing values to be maximally distant

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 23

Feature Weighting

 Not all dimensions are equally important
 comparisons on some dimensions might even be completely

irrelevant for the prediction task
 straight-forward distance functions give equal weight to all dimensions

 Idea:
 use a weight for each attribute to denote its importance
 e.g., Weighted Euclidean Distance:

 weights wA can be set by user or determined automatically

 Survey of feature weighting algorithms:
Dietrich Wettschereck, David W. Aha, Takao Mohri:
A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.
Artificial Intelligence Review 11(1-5): 273-314 (1997)

d (x1, x2)=√∑ A
wA⋅d A(v1, A , v2, A)

2

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.1003

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 24

Basic idea:
in a local neighborhood around an example x a good attribute A should
 allow to discriminate x from all examples of different classes

(the set of misses)
 therefore the probability that the attribute has a different value for x and a

miss m should be high

 have the same value for all examples of the same class as x
(the set of hits)

 therefore the probability that the attribute has a different value for x and a
hit h should be low

→ try to estimate and maximize

 where vx is the value of attribute A in example x

 this probability can be estimated via the average distance

RELIEF
(Kira & Rendell, ICML-92)

wA=Pr v x≠ vm− Pr v x≠ vh

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 25

RELIEF
(Kira & Rendell, ICML-92)

1.set all attribute weights wA = 0.0

2.for i = 1 to r (← user-settable parameter)
 select a random example x
 find

 h: nearest neighbor of same class (near hit)
 m: nearest neighbor of different class (near miss)

 for each attribute A

where dA(x,y) is the distance in attribute A between examples x and y
(normalized to [0,1]-range).

1.set all attribute weights wA = 0.0

2.for i = 1 to r (← user-settable parameter)
 select a random example x
 find

 h: nearest neighbor of same class (near hit)
 m: nearest neighbor of different class (near miss)

 for each attribute A

where dA(x,y) is the distance in attribute A between examples x and y
(normalized to [0,1]-range).

wA  wA
1
r
⋅d Am , x −d Ah , x

Note: when used for feature weighting, all wA < 0.0 are set to 0 in the end.

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 26

 Only those instances involved in a decision need to be stored
 Noisy instances should be filtered out

 Idea:
 only use prototypical examples

Learning Prototypes

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 27

Learning Prototypes: IB-algorithms

 Case Study for prototype selection
 Aha, Kibler and Albert: Instance-based learning. Machine Learning,1991.

 IB1: Store all examples
 high noise tolerance
 high memory demands

 IB2: Store new example only if misclassified by stored examples
 low noise tolerance
 low memory demands

 IB3: like IB2, but
 maintain a counter for the number of times the example participated

in correct and incorrect classifications
 use a significant test for filtering noisy examples
 improved noise tolerance
 low memory demands

V2.1 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 28

Instance Weighting

 Idea:
 we assign a weight to each instance
 instances with lower weights are always distant
 hence have a low impact on classification
 instance weight completely ignores this instance x

→ Selecting instances is a special case of instance weighting

 Similarity function used in PEBLS (Cost & Salzberg, 1993)

where

 if instance x predicts well
 if instance x does not predict well

d  x1, x2=
1

w x1
⋅w x2

⋅∑ A
d Av1, v2

k

w x=
Number of times x has correctly predicted the class
Number of times x has been used for prediction

w x≈ 1

w x1

w x=0

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 29

Efficiency of NN algorithms

 very efficient in training
 only store the training data

 not so efficient in testing
 computation of distance measure to every training example
 much more expensive than, e.g., rule learning

 Note that kNN and 1NN are equal in terms of efficiency
 retrieving the k nearest neighbors is (almost) no more expensive than

retrieving a single nearest neighbor
 k nearest neighbors can be maintained in a queue

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 30

Finding nearest neighbors efficiently

 Simplest way of finding nearest neighbour:
 linear scan of the data
 classification takes time proportional to the product of the number of

instances in training and test sets

 Nearest-neighbor search can be done more efficiently using
appropriate data structures
 kD-trees
 ball trees

V2.1 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 31

kD-Trees

 common setting (others possible)
 each level corresponds to one of the attributes
 order of attributes can be arbitrary, fixed, and cyclic

 each level splits according to its attribute
 ideally use the median value (results in balanced trees)
 often simply use the value of the next example

at
tr

ib
ut

es

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 32

Building kD-trees incrementally

 Big advantage of instance-based learning: classifier can be
updated incrementally
 Just add new training instance after it arrives!

 Can we do the same with kD-trees?

 Heuristic strategy:
 Find leaf node containing new instance
 If leaf is empty
 place instance into leaf

 Else
 split leaf according to the next dimension
 Alternatively: split according to the longest dimension
 idea: preserve squareness

 Tree should be re-built occasionally
 e.g., if depth grows to twice the optimum depth

V2.1 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 33

Using kD-trees: example

 The effect of a kD-tree is to partition the (multi-dimensional)
sample space according to the underlying data distribution
 finer partitioning in regions with high density
 coarser partitioning in regions with low density

 For a given query point
 descending the tree to find the

data points lying in the cell that
contains the query point

 examine surrounding cells if they overlap
the ball centered at the query point and
the closest data point so far
 recursively back up one level and

check distance to the split point
 if overlap also search other branch

→ only a few cells have to be searched

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 34

Using kD-trees: example

 Assume we have example [1,5]
 Unweighted Euclidian distance

 sort the example down the tree:

 ends in the left successor of [4,7]

 compute distance to example in the leaf

 now we have to look into rectangles
that may contain a nearer example

 remember the difference to the
closest example

.

17

54d e1, e2=∑ A
d Ae1, e2

2

d  [1,5] , [4,7]=1− 425−72=13

d min=13

d min

14

V2.1 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 35

Using kD-trees: example

 go up one level (to example [4,7])
 compute distance to the closest point

on this split (difference only on X)

 If the difference is smaller than
the current best difference

 then we could have a closer
example in the right subtree of [4,7]
 which in our case does not contain

any example → done

.

17

d ([1,5] , [4,*])=√(4−1)2+02=3

d mind ([1,5] , [4,*])=3<√13=d min

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 36

Using kD-trees: example

 go up one level (to example [5,4])
 compute distance to the closest point

on this split (difference only on Y)

 if the difference is smaller than
the current best difference

 then we could have a closer
example in area Y < 4.
 go down the other branch
 and repeat recursively

.

17

d  [1,5] , [*,4]=025−42=1

d min
d ([1,5] , [*,4])=1<√13=d min

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 37

Using kD-trees: example

 go down to leaf [2,3]

 compute distance to example in
this leaf

 if the difference is smaller than
the current best difference

 then the example in the leaf is
the new nearest neighbor and

 this is recursively repeated until
we have processed the root node
 no more distances have to be computed

.

17

d ([1,5] , [2,3])=√(1−2)2+(5−3)2=√5

d min

d ([1,5] , [2,3])=√5<√13=d min

d min

d min=513

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 38

Ball trees

 Problem in kD-trees: corners
 Observation:

 There is no need to make sure
that regions don't overlap

→ We can use balls
(hyperspheres) instead of
hyperrectangles

 A ball tree organizes the data
into a tree of k-dimensional
hyperspheres

 Normally allows for a better fit
to the data and thus more
efficient search

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 39

non-overlapping rectangles nested rectangles

Nearest Hyper-Rectangle

 Nearest-Neighbor approaches can be extended to compute the
distance to the nearest hyper-rectangle
 a hyper-rectangle corresponds to a rule

 conditions are intervals along each dimension

 To do so, we need to adapt the distance measure
 distance of a point to a rectangle instead of point-to-point distance

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 40

Rectangle-to-Point Distance

d x , R=0

A

B

d x , R=d A  x , R

d x , R=d B x , R
d  x , R =

d A  x , R d B  x , R

d A x , R 

d A x , R 

d B x , R

d B x , R

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 41

Rectangle-to-Point Attribute Distance

 numeric Attributes
 distance of the point to the closest edge of the rectangle along this

attribute (i.e., distance to the upper/lower bound of the interval)

if rule R uses as condition for attribute A

 symbolic attributes
 0/1 distance

if rule R uses as condition for attribute A

d Av , R={ 0 if vmin , AR
≤ v≤ vmax , AR

v− vmax , AR
if vvmax , AR

vmin , AR
− v if vvmin , AR

vmin , AR
≤ A≤ vmax , AR

d Av , R={0 if v=v AR

1 if v≠ v AR

A=v AR

One can also adapt
other distances.

RISE uses a version
of the VDM.

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 42

NEAR (Salzberg, 1991)

1. randomly choose r seed examples
 convert them into rules

2. for each example x
 choose rule

 if x is classified correctly by Rmin

 enlarge the condition of Rmin so that x is covered

 for each numeric attribute enlarge the interval if necessary
 for each symbolic attribute delete the condition if necessary

 else if x is classified incorrectly by Rmin

 add example x as a new rule

1. randomly choose r seed examples
 convert them into rules

2. for each example x
 choose rule

 if x is classified correctly by Rmin

 enlarge the condition of Rmin so that x is covered

 for each numeric attribute enlarge the interval if necessary
 for each symbolic attribute delete the condition if necessary

 else if x is classified incorrectly by Rmin

 add example x as a new rule

Rmin=arg min R d x , R

NEAR uses both instance and feature weighting

d (x , R)=w x√∑ A
w A

2 d A(x , R)
2

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 43

Instance and Feature Weighting in NEAR

Instance Weighting as in PEBLS

Feature Weights are computed incrementally
 if an example is incorrectly classified

 the weights of all matching attributes are increased by a fixed
percentage (20%)
 this has the effect of moving the example farther away along these

dimensions

 the weights of all attributes that do not match are decreased by a
fixed percentage (20%)

 if an example is correctly classified
 do the opposite (decrease matching and increase non-matching

weights analogously)

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 44

Second Chance Heuristic

An improved version used a Second Chance Heuristic

 if the nearest rule did not classify correctly, try the second one

 if this one matches → expand it to cover the example
 if not → add the example as a new rule

 this can lead to the generation of nested rules
 i.e., rectangles inside of other rectangles
 at classification time, use the smallest matching rectangle
 but this did not work well (overfitting?)

 such nested rules may be interpreted as rules with exceptions

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 45

RISE (Domingos, 1996)

1. turn each example into a rule resulting in a theory T

2. repeat
 for each rule R in T

i. choose uncovered example
ii. R' = minimalGeneralisation(R,xmin)

iii. replace R with R' if this does not decrease the accuracy of T

iv. delete R' if it is already part of T (duplicate rule)

3. until no further increase in accuracy

1. turn each example into a rule resulting in a theory T

2. repeat
 for each rule R in T

i. choose uncovered example
ii. R' = minimalGeneralisation(R,xmin)

iii. replace R with R' if this does not decrease the accuracy of T

iv. delete R' if it is already part of T (duplicate rule)

3. until no further increase in accuracy

xmin=arg min x d (x , R)

● RISE uses the simple distance function

d  x , R=∑ A
d Ax , R

k

(Rule Induction from a Set of Exemplars)

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 46

RISE (Domingos, 1996)

 Classification of an example:
 use the rule that is closest to the example
 if multiple rules have the same distance, use the one with the highest

Laplace-corrected precision

 Leave-one-out estimation of accuracy of a theory:
 For classifying an example, the rule that encodes it is ignored
 but only if it has not been generalized yet

 can be computed efficiently if each examples remembers the distance
to the rule by which it is classified
 if a rule is changed, go once through all examples and see if the new rule

classifies any examples that were classified by some other rule before
 count the improvements (+1) or mistakes (-1) only for those examples, and

see whether their sum is > 0 or < 0.

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 47

Differences NEAR and RISE

 NEAR
 focuses on examples
 incremental training
 instance weighted and

feature-weighted Euclidean
distance

 tie breaking using the
smallest rule

 RISE
 focuses on rules
 batch training
 straight-forward Manhattan

distance

 tie breaking with Laplace
heuristic

V2.0 | J. Fürnkranz Data Mining and Machine Learning | Instance-Based Learning 48

Discussion

 Nearest Neighbor methods are often very accurate
 Assumes all attributes are equally important
 Remedy: attribute selection or weights

 Possible remedies against noisy instances
 Take a majority vote over the k nearest neighbors
 Removing noisy instances from dataset (difficult!)

 Statisticians have used k-NN since early 1950s
 If n   and k/n  0, error approaches minimum
 can model arbitrary decision boundaries

 ...but somewhat inefficient (at classification time)
 straight-forward application maybe too slow
 kD-trees become inefficient when number of attributes is too large

(approximately > 10)
 Ball trees work well in higher-dimensional spaces

 several similarities with rule learning

	Folie 1
	Instance Based Classifiers
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Definition of Nearest Neighbor
	Nearest Neighbor Classification
	Folie 9
	Nearest-Neighbor Classifiers
	1 nearest-neighbor
	Folie 12
	Folie 13
	Nearest Neighbor Classification…
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Learning prototypes
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Discussion of 1-NN

