Machine Learning: Symbolische Ansätze

Introduction

- Decision Trees
- TDIDT: Top-Down Induction of Decision Trees

ID3

- Attribute selection
- Entropy, Information, Information Gain
- Gain Ratio

C4.5

- Numeric Values
- Missing Values
- Pruning
- Regression and Model Trees

Acknowledgements:

Many slides based on Frank & Witten, a few on Kan, Steinbach & Kumar

Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

Decision Trees

a decision tree consists of

Nodes:

- test for the value of a certain attribute
- Edges:
 - correspond to the outcome of a test
 - connect to the next node or leaf
- Leaves:
 - terminal nodes that predict the outcome

to classifiy an example:

- 1.start at the root
- 2.perform the test
- 3.follow the edge corresponding to outcome
- 4.goto 2. unless leaf

5.predict that outcome associated with the leaf

Decision Tree Learning

In **Decision Tree** The training examples *Learning*, a new example are used for choosing is classified by submitting appropriate tests in the it to a series of tests that decision tree. Typically, a determine the class label tree is built from top to bottom, where tests that of the example. These tests Training are organized in a maximize the information gain hierarchical structure about the classification are selected first. called a *decision tree*. ? New Example Classification

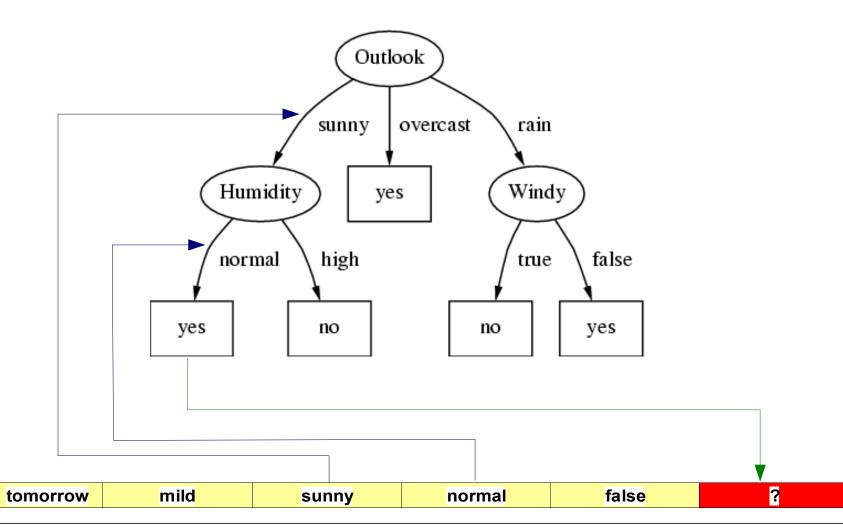
A Sample Task

Day	Temperature	Outlook	Humidity	Windy	Play Golf?			
07-05	hot	sunny	high	false	no			
07-06	hot	sunny	high	true	no			
07-07	hot	overcast	high	false	yes			
07-09	cool	rain	normal	false	yes			
07-10	cool	overcast	normal	true	yes			
07-12	mild	sunny	high	false	no			
<mark>07-14</mark>	cool	sunny	normal	false	yes			
07-15	mild	rain	normal	false	yes			
07-20	mild	sunny	normal	true	yes			
07-21	mild	overcast	high	true	yes			
07-22	hot	overcast	normal	false	yes			
07-23	mild	rain	high	true	no			
07-26	cool	rain	normal	true	no			
07-30	mild	rain	high	false	yes			

today	cool	sunny	normal	false	?
tomorrow	mild	sunny	normal	false	?

 \Rightarrow

Decision Tree Learning



Divide-And-Conquer Algorithms

- Family of decision tree learning algorithms
 - TDIDT: Top-Down Induction of Decision Trees
- Learn trees in a Top-Down fashion:
 - divide the problem in subproblems
 - solve each problem

Basic Divide-And-Conquer Algorithm:

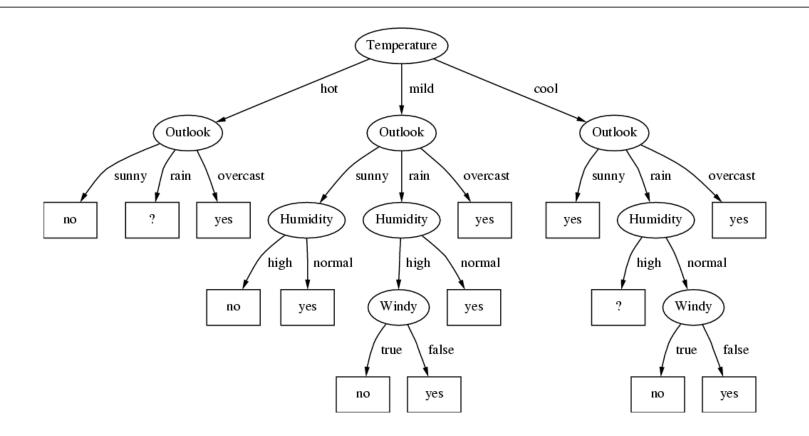
- select a test for root node
 Create branch for each possible outcome of the test
- split instances into subsets
 One for each branch extending from the node
- 3. repeat recursively for each branch, using only instances that reach the branch
- 4. stop recursion for a branch if all its instances have the same class

ID3 Algorithm

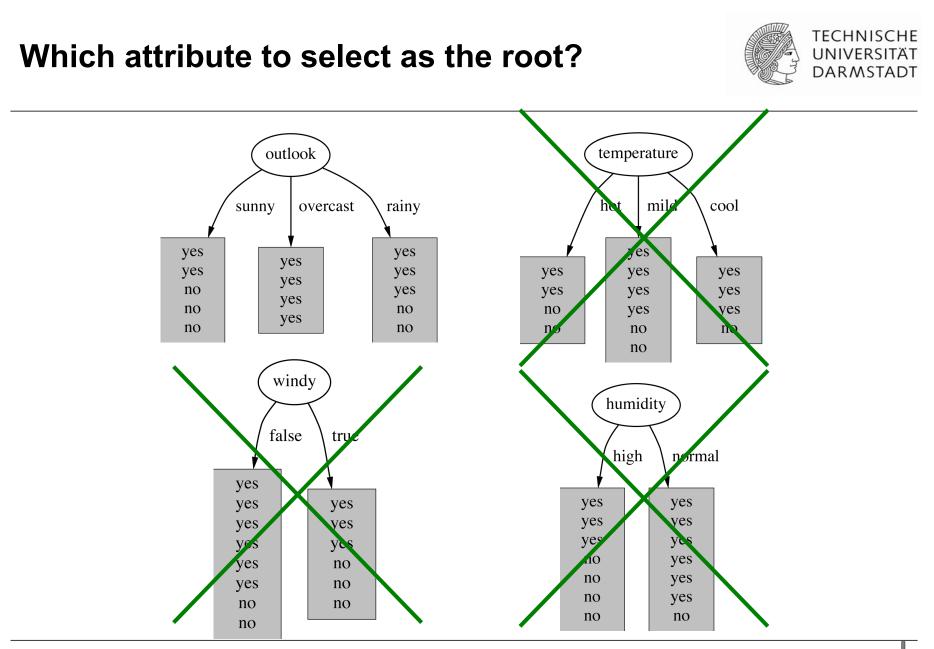
Function ID3

- Input: Example set S
- **Output:** Decision Tree *DT*
- If all examples in *S* belong to the same class *c*
 - return a new leaf and label it with c
- Else
 - i. Select an attribute A according to some heuristic function
 - ii. Generate a new node *DT* with *A* as test
 - iii. For each Value v_i of A
 - (a) Let S_i = all examples in S with $A = v_i$
 - (b) Use ID3 to construct a decision tree DT_i for example set S_i
 - (c) Generate an edge that connects DT and DT_i

A Different Decision Tree



- also explains all of the training data
- will it generalize well to new data?



Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

V2.0 | J. Fürnkranz

What is a good Attribute?

- We want to grow a simple tree
 - \rightarrow a good heuristic prefers attributes that split the data so that each successor node is as *pure* as possible
 - i.e., the distribution of examples in each node is so that it mostly contains examples of a single class
- In other words:
 - We want a measure that prefers attributes that have a high degree of "order":
 - Maximum order: All examples are of the same class
 - Minimum order: All classes are equally likely
 - \rightarrow Entropy is a measure for (un-)orderedness
 - Another interpretation:
 - Entropy is the amount of information that is contained in the node
 - all examples of the same class \rightarrow no information

Entropy (for two classes)

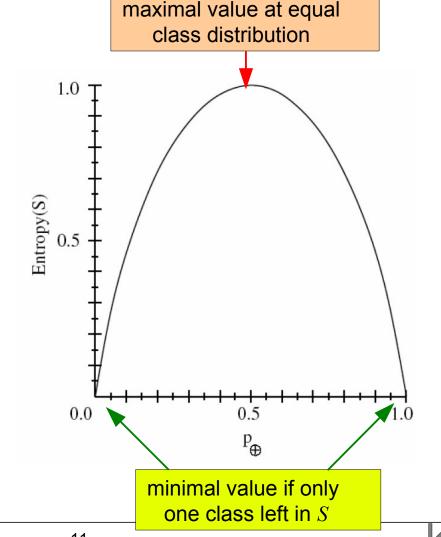
- S is a set of examples
- *p*⊕ is the proportion of examples in class ⊕
- $p_{\ominus} = 1 p_{\oplus}$ is the proportion of examples in class \ominus

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\Theta} \cdot \log_2 p_{\Theta}$$

Interpretation:

 amount of unorderedness in the class distribution of S



Example: Attribute Outlook

Outlook = sunny:

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = 0.971$$

• Outlook = overcast: 4 examples yes, 0 examples no $E(Outlook = overcast) = -1 \cdot \log_2(1) - 0 \cdot \log_2(0) = 0$ • Note: this is normally undefined. Here: = 0

• Outlook = rainy : 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) = 0.971$$

Entropy (for more classes)

Entropy can be easily generalized for n > 2 classes

- p_i is the proportion of examples in *S* that belong to the *i*-th class $E(S) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 \dots - p_n \log_2 p_n = -\sum_{i=1}^n p_i \log_2 p_i$
- Calculation can be simplified using absolute counts c_i of examples in class i instead of fractions
 - If $p_i = \frac{c_i}{|S|}$: $E(S) = -\sum_{i=1}^n p_i \log_2 p_i = -\frac{1}{|S|} \cdot \left(\sum_{i=1}^n c_i \log_2 c_i - |S| \cdot \log_2 |S| \right)$
 - Example: $E([2,3,4]) = -\frac{2}{9} \cdot \log_2(\frac{2}{9}) - \frac{3}{9} \cdot \log_2(\frac{3}{9}) - \frac{4}{9} \cdot \log_2(\frac{4}{9})$ $= -\frac{1}{9} \left(2 \cdot \log_2(2) + 3 \cdot \log_2(3) + 4 \cdot \log_2(4) - 9 \cdot \log_2(9) \right)$

Average Entropy / Information

Problem:

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - corresponds to an entire attribute

Solution:

Compute the weighted average over all sets resulting from the split

weighted by their size

$$I(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot E(S_i)$$

Example:

• Average entropy for attribute *Outlook*:

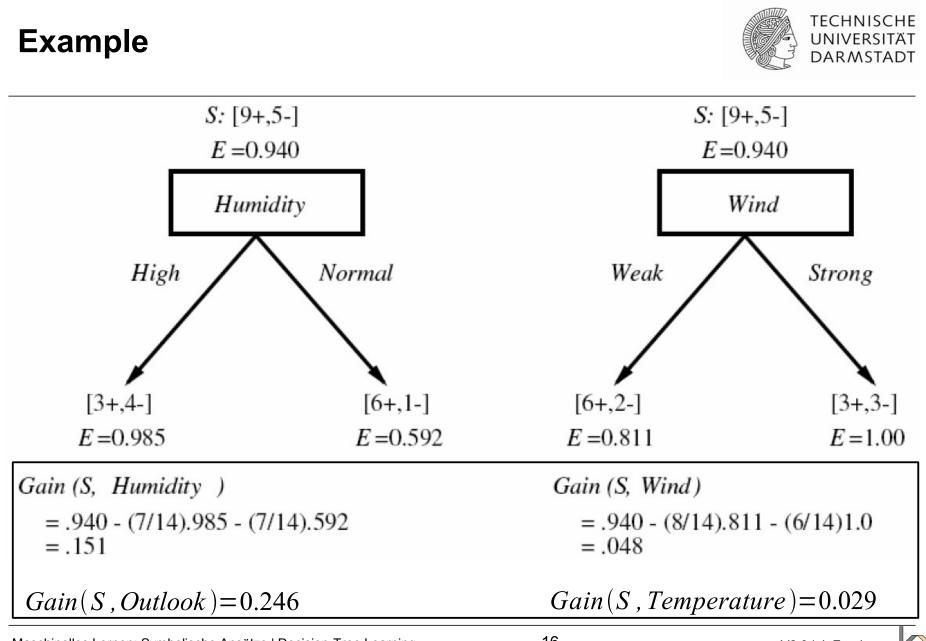
$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

Information Gain

- When an attribute A splits the set S into subsets S_i
 - we compute the average entropy
 - and compare the sum to the entropy of the original set S

Information Gain for Attribute A $Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_i|}{|S|} \cdot E(S_i)$

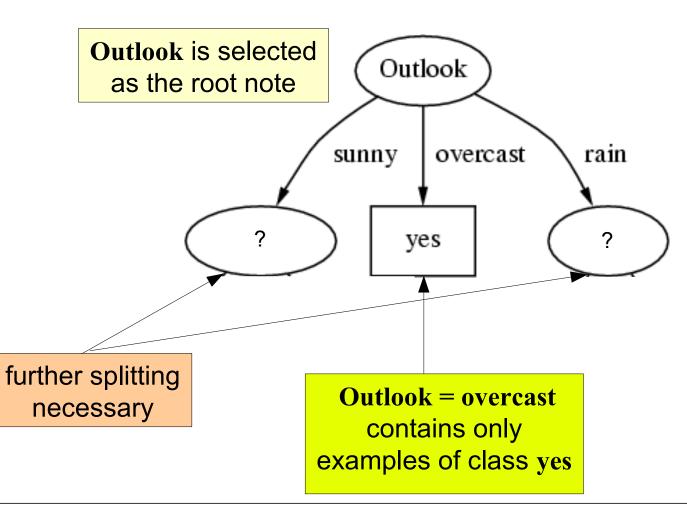
- The attribute that maximizes the difference is selected
 i.e., the attribute that reduces the unorderedness most!
- Note:
 - maximizing information gain is equivalent to minimizing average entropy, because E(S) is constant for all attributes A



Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

V2.0 | J. Fürnkranz

Example (Ctd.)

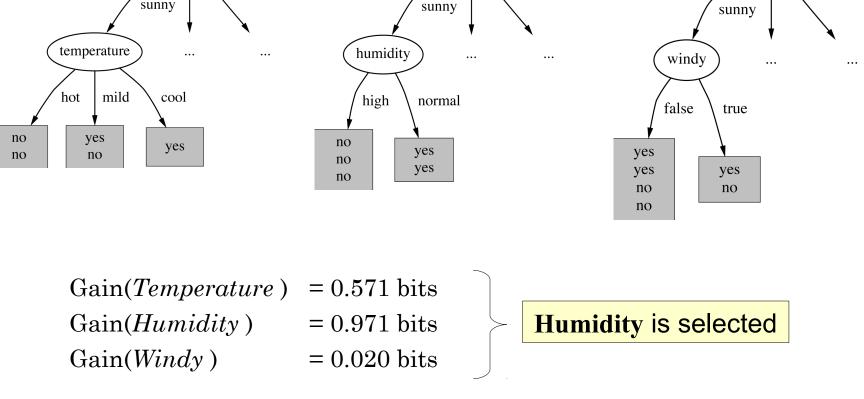


Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

V2.0 | J. Fürnkranz

sunny

outlook



outlook

Example (Ctd.)

TECHNISCHE UNIVERSITÄT DARMSTADT

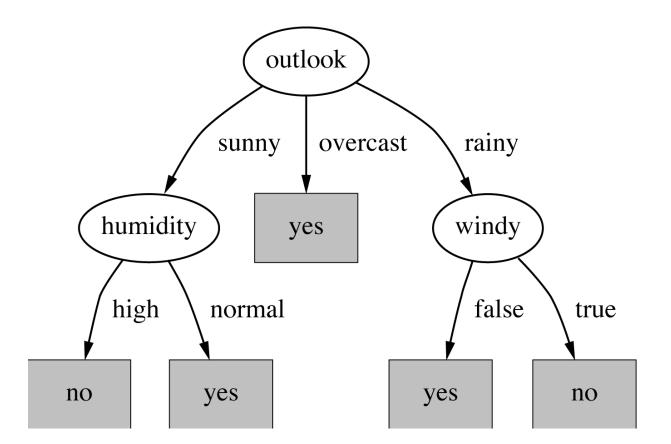
outlook

TECHNISCHE Example (Ctd.) UNIVERSITÄT DARMSTADT Outlook sunny rain overcast Humidity is selected Humidity yes ? high normal further splitting yes no necessary **Pure leaves** \rightarrow No further expansion necessary

Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

V2.0 | J. Fürnkranz

Final decision tree



Properties of Entropy

Entropy is the only function that satisfies all of the following three properties

- 1. When node is pure, measure should be zero
- 2. When impurity is maximal (i.e. all classes equally likely), measure should be maximal
- 3. Measure should obey multistage property:
 - *p*, *q*, *r* are classes in set *S*, and *T* are examples of class $t = q \lor r$

$$E_{p,q,r}(S) = E_{p,t}(S) + \frac{|I|}{|S|} \cdot E_{q,r}(T)$$

 \rightarrow decisions can be made in several stages

• For example:

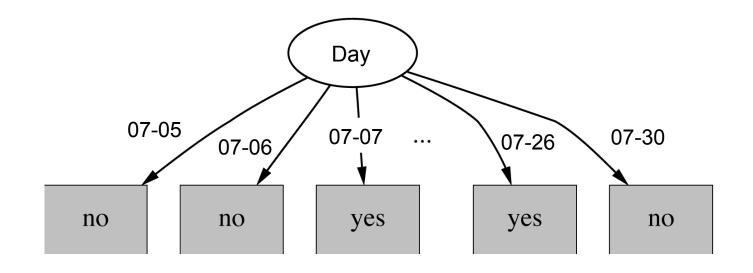
$$E([2,3,4]) = E([2,7]) + \frac{7}{9} \cdot E([3,4])$$

Highly-branching attributes

Problematic: attributes with a large number of values

- extreme case: each example has its own value
 - e.g. example ID; Day attribute in weather data
- Subsets are more likely to be pure if there is a large number of different attribute values
 - Information gain is biased towards choosing attributes with a large number of values
- This may cause several problems:
 - Overfitting
 - selection of an attribute that is non-optimal for prediction
 - Fragmentation
 - data are fragmented into (too) many small sets

Decision Tree for Day attribute



Entropy of split:

 $I(\text{Day}) = \frac{1}{14} (E([0,1]) + E([0,1]) + ... + E([0,1])) = 0$

Information gain is maximal for Day (0.940 bits)

Intrinsic Information of an Attribute

- Intrinsic information of a split
 - entropy of distribution of instances into branches
 - i.e. how much information do we need to tell which branch an instance belongs to

$$IntI(S, A) = -\sum_{i} \frac{|S_i|}{|S|} \log_2\left(\frac{|S_i|}{|S|}\right)$$

Example:

Intrinsic information of Day attribute:

$$IntI(Day) = 14 \times \left(-\frac{1}{14} \cdot \log_2(\frac{1}{14})\right) = 3.807$$

- Observation:
 - Attributes with higher intrinsic information are less useful

Gain Ratio

- modification of the information gain that reduces its bias towards multi-valued attributes
- takes number and size of branches into account when choosing an attribute
 - corrects the information gain by taking the *intrinsic information* of a split into account
- Definition of Gain Ratio:

$$GR(S, A) = \frac{Gain(S, A)}{IntI(S, A)}$$

- Example:
 - Gain Ratio of Day attribute

$$GR(\text{Day}) = \frac{0.940}{3,807} = 0.246$$

Gain ratios for weather data

Outlook		Temperature						
Info:	0.693	Info:	0.911					
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029					
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.557					
Gain ratio: 0.247/1.577	0.157	Gain ratio: 0.029/1.557	0.019					
Humidity		Windy						
Info:	0.788	Info:	0.892					
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048					
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985					
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049					

- Day attribute would still win...
 - one has to be careful which attributes to add...
- Nevertheless: Gain ratio is more reliable than Information Gain

Gini Index

- Many alternative measures to Information Gain
- Most popular altermative: Gini index
 - used in e.g., in CART (Classification And Regression Trees)
 - impurity measure (instead of entropy)

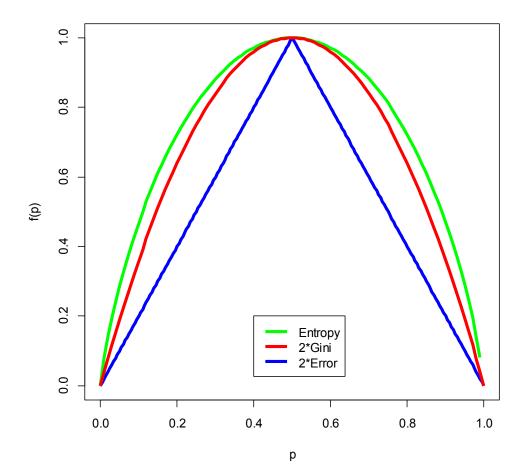
$$Gini(S) = \sum_{i} p_{i} \cdot (1 - p_{i}) = 1 - \sum_{i} p_{i}^{2}$$

average Gini index (instead of average entropy / information)

$$Gini(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot Gini(S_i)$$

- Gini Gain
 - could be defined analogously to information gain
 - but typically averageGini index is minimized instead of maximizing Gini gain

For a 2-class problem:

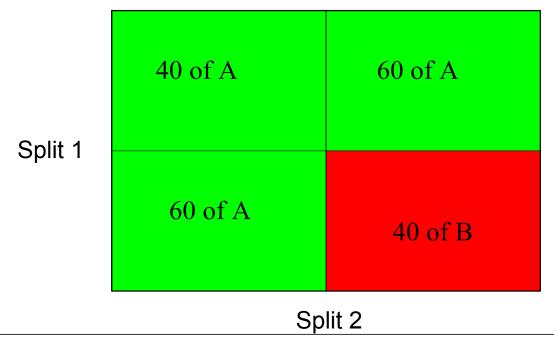


Why not use Error as a Splitting Criterion?

TECHNISCHE UNIVERSITÄT DARMSTADT

Reason:

- The bias towards pure leaves is not strong enough
- Example 1: Data set with 160 Examples A, 40 Examples B
 - \rightarrow Error rate without splitting is 20%



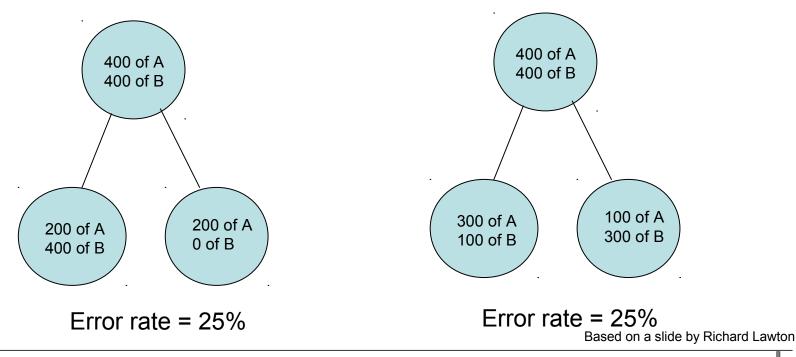
For each of the two splits, the total error after splitting is also (0% + 40%)/2 = 20% \rightarrow no improvement

However, together both splits would give a perfect classfier.

Based on a slide by Richard Lawton

Why not use Error as a Splitting Criterion?

- Reason:
 - The bias towards pure leaves is not strong enough
- Example 2:
 - Dataset with 400 examples of class A and 400 examples of class B



Industrial-strength algorithms

- For an algorithm to be useful in a wide range of real-world applications it must:
 - Permit numeric attributes
 - Allow missing values
 - Be robust in the presence of noise
 - Be able to approximate arbitrary concept descriptions (at least in principle)
- \rightarrow ID3 needs to be extended to be able to deal with real-world data

Result: C4.5

- Best-known and (probably) most widely-used learning algorithm
 - original C-implementation at http://www.rulequest.com/Personal/
- Re-implementation of C4.5 Release 8 in Weka: J4.8
- Commercial successor: C5.0

Missing values

Examples are classified as usual

- if we are lucky, attributes with missing values are not tested by the tree
- If an attribute with a missing value needs to be tested:
 - split the instance into fractional instances (pieces)
 - one piece for each outgoing branch of the node
 - a piece going down a branch receives a weight proportional to the popularity of the branch
 - weights sum to 1
- Info gain or gain ratio work with fractional instances
 - use sums of weights instead of counts
- during classification, split the instance in the same way
 - Merge probability distribution using weights of fractional instances

Numeric attributes

- Standard method: binary splits
 - E.g. temp < 45
- Unlike nominal attributes, every attribute has many possible split points
- Solution is straightforward extension:
 - Evaluate info gain (or other measure) for every possible split point of attribute
 - Choose "best" split point
 - Info gain for best split point is info gain for attribute
- → Computationally more demanding than splits on discrete attributes

Example

- Assume a numerical attribute for Temperature
- First step:
 - Sort all examples according to the value of this attribute
 - Could look like this:

6465686970717272757580818385YesNoYesYesNoYesYesYesYesNoYesYesNoTemperature < 71.5: yes/4, no/2</td>Temperature \geq 71.5: yes/5, no/3

 $I(\text{Temperature} @ 71.5) = \frac{6}{14} \cdot E(\text{Temperature} < 71.5) + \frac{8}{14} E(\text{Temperature} \ge 71.5) = 0.939$

Split points can be placed between values or directly at values
Has to be computed for all pairs of neighboring values

Efficient Computation

- Efficient computation needs only one scan through the values!
 - Linearly scan the sorted values, each time updating the count matrix and computing the evaluation measure
 - Choose the split position that has the best value

Cheat			No		No		N	No		S	s Yes		Ye	es N		o N		lo N		lo		No	
		Taxable Income																					
Sorted Values Split Positions		60 70			70) 75		5 85		5 90		0 94		5 10		00 1:		20 1:		25		220	
		5	5	65		7	72 8		0	87		92		97		110		122		172		230	
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.420		0.4	0.400 0.375		575	0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420	

Binary vs. Multiway Splits

- Splitting (multi-way) on a nominal attribute exhausts all information in that attribute
 - Nominal attribute is tested (at most) once on any path in the tree
- Not so for binary splits on numeric attributes!
 - Numeric attribute may be tested several times along a path in the tree
- Disadvantage: tree is hard to read
- Remedy:
 - pre-discretize numeric attributes (\rightarrow discretization), or
 - use multi-way splits instead of binary ones
 - can, e.g., be computed by building a subtree using a single numerical attribute.
 - subtree can be flattened into a multiway split
 - other methods possible (dynamic programming, greedy...)

Overfitting and Pruning

- The smaller the complexity of a concept, the less danger that it overfits the data
 - A polynomial of degree n can always fit n+1 points
- Thus, learning algorithms try to keep the learned concepts simple
 - Note a "perfect" fit on the training data can always be found for a decision tree! (except when data are contradictory)

Pre-Pruning:

stop growing a branch when information becomes unreliable

Post-Pruning:

- grow a decision tree that correctly classifies all training data
- simplify it later by replacing some nodes with leafs

Postpruning preferred in practice—prepruning can "stop early"

Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

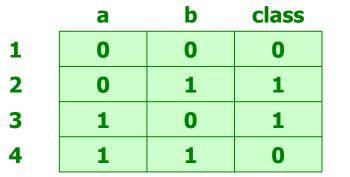
Prepruning

- Based on statistical significance test
 - Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- Most popular test: chi-squared test
- ID3 used chi-squared test in addition to information gain
 - Only statistically significant attributes were allowed to be selected by information gain procedure
- C4.5 uses a simpler strategy
 - but combines it with \rightarrow post-pruning
 - parameter -m: (default value m=2) each node above a leave must have
 - at least two successors
 - that contain at least m examples

Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

Early Stopping

- Pre-pruning may stop the growth process prematurely: early stopping
- Classic example: XOR/Parity-problem
 - No individual attribute exhibits any significant association to the class
 - \rightarrow In a dataset that contains XOR attributes a and b, and several irrelevant (e.g., random) attributes, ID3 can not distinguish between relevant and irrelevant attributes
 - \rightarrow Prepruning won't expand the root node
 - Structure is only visible in fully expanded tree
- But:
 - XOR-type problems rare in practice
 - prepruning is faster than postpruning



Post-Pruning

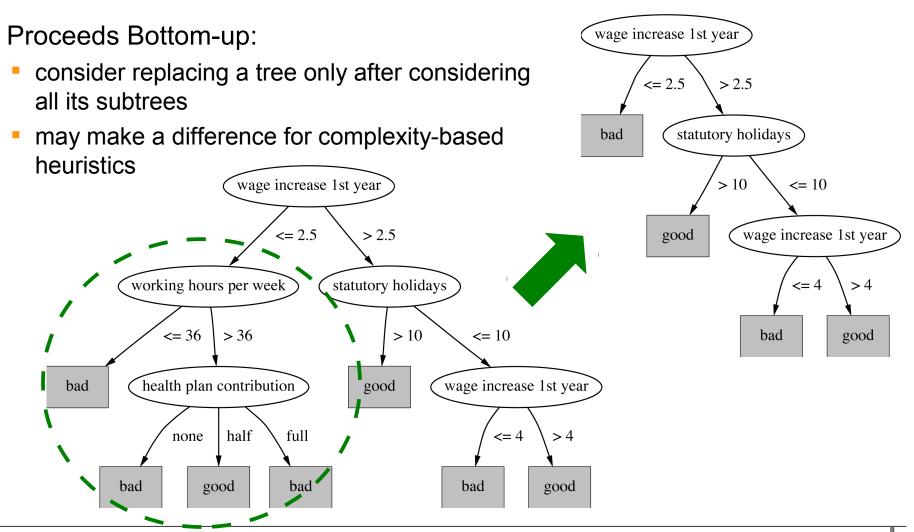
basic idea

- first grow a full tree to capture all possible attribute interactions
- Iater remove those that are due to chance
- 1.learn a complete and consistent decision tree that classifies all examples in the training set correctly
- 2.as long as the performance increases
 - try simplification operators on the tree
 - evaluate the resulting trees
 - make the replacement that results in the best estimated performance
- 3. return the resulting decision tree

Postpruning

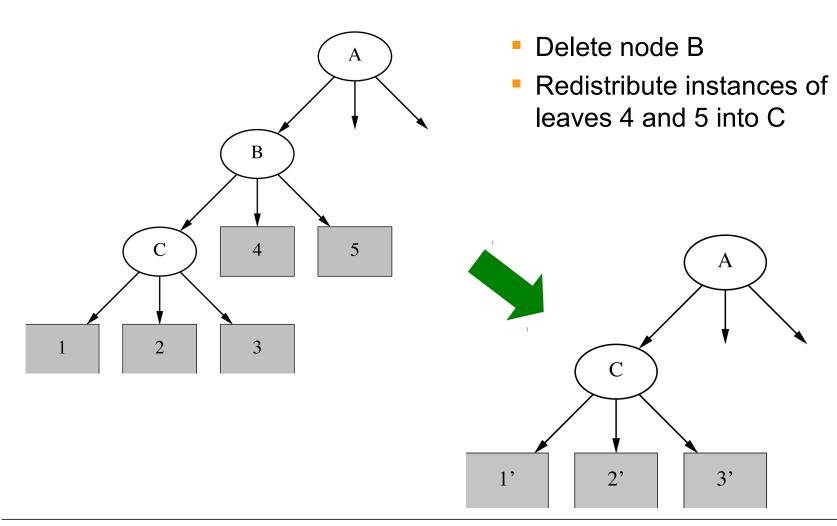
- Two subtree simplification operators
 - Subtree replacement
 - Subtree raising
- Possible performance evaluation strategies
 - error estimation
 - on separate pruning set ("reduced error pruning")
 - with confidence intervals (C4.5's method)
 - significance testing
 - MDL principle

Subtree Replacement



Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

Subtree Raising



Estimating Error Rates

- Prune only if it does not increase the estimated error
 - Error on the training data is NOT a useful estimator (would result in almost no pruning)

Reduced Error Pruning

- Use hold-out set for pruning
- Essentially the same as in rule learning
 - only pruning operators differ (subtree replacement)

C4.5's method

- Derive confidence interval from training data
 - with a user-provided confidence level
- Assume that the true error is on the upper bound of this confidence interval (pessimistic error estimate)

Reduced Error Pruning

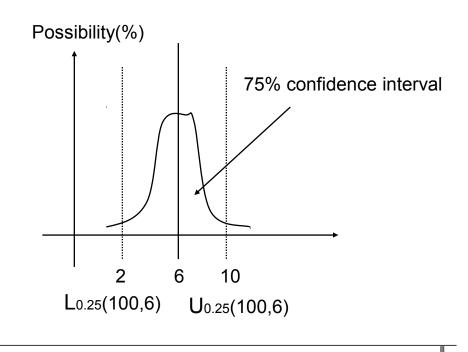
Basic Idea

- optimize the accuracy of a decision tree on a separate pruning set
- 1.split training data into a growing and a pruning set
- 2.learn a complete and consistent decision tree that classifies all examples in the growing set correctly
- 3.as long as the error on the pruning set does not increase
 - try to replace each node by a leaf (predicting the majority class)
 - evaluate the resulting (sub-)tree on the pruning set
 - make the replacement that results in the maximum error reduction

4. return the resulting decision tree

Pessimistic Error Rates

- Consider classifying *E* examples incorrectly out of *N* examples as observing *E* events in *N* trials in the binomial distribution.
- For a given confidence level CF, the upper limit on the error rate over the whole population is $U_{CF}(E,N)$ with CF% confidence.
- Example:
 - 100 examples in a leaf
 - 6 examples misclassified
 - How large is the true error assuming a pessimistic estimate with a confidence of 25%?
- Note:
 - this is only a heuristic!
 - but one that works well

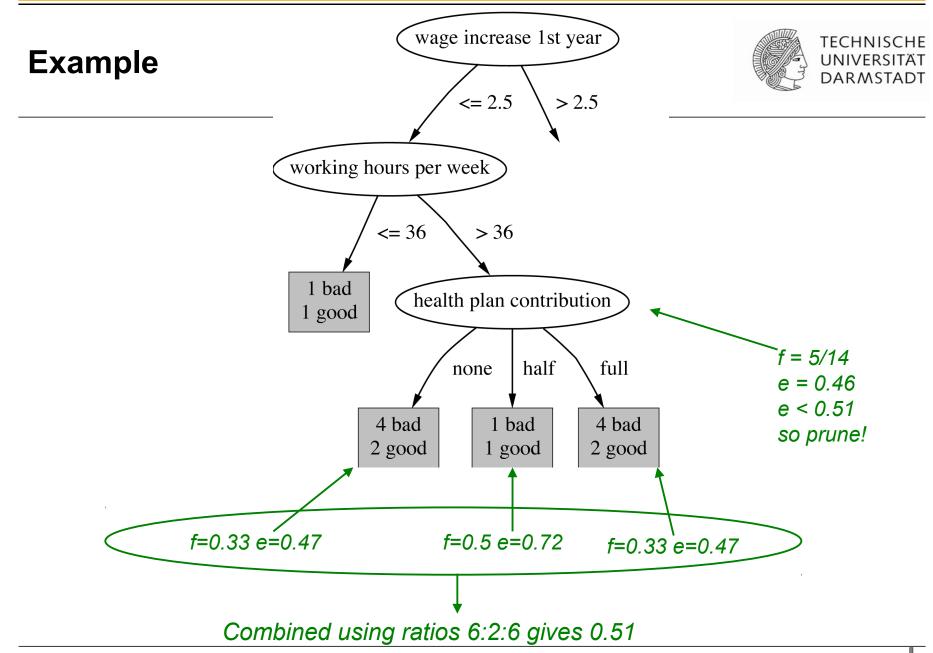


C4.5's method

Pessimistic error estimate for a node

$$e = \frac{f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}}{1 + \frac{z^2}{N}}$$

- z is derived from the desired confidence value
 - If c = 25% then z = 0.69 (from normal distribution)
- f is the error on the training data
- *N* is the number of instances covered by the leaf
- Error estimate for subtree is weighted sum of error estimates for all its leaves
- → A node is pruned if error estimate of subtree is lower than error estimate of the node



C4.5: choices and options

- C4.5 has several parameters
 - -c Confidence value (default 25%): lower values incur heavier pruning
 - -m Minimum number of instances in the two most popular branches (default 2)
 - Others for, e.g., having only two-way splits (also on symbolic attributes), etc.

Sample Experimental Evaluation

Parameters	Tree Size	Purity	Predictive Accuracy
No Pruning (C4.5 -m1)	547	99.7%	$60.3\% (\pm 4.8)$
C4.5 -m2	314	91.8%	$60.1\%~(\pm~3.3)$
C4.5 -m5	170	82.3%	$60.4\%~(\pm~5.7)$
C4.5 -m10	90	76.6%	$60.0\%~(\pm~5.2)$
C4.5 -m15	62	74.1%	$61.6\%~(\pm~4.7)$
C4.5 -m20	47	71.9%	$62.7\%~(\pm~2.0)$
C4.5 -m25	37	71.3%	$63.0\%~(\pm~2.2)$
C4.5 -m30	26	70.1%	$65.1\%~(\pm~2.5)$
C4.5 -m35	22	69.9%	$65.0\%~(\pm~4.2)$
C4.5 -m40	20	69.2%	$64.8\%~(\pm~2.6)$
C4.5 -m50	24	69.1%	$64.5\%~(\pm~3.5)$
C4.5 -c75	524	99.7%	$61.0\%~(\pm~4.5)$
C4.5 -c50	357	95.3%	$60.2\%~(\pm~3.6)$
C4.5 -c25	257	91.2%	$62.3\%~(\pm~4.4)$
C4.5 -c15	137	81.8%	$64.8\%~(\pm~4.6)$
C4.5 -c10	75	76.9%	$65.9\%~(\pm~4.9)$
C4.5 -c5	53	74.7%	$63.8\%~(\pm~6.0)$
C4.5 -c1	27	70.2%	$63.4\%~(\pm~5.8)$
C4.5 Default	173	86.2%	$62.5\%~(\pm~5.2)$
C4.5 -m30 -c10	20	69.6%	$66.7\%~(\pm~3.7)$
Mode Prediction	1	56.8%	56.8%

Typical behavior with growing m and decreasing c

 tree size and training accuracy (= purity)

always decrease

- predictive accuracy
 - first increases (overfitting avoidance)
 - then decreases (over-generalization)
- ideal value on this data set near

$$c = 10$$

Maschinelles Lernen: Symbolische Ansätze | Decision-Tree Learning

Complexity of tree induction

Assume

- m attributes, n training instances
- tree depth O(log n)
- tree has O(n) nodes (≤ one leaf per example)
- Costs for
- Building a tree $O(m n \log n)$
- Subtree replacement O(n)
 - counts of covered instances can be reused from training
- Subtree raising $O(n (\log n)^2)$
 - Every instance may have to be redistributed at every node between its leaf and the root
 - Cost for redistribution (on average): O(log n)
- \rightarrow Total cost: O(m n log n) + O(n (log n)²)

Error-Complexity Measure

CART uses the following measure

$$R_{\alpha}(T) = f(T) + \alpha \cdot L(T)$$

- f is the error rate on the training data
- L is the number leaves in the tree
- α is a parameter that trades off tree complexity vs. test error
- Different values of α prefer different trees
 - smaller values of α prefer different trees with low training error
 - larger values of α prefer different trees with low training error
 - would nowadays be called a *regularization* parameter

Error-Complexity Pruning

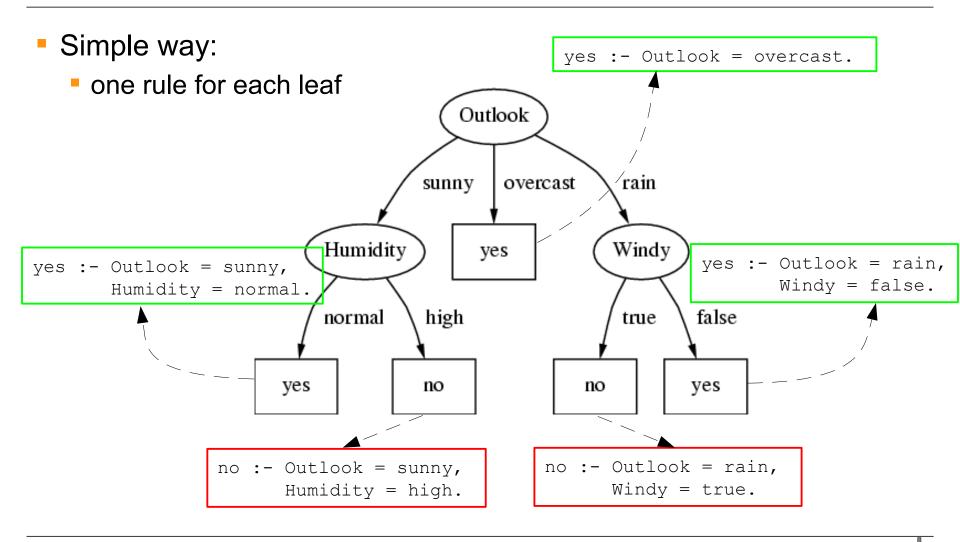
(CART, Breiman et al. 1984)

Generate a sequence of trees with decreasing complexity

$$T_0 \rightarrow T_1 \rightarrow \ldots \rightarrow T_m$$

- T_0 is the full tree, T_m is the tree that consists only of the root node
- Each tree is generated from its predecessor by replacing a subtree with a node.
 - It selects the node which results in the smallest increase in the error function, weighted by the number of leaves in the subtree
- this sequence of trees optimizes R_{a} for successive ranges of α -values
 - T_0 is optimal for the range $[0, \alpha_1]$
 - T_1 is optimal for the range $[\alpha_1, \alpha_2]$
- Optimal values for α are then determined with cross-validation on the training data

From Trees To Rules



C4.5rules and successors

C4.5rules:

- greedily prune conditions from each rule if this reduces its estimated error
 - Can produce duplicate rules
 - Check for this at the end
- Then look at each class in turn
 - consider the rules for that class
 - find a "good" subset (guided by MDL)
 - rank the subsets to avoid conflicts
- Finally, remove rules (greedily) if this decreases error on the training data
- C4.5rules slow for large and noisy datasets
- Commercial version C5.0rules uses a different technique
 - Much faster and a bit more accurate

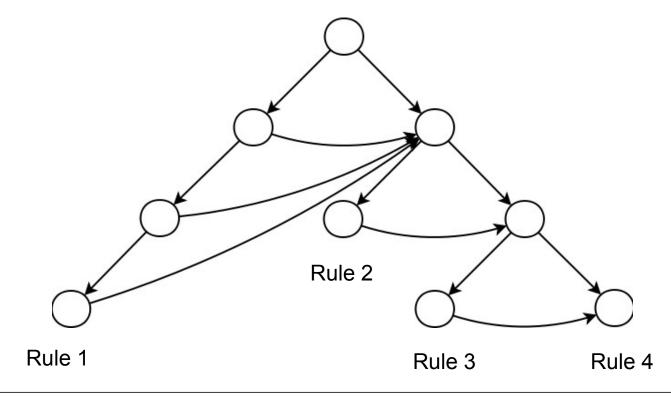
Decision Lists and Decision Graphs

Decision Lists

- An ordered list of rules
- the first rule that fires makes the prediction
- can be learned with a covering approach
- Decision Graphs
 - Similar to decision trees, but nodes may have multiple predecessors
 - DAGs: Directed, acyclic graphs
 - there are a few algorithms that can learn DAGs
 - learn much smaller structures
 - but in general not very successful
- Special case:
 - a decision list may be viewed as a special case of a DAG

Example

- A decision list for a rule set with rules
 - with 4, 2, 2, 1 conditions, respectively
 - drawn as a decision graph



Rules vs. Trees

- Each decision tree can be converted into a rule set
- \rightarrow Rule sets are at least as expressive as decision trees
 - a decision tree can be viewed as a set of non-overlapping rules
 - typically learned via *divide-and-conquer* algorithms (recursive partitioning)
- Transformation of rule sets / decision lists into trees is less trivial
 - Many concepts have a shorter description as a rule set
 - Iow complexity decision lists are more expressive than low complexity decision trees (Rivest, 1987)
 - exceptions: if one or more attributes are relevant for the classification of *all* examples (e.g., parity)
- Learning strategies:
 - Separate-and-Conquer vs. Divide-and-Conquer

Discussion TDIDT

- The most extensively studied method of machine learning used in data mining
- Different criteria for attribute/test selection rarely make a large difference
- Different pruning methods mainly change the size of the resulting pruned tree
- C4.5 builds univariate decision trees
- Some TDIDT systems can build multivariate trees (e.g. CART)
 - multi-variate: a split is not based on a single attribute but on a function defined on multiple attributes

Regression Problems

Regression Task

- the target variable $y = f(\mathbf{x})$ is numerical instead of discrete
- Various error functions, e.g., Mean-squared error:

$$L(f, \hat{f}) = \sum_{x} (f(x) - \hat{f}(x))^2$$

Two principal approaches

- Discretize the numerical target variable
 - e.g., equal-width intervals, or equal-frequency
 - and use a classification learning algorithm
- Adapt the classification algorithm to regression data
 → Regression Trees and Model Trees

Regression Trees

Differences to Decision Trees (Classification Trees)

- Leaf Nodes:
 - Predict the average value of all instances in this leaf
- Splitting criterion:
 - Minimize the variance of the values in each subset S_i
 - Standard deviation reduction

$$SDR(A, S) = SD(S) - \sum_{i} \frac{|S_i|}{|S|} SD(S_i)$$

Termination criteria:

Very important! (otherwise only single points in each leaf)

- Iower bound on standard deviation in a node
- Iower bound on number of examples in a node
- Pruning criterion:
 - Numeric error measures, e.g. Mean-Squared Error

CART (Breiman et al. 1984)

- Algorithm for learning Classification And Regression Trees
 - Quite similar to ID3/C4.5, but developed indepedently in the statistics community
- Splitting criterion:
 - Gini-Index for Classification
 - Sum-of-Squares for Regression
- Pruning:
 - Cost-Complexity Pruning

Regression Tree Example

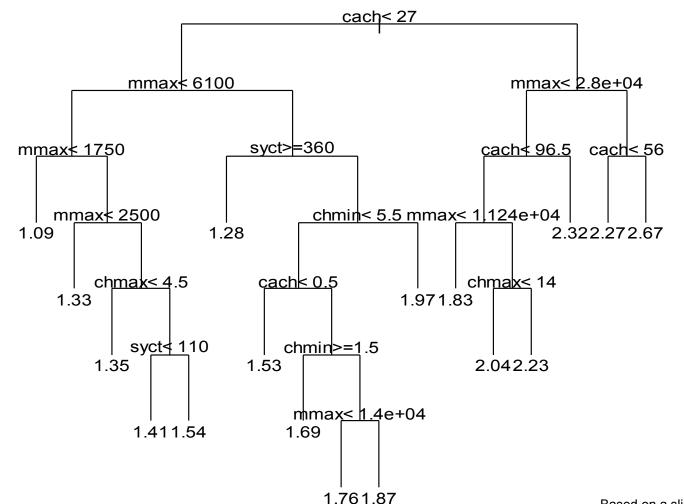
Task:

understand how computer performance is related to a number of variables which describe the features of a PC

Data:

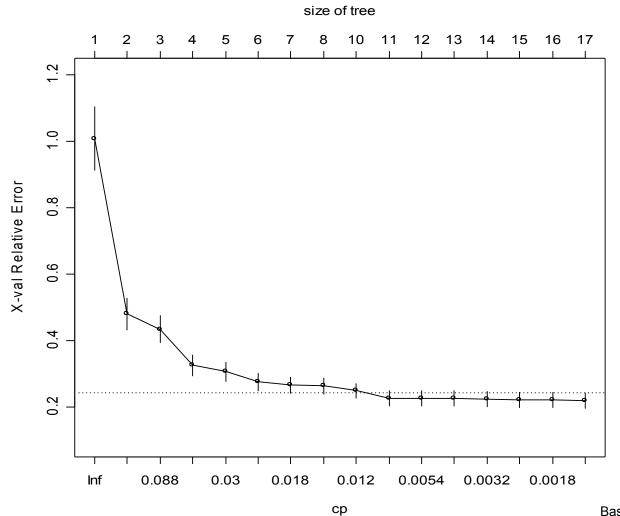
- the size of the cache,
- the cycle time of the computer,
- the memory size
- the number of channels (both the last two were not measured but minimum and maximum values obtained).

Regression Tree



Based on a slide by Richard Lawton

Estimated Relative Error over Tree Complexity



Based on a slide by Richard Lawton

Model Trees

- In a Leaf node
 - Classification Trees predict a class value
 - Regression Trees predict the average value of all instances in the model
 - Model Trees use a linear model for making the predictions
 - growing of the tree is as with Regression Trees
- Linear Model:
 - $LM(x) = \sum_{i} w_i v_i(x)$ where $v_i(x)$ is the value of attribute A_i for example x and w_i is a weight
 - The attributes that have been used in the path of the tree can be ignored
- Weights can be fitted with standard math packages
 - Minimize the Mean Squared Error $MSE = \frac{1}{n} \sum_{i} (y_i r_j)^2$

Summary

- Classification Problems require the prediction of a discrete target value
 - can be solved using decision tree learning
 - iteratively select the best attribute and split up the values according to this attribute
- Regression Problems require the prediction of a numerical target value
 - can be solved with regression trees and model trees
 - difference is in the models that are used at the leafs
 - are grown like decision trees, but with different splitting criteria
- Overfitting is a serious problem!
 - simpler, seemingly less accurate trees are often preferable
 - evaluation has to be done on separate test sets