
Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz1

Outline
 Introduction

 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search

Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz2

What are and why study games?
 Games are a form of multi-agent environment

 What do other agents do and how do they affect our success?
 Cooperative vs. competitive multi-agent environments.
 Competitive multi-agent environments give rise to adversarial

search a.k.a. games

 Why study games?
 Fun; historically entertaining
 Interesting subject of study because they are hard
 Easy to represent and agents restricted to small number of

actions
 Problem (and success) is easy to communicate

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz3

Relation of Games to Search
 Search – no adversary

 Solution is method for
finding goal

 Heuristics and CSP
techniques can find
optimal solution

 Evaluation function:
 estimate of cost from start

to goal through given node

 Examples:
 path planning, scheduling

activities

 Games – adversary
 Solution is strategy

 strategy specifies move
for every possible
opponent reply

 Time limits force an
approximate solution

 Evaluation function:
 evaluate “goodness” of

game position

 Examples:
 chess, checkers, Othello,

backgammon, ...

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz4

Types of Games

deterministic chance
perfect

information
chess, checkers, Go,

Othello
backgammon,

monopoly

imperfect
information

battleship, kriegspiel,
matching pennies,

Roshambo

bridge, poker,
scrabble

 Zero-Sum Games
 one player's gain is the other player's (or players') loss

 turn-taking
 players alternate moves

 deterministic games vs. games of chance
 do random components influence the progress of the game?

 perfect vs. imperfect information
 does every player see the entire game situation?

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz5

A Brief History of
Search in Game Playing

 Computer considers possible lines of play
(Babbage, 1846)

 Algorithm for perfect play
(Zermelo, 1912; Von Neumann, 1944)

 Finite horizon, approximate evaluation
(Zuse, 1945; Wiener, 1948; Shannon, 1950)

 First computer chess game
(Turing, 1951)

 Machine learning to improve evaluation accuracy
(Samuel, 1952-57)

 Selective Search Programs
(Newell, Shaw, Simon 1958; Greenblatt, Eastake, Crocker 1967)

 Pruning to allow deeper search
(McCarthy, 1956)

 Breakthrough of Brute-Force Programs
(Atkin & Slate, 1970-77)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz6

Checkers:
Chinook vs. Tinsley

© Jonathan Schaeffer

Name: Marion Tinsley
Profession: Teach
 mathematics
Hobby: Checkers
Record: Over 42 years
 loses only 3 (!)
 games of checkers

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz7

Chinook

First computer to win human world championship!
Visit http://www.cs.ualberta.ca/~chinook/ to play a
version of Chinook over the Internet.

© Jonathan Schaeffer

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz8

Chinook

 July 19 2007, after 18 years of computation:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.5393

ttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.5393

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz9

Backgammon

© Jonathan Schaeffer

 branching factor several
hundred

 TD-Gammon v1 –
1-step lookahead,
learns to play games
against itself

 TD-Gammon v2.1 –
2-ply search, does
well against world
champions

 TD-Gammon has
changed the way
experts play
backgammon.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz10

Chess

Kasparov

5’10”
176 lbs
34 years
50 billion neurons
2 pos/sec
Extensive
Electrical/chemical
Enormous

Name

Height
Weight

Age
Computers

Speed
Knowledge

Power Source
Ego

Deep Blue

6’ 5”
2,400 lbs

4 years
512 processors

200,000,000 pos/sec
Primitive
Electrical

None

© Jonathan Schaeffer

http://www.wired.com/wired/archive/9.10/chess.htm

http://www.wired.com/wired/archive/9.10/chess.html

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz11

Reversi/Othello

© Jonathan Schaeffer

Name: Takeshi Murakami
Title: World Othello Champion
1997: Lost 6-0 against Othello
Program Logistello

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz12

Computer Go

© Jonathan Schaeffer

Name: Chen Zhixing
Author: Handtalk (Goemate)
Profession: Retired
Computer skills:
 Selftaught assembly
 language programmer
Accomplishments:
 dominated computer
 go for 4 years.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz13

Computer Go

© Jonathan Schaeffer

Active Area of research

Methods relying on Monte

Carlo tree search gave a

strong boost in performance,

Best Humans are still out of

reach on the 19x19 board.

Name: Chen Zhixing
Author: Handtalk (Goemate)
Profession: Retired
Computer skills:
 Selftaught assembly
 language programmer
Accomplishments:
 dominated computer
 go for 4 years.

Gave Handtalk a 9
stone handicap and
still easily beat
the program,
thereby winning
$15,000

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz14

Outline
 Introduction

 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz15

Solving a Game
 Ultra-weak

 prove whether the first player will win, lose, or draw from the
initial position, given perfect play on both sides

 could be a non-constructive proof, which does not help in play
 could be done via a complete minimax or alpha-beta search
 Example:

 chess when first move may be a pass
 Weak

 provide an algorithm which secures a win for one player, or a
draw for either, against any possible moves by the opponent,
from the initial position only

 Strong
 provide an algorithm which can produce perfect play from any

position
 often in the form of a database for all positions

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz16

Retrograde Analysis
 Retrograde Analysis Algorithm (goes back to Zermelo 1912)

 builds up a database if we want to strongly solve a game

0.Generate all possible positions
1.Find all positions that are won for player A

i. mark all terminal positions that are won for A
ii.mark all positions where A is to move and can make a

move that leads to a marked position
iii.mark all positions where B is to move and all moves lead

 to a marked position
iv.if there are positions that have not yet been considered goto ii.

2.Find all positions that are won for B
 analogous to 1.

3.All remaining positions are draw

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V1.0 | J. Fürnkranz17

Retrograde Analysis
 Several Games habe been solved completely using RA

 Tic-Tac-Toe, Go-Moku, Connect-4, ...
 For other games, solutions for partial

 Chess
 All endgames with 7 pieces (=2 kings + 5 additional pieces)

are solved since 2012
 ca. 500 000 000 000 000 positions had to be stored, even when

considering symmetries etc.
 Accessible on-line http://tb7.chessok.com/
 https://chessprogramming.wikispaces.com/Endgame+Tablebases

 Checkers
 In checkers, databases with up to 10 pieces were crucial for

(weakly) solving the game
 Overall, RA is too complex for most games

 Impossible to store all possible game states

http://tb7.chessok.com/
https://chessprogramming.wikispaces.com/Endgame+Tablebases

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz18

Status Quo in Game Playing
 Solved

 Tic-Tac-Toe, Connect-4, Go-Moku, 9-men Morris
 Most recent addition: Checkers is a draw

 Solved with 18 years of computation time
(first endgame databases were computed in 1989)

 http://www.sciencemag.org/cgi/content/abstract/1144079
 Partly solved

 Chess
 all 6-men endgames, some 7-men endgames
 longest win: position in KQN vs. KRBN after 517 moves

 http://timkr.home.xs4all.nl/chess2/diary_16.htm
 World-Championship strength

 Chess, Backgammon, Scrabble, Othello
 Human Supremacy

 Go, Shogi, Bridge, Poker (probably the next to fall)

http://www.sciencemag.org/cgi/content/abstract/1144079
http://timkr.home.xs4all.nl/chess2/diary_16.htm

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz19

Game setup
 Two players: MAX and MIN

 MAX moves first and they take turns until the game is over.
 ply: a half-move by one of the players
 move: two plies, one by MAX and one by MIN

 Winner gets award, looser gets penalty.
 Games as search:

 Initial state:
 e.g., board configuration of chess

 Successor function:
 list of (move,state) pairs specifying legal moves.

 Terminal test:
 Is the game finished?

 Utility function (objective function, payoff function)
 Gives numerical value of terminal states
 E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe (next)
 typically from the point of view of MAX

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz20

Partial Game Tree for Tic-Tac-Toe

 MAX is to move at odd depths

 MIN is to move at even depths

 Terminal nodes are evaluated
from MAX's point of view

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz21

Optimal strategies
 Perfect play for deterministic, perfect-information games

 Find the best strategy for MAX assuming an infallible MIN
opponent.

 Assumption: Both players play optimally
 Basic idea:

 the terminal positions are evaluated form MAX's point of view
 MAX player tries to maximize the evaluation of the position

 3 5 1

MAX to move 5

A
B

C

MAX chooses move B
with value 5

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz22

Optimal strategies
 Perfect play for deterministic, perfect-information games

 Find the best strategy for MAX assuming an infallible MIN
opponent.

 Assumption: Both players play optimally
 Basic idea:

 the terminal positions are evaluated form MAX's point of view
 MAX player tries to maximize the evaluation of the position
 MIN player tries to minimize MAX's evaluation of the position

 3 5 1

MIN to move 1

A
B

C

MIN chooses move C
with value 1

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz23

Optimal strategies
 Perfect play for deterministic, perfect-information games

 Find the best strategy for MAX assuming an infallible MIN
opponent.

 Assumption: Both players play optimally
 Basic idea:

 the terminal positions are evaluated form MAX's point of view
 MAX player tries to maximize the evaluation of the position
 MIN player tries to minimize MAX's evaluation of the position

 Minimax value
 Given a game tree, the optimal strategy can be determined by

using the minimax value of each node:

MINIMAX n={UTILITY n  if n is a terminal state
maxs∈SUCCESSORS n MINIMAX s if n is a MAX node
mins∈SUCCESSORS nMINIMAX s  if n is a MIN node

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz24

Depth-Two Minimax Search Tree

MAX chooses move a1
with value 3

Minimax maximizes the worst-case outcome for MAX.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz25

Minimax Algorithm

 v ← MAX-VALUE(state)
 return action a which has value v and a, s is in SUCCESSORS(state)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz26

NegaMax Formulation
 The minimax algorithm can be reformulated in a simpler way

 for evaluation functions that are symmetric around 0
(zero-sum)

 Basic idea:
 Assume that evaluations in all nodes (and leaves) are always

from the point of view of the player that is to move
 the MIN-player now also maximizes its value

 As the values are zero-sum, the value of a position for MAX is
equal to minus the value of position for MIN

→ NegaMax = Negated Maximum

NEGAMAX n={UTILITYn if n is a terminal state
maxs∈SUCCESSORS n−NEGAMAX s if n is an internal node

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz27

Properties of Minimax Search
 Completeness

 Yes, if tree is finite
 e.g., chess guarantees this through separate rules

(3-fold repetition or 50 moves w/o irreversible moves are draw)
 Note that there might also be finite solutions in infinite trees

 Optimality
 Yes, if the opponent also plays optimally

 If not, there might be better strategies (→ opponent modeling)
 Time Complexity

 O(bm)
 has to search all nodes up to maximum depth (i.e., until

terminal positions are reached)
 for many games unfeasible (e.g., chess:)

 Space Complexity
 search proceeds depth-first → O(m∙b)

b≈ 35, m≈ 60

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz28

Alpha-Beta Pruning

2 7 1

= 2

≥ 2

≤ 1

?

• We don’t need to compute the value
at this node.

• No matter what it is, it can’t affect
the value of the root node.

MAX

MAX

MIN

 Minimax needs to search an exponential number of states
 Possible solution:

 Do not examine every node
 remove nodes that can not influence the final decision

“If you have an idea that is surely bad, don't take the time to
 see how truly awful it is.” -- Pat Winston

Based on a slide by Lise Getoor

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz29

Alpha-Beta Pruning

Maintains two values [α,β] for all nodes in the current path

 Alpha:
 the value of the best choice (i.e., highest value) for the MAX

player at any choice node for MAX in the current path
→ MAX can obtain a value of at least α

 Beta:
 the value of the best choice (i.e., lowest value) for the MIN

player at any choice node for MIN in the current path
→ MIN can make sure that MAX obtains a value of at most β

The values are initialized with [−∞, +∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz30

Alpha-Beta Pruning

Alpha and Beta are used for pruning the search tree:

 Alpha-Cutoff:
 if we find a move with value ≤ α at a MIN node, we do not

examine alternatives to this move
 we already know that MAX can achieve a better result in a

different variation

 Beta-Cutoff:
 if we find a move with value ≥ β at a MAX node, we do not

examine alternatives to this move
 we already know that MIN can achieve a better result in a

different variation

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz31

Alpha-Beta Algorithm

 if TERMINAL-TEST(state) return UTILITY(state)
 v ← + ∞
 for a, s in SUCCESSORS(state) do
 v ← MIN(v,MAX-VALUE(s, α , β))
 if v ≤ α then return v
 β ← MIN(β ,v)
 return v

 if TERMINAL-TEST(state) return UTILITY(state)
 v ← + ∞
 for a, s in SUCCESSORS(state) do
 v ← MIN(v,MAX-VALUE(s, α , β))
 if v ≤ α then return v
 β ← MIN(β ,v)
 return v

 v ← MAX-VALUE(state, ̶̶ ∞ , +∞)
 return action a which has value v and a, s is in SUCCESSORS(state)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz32

Example: Alpha-Beta
 The window is initialized with [−∞, +∞]
 search runs depth-first
 until first leaf is found (value 3)

[−∞ ,+∞]

[−∞,∞]

Aufruf von
MAX-VALUE(A,−,+)

[−∞ ,∞]

Aufruf von
MAX-VALUE(E,−,+)

Aufruf von
MIN-VALUE(B,−,+)

E

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz33

Example: Alpha-Beta
 It is followed that at node B, MIN can obtain at least 3
 Subsequent search below B is now initialized with [−∞, +3]
 The leaf node (value 12) is worse for MIN (higher value for MAX)

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

Aufruf von
MAX-VALUE(F,−,+3)
in der 2. Iteration der

Schleife von MIN-VALUE

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz34

Example: Alpha-Beta
 The next leaf is also worse for MIN (value 8)
 Node B is now completed, and evaluated with 3
 The value is propagated up to A as a new minimum for MAX

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

Aufruf von
MAX-VALUE(F,−,+3)
in der 2. Iteration der

Schleife von MIN-VALUE

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz35

Example: Alpha-Beta
 Subsequent searches now know that MAX can achieve at

least 3, i.e., the alpha-beta window is [+3, +∞]
 The value 2 is found below the min node
 As the value is outside the window (2 < 3), we can prune all

other nodes at this level

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz36

Example: Alpha-Beta

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2

 Subsequent searches now know that MAX can achieve at
least 3, i.e., the alpha-beta window is [+3, +∞]

 The value 14 is found below the min node

[3,∞]

[3,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz37

Example: Alpha-Beta
 The next search now knows that MAX can achieve at least 3

but MIN can hold him down to 14
 i.e., the alpha-beta window is [+3, +14]
 For the final node the window is [+3, +5]

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2

[3,∞]

[3,∞]

[3,14]

[3,5]

2

3

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz38

Evaluation Order
 Note that the order of the evaluation of the nodes is crucial
 e.g., if in node D, the node with evaluation 2 is seached first,

another cutoff would have been possible
→ good move order is crucial for good performance

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2

[3,∞]

[3,∞]

14 2

≤ 2

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz39

General Alpha-Beta Pruning

 Consider a node n
somewhere in the tree

 If Player has a better choice
 at parent node of n
 or at any choice point

further up
 n will never be reached in

actual play.
 Hence we can prune n

 as soon as we can
establish that there is a
better choice

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz40

Alpha-Cutoff vs. Beta-Cutoff

Graph by Alexander Reinefeld

 Of course, cutoffs can also occur at MAX-nodes

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz41

Shallow vs. Deep Cutoffs

Graph by Alexander Reinefeld

 Cutoffs may occur arbitrarily deep in (sub-)trees

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz42

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

Example due to L. Getoor

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz43

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]
[−∞ , 0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz44

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

Example due to L. Getoor

0

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]
[−∞ ,0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz45

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0 -3

Example due to L. Getoor

0

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[0,∞]

[0,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz46

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0 -3

Example due to L. Getoor

0

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[0,∞]

[0,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz47

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0 -3

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[0,∞]

[0,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz48

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0 -3 3

3

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ , 0]

[−∞ , 0]

[−∞ , 0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz49

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0 -3 3

3

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,0]

[−∞ ,0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz50

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz51

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

5

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0]

[−∞ ,0]

[−∞ ,0]

[−∞ , 0]

[−∞ , 0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz52

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0]

[−∞ ,0]

[−∞ ,0]

[−∞ , 0]

[−∞ , 0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz53

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0]

[−∞ ,0]

[−∞ ,0]

[−∞ , 0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz54

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0]

[−∞ ,0]

[−∞ ,0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz55

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0]

[−∞ ,0]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz56

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

0

Example due to L. Getoor

[−∞ ,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz57

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz58

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0, 5]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz59

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[1,∞]

[1,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz60

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[1,∞]

[1,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz61

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz62

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz63

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz64

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[1,∞]

[1,∞]

[1,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz65

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

1

Example due to L. Getoor

[0,∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz66

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

1

Example due to L. Getoor

[0,1]

[0,∞]

[0, 1]

[0,1]

[0, 1]

[0,1]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz67

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

Example due to L. Getoor

[0,1]

[0,∞]

[0, 1]

[0,1]

[0, 1]

[0,1]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz68

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

Example due to L. Getoor

Principal Variation
The line that will be
played if both players
play optimally. The PV
determines the value of
the position at the root.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz69

Properties of Alpha-Beta Pruning
 Pruning does not affect final results
 Entire subtrees can be pruned.
 Effectiveness depends on ordering of branches

 Good move ordering improves effectiveness of pruning
 With “perfect ordering,” time complexity is O(bm/2)

 this corresponds to a branching factor of
→ Alpha-beta pruning can look twice as deep as minimax in the

same amount of time
 However, perfect ordering not possible

 perfect ordering implies perfect play w/o search
 random orders have a complexity of O(b3m/4)
 crude move orders are often possible and get you within a

constant factor of O(bm/2)
 e.g., in chess: captures and pawn promotions first, forward

moves before backward moves

b

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz70

More Information
 Animated explanations and examples of Alpha-Beta at work

(in German)
 http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo19.php

http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo19.php

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz71

Alpha-Beta – NegaMax Formulation

Code by Alexander Reinefeld

Recursive call with negated window

Note the negated return value!

[ MIN=− MAX ,  MIN=−MAX]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz72

Alpha-Beta (Min-Max Formulation)

Graph by Alexander Reinefeld

2 5 9 1 4

[5,+∞]

[−∞ ,+∞]

[−∞ ,+∞] [−∞ , 5]

[5,+∞]

[−∞ ,+∞]

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz73

Alpha-Beta (NegaMax Formulation)

Graph by Alexander Reinefeld

‒2 ‒5 ‒9 ‒1 ‒4

[5,+∞]

[−∞ ,+∞]

[−∞ ,+∞] [−∞ , 5]

[−∞ ,−5]

[−∞ ,+∞]

Values at min-nodes are
negated, and alpha and
beta-values are swapped

The child max-node
returns -4 as the result .

(9>5)

(− 4>−5)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz74

Minimal Window Search
 If we have a good guess about the value of the position, we

can further increase efficiency of Alpha-Beta by starting with
a narrower interval than [−∞, +∞]

 such an aspiration window will result in more cut-offs
 with the danger that they may not be correct

 Extreme case: Minimal Window β = α + 1
 No value can be between these two values

 assuming an integer-valued evaluation function
 Possible results:

 FAIL HIGH:

 FAIL LOW:

 Thus, MWS tests efficiently (many cutoffs) whether a position
is better than a given value or not

Value≥ =1 ⇒ Value

Value≤

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz75

NegaScout
(Principal Variation Search)

 if we can establish that the value of a node is lower
(FAIL LOW), the node is not interesting (a better node exists)

 If FAIL-HIGH, we know that this is better, but not how much
 need to re-search the tree with a bigger window

Based on a slide by Alexander Reinefeld

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz76

NegaScout (Reinefeld 1982)

Code by Alexander Reinefeld

FAIL-HIGH:
t is outside the null window
(but still within the original window)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz77

Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

1. Fall: t < a:
 Zug brachte keine Verbesserung

 nächster Zug wird mit
-NEGASCOUT(s,-a-1,-a)
durchsucht

-NEGASCOUT(s,-a-1,-a)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz78

Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

2. Fall: a ≤ t < β:
 Zug bringt zumindest t
 Genauer Wert läßt sich aber nicht

bestimmen, da Zweige aufgrund
des falschen β-Werts geprunt
worden sein könnten

 2. Zug muß nochmals durchsucht
werden mit -NEGASCOUT(s,-β,-t)

-NEGASCOUT(s, -β, -t)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz79

Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

3. Fall: t ≥ β:
 Zug bringt mehr als β
 Weder dieser noch ein anderer

Zug wird gespielt werden, da ein
anderer Pfad im Baum dem
Gegner mehr verspricht.
→ Beta-Cutoff

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.1 | J. Fürnkranz81

NegaScout Example

Example by Alexander Reinefeld

≥8 4

NegaScout assumes
MIN can get at least 6
→ we can prune this
branch because MAX
has already at least 8.

−4

‒2 ‒5 ‒9 -8 ‒1 ‒4

4

≤ -8

+4
+8

+4
+1

hope for ≤ 5 / ≥ -5
(-6, -5)

The assumption has
turned out to be correct
(4 ≤ 5), so the null Window
cut-off was justified.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz82

NegaScout Example

Example by Alexander Reinefeld

Re-Search would
happen if this subtree
fails high (t > 5)

≥8 4

Then this node
would return ≥ t

... and the right branch of this node would
be re-searched with the window [t, +∞]

NegaScout assumes
MIN can get at least 6
→ we can prune this
branch because MAX
has already at least 8.

 −4

‒2 ‒5 ‒9 -8 ‒1 ‒4

-4

≤ -8

+4
+8

+4
+1

hope for ≤ 5 / ≥ -5
(-6, -5)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz83

Performance of NegaScout
 Essentially, NegaScout assumes that the first node is best

(i.e., the first node is in the principal variation)
 if this assumption is wrong, it has to do re-searches
 if it is correct, it is much more efficient than Alpha-Beta

→ it works best if the move ordering is good
 for random move orders it will take longer than Alpha-Beta
 10% performance increase in chess engines

 It can be shown that NegaScout prunes every node that is
also pruned by Alpha-Beta

 Various other algorithms were proposed, but NegaScout is
still used in practice

 SSS*: based on best-first search
 MTD(f): improves NegaScout by returning upper or lower

bounds on the true value, needs memory (TTable) for that

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz84

Move Ordering
 The move ordering is crucial to the performance of alpha-

beta search
 Domain-dependent heuristics:

 capture moves first
 ordered by value of capture

 forward moves first
 Domain-independent heuristics:

 Killer Heuristic
 manage a list of moves that produced cutoffs at the current level

of search
 Idea: if there is a strong threat, this should be searched first

 History Heuristic
 maintain a table of all possible moves (independent of current

position)
 if a move produces a cutoff, its value is increased by a value that

grows fast with the search depth (e.g., d 2 or 2d)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz85

Outline
 Introduction

 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz86

Imperfect Real-World Decisions
 In general the search tree is too big to make it possible to

reach the terminal states!
 even though alpha-beta effectively doubles the search depth

 Examples:
 Checkers: ~1040 nodes
 Chess: ~10120 nodes

 For most games, it is not practical within a reasonable
amount of time

 Key idea (Shannon 1950):
 Cut off search earlier

 replace TERMINAL-TEST by CUTOFF-TEST
 which determines whether the current position needs to be

searched deeper
 Use heuristic evaluation function EVAL

 replace calls to UTILITY with calls to EVAL
 which evaluates how promising the position at the cutoff is

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz87

Brute-Force vs. Selective Search
 Shannon Type-A (Brute Force)

 search all positions until a fixed horizon
 CUTOFF-TEST test only tests for the depth

of a position
 Shannon Type-B (Selective Search)

 CUTOFF-TEST prunes uninteresting lines
(as humans do)

 Selective Search preferred by Shannon and contemporaries
 early program limit branching factor (e.g., Newell/Simon/Show

to the „magical number“ 7)
 Brute-Force Search was shown to outperform selective

search in the 70s
 Current programs use a mixture

 selective search near the leaves

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz88

Fixed-Depth Alpha-Beta

Cutoff the search at a pre-determined depth
 CUTOFF-TEST compares the current search depth to a fixed

maximum depth D and returns true if the depth has been
reached or if the position is a terminal position

 At a terminal position:
 return the game-theoretic score

 At a max-depth position:
 return the value of the evaluation function EVAL

 At an interior node:
 recursively call alpha-beta
 increment the current search depth by one

Note:
 the incrementation of the search depth is often realized with a

decrement of an initial search depth, and a cutoff at 0.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz89

Evaluation Function

 Evaluation function or static evaluator is used to evaluate the
“goodness” of a game position.

 Contrast with heuristic search where the evaluation function
was a non-negative estimate of the cost from the start node to
a goal and passing through the given node

 The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.

 f (n) >> 0: position n good for me and bad for you
 f (n) << 0: position n bad for me and good for you
 f (n) ≈ 0: position n is a neutral position
 f (n) = +∞: win for me
 f (n) = −∞: win for you

Based on a slide by L. Getoor

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz90

Heuristic Evaluation Function
 Idea:

 produce an estimate of the expected utility of the game from a
given position.

 Performance:

 depends on quality of EVAL.

 Requirements:

 EVAL should order terminal-nodes in the same way as
UTILITY.

 Computation should not take too long (many leaf nodes have
to be evaluated)

 For non-terminal states the EVAL should be strongly correlated
with the actual chance of winning.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz91

Linear Evaluation Functions
 Most evaluation functions are linear combinations of features



 a feature fi encodes a certain characteristic of the position

 e.g., # white queens/rooks/knights,..., # of possible moves,
of center squares under control, etc.

 originate from experience with the game
 Advantages:

 conceptually simple, typically fast to compute
 Disadvantages:

 tuning of the weights may be very hard (→ machine learning)
 adding up the weighted features makes the assumption that

each feature is independent of the other features

EVAL s=w
1
⋅f

1
sw

2
⋅f

2
s...w

n
⋅f

n
 s=∑

i=1

n

w
i
f

i
 s

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz92

Evaluation Function Examples

 Example of an evaluation function for Tic-Tac-Toe:
 f(n) = [# 3-lengths open for me] − [# 3-lengths open for you]
 where a 3-length is a complete row, column, or diagonal

 Alan Turing’s function for chess
 f(n) = w(n)/b(n) where

 w(n) = sum of the point value of white’s pieces
 b(n) = sum of black’s

 Chess champion program Deep Blue has about 6000 features
in its evaluation function

 Current state-of-the-art programs use non-linear functions
 e.g. different feature weights in different game phases

Based on a slide by L. Getoor

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz93

Evaluation functions

Evaluation is typically very brittle
 small changes in the position may cause large leaps in the

evaluation

 Black is clearly winning White is clearly winning
 (up in material) (can take black's queen)

→ Evaluation and Search are not independent:
 What is taken care of by search need not be in EVAL

→ Evaluation only applied to stable „quiescent“ position

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz94

Quiescence Search
 Evaluation only useful for quiescent states

 states w/o wild swings in value in near future
 e.g.: states in the middle of an exchange are not quiet

 Algorithm
 When search depth reached, compute quiescence state

evaluation heuristic
 If state quiescent, then proceed as usual; otherwise increase

search depth if quiescence search depth not yet reached
 Example:

 In chess, typically all capturing moves, and all pawn
promotions are followed

 no depth parameter needed, because there is only a finite
number of captures and pawn promotions

 Note that this is different with checks!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz95

Horizon Effect
Fixed depth search
thinks it can avoid
the queening move

 Problem with fixed-depth search:
 if we only search n moves ahead,

it may be possible that the
catastrophy can be delayed by a
sequence of moves that do not
make any progress

 also works in other direction
(good moves may not be found)

 Examples:
 computer starts to give away

its pieces in hopeless positions
(because this avoids the mate)

 checks:
Black can give many
consecutive checks
before white escapes

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz96

Search Extensions
 game-playing programs sometimes extend the search depth

 typically by skipping the step that increments the current
search depth

 increments with fractional values are also possible (multiple
fractional extensions are needed for an extension by 1)

 search is then continued as usual (until horizon is reached)
 but the depth of the of the horizon may be different in different

branches of the trees
 Danger:

 extensions have to be designed carefully so that the search will
always terminate (within reasonable time)

 Typical idea:
 extend the search when a forced move is found that limits the

possible replies to one (or very few) possible actions
 Examples in chess:

 checks, recaptures, moves with passed pawns

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz97

Forward Pruning
 Alpha-Beta only prunes search trees when it is safe to do so

 the evaluation will not change (guaranteed)
 Human players prune most of the possible moves

 and make many mistakes by doing so...

 Several variants of forward pruning techniques are used in
state-of-the-art chess programs

 Null-move pruning
 Futility pruning
 Razoring

 See, e.g.,
 Ernst A. Heinz: Scalable Search in Computer Chess.

Vieweg 2000.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz98

Null-Move Pruning
 Idea: in most games, making a move improves the position
 Approach:

 add a „null-move“ to the search, i.e., assume that current
player does not make a move

 if the null-move search (sometimes at reduced depth) results in
a cutoff, assume that making a move will do the same

 Danger:
 sometimes it is good to make no move (Zugzwang)

 Improvements:
 do not make a null-move if

 in check
 in endgame
 previous move was a null-move

 verified null-move-pruning: do not cut off but reduce depth
 adaptive null-move pruning:

 use variable depth reduction for the null-move search

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz99

Iterative Deepening

Repeated fixed-depth searches for depths d = 1, ..., D
 as for single-agent search
 frequently used in game-playing programs

Advantages:
 works well with transposition tables
 improved dynamic move-ordering in alpha-beta

 what worked well in the previous iteration is tried first in the next
iteration

 simplifies time managements
 if there is a fixed time limit per move, this can be handled flexibly

by adjusting the number of iterations during the search
 previous iterations provide useful information that allow to guess

whether the next iteration can be completed in time
→ Quite frequently the total number of nodes searched is smaller

than with non-iterative search!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz100

Why Should Deeper Search Work?
 If we have a perfect evaluation function, we do not need

search.
 If we have an imperfect evaluation function, why should its

performance get better if we search deeper?

 Game Tree Pathologies
 One can construct situations or

games where deeper search
results in bad performance

 Diminishing returns:
 the gain of deeper searches

goes down with the depth
 can be observed in most games
 various different explanations

Graph by Martin Fierz

Results of Checkers pograms
that play with depth d against

themselves with depth d-2

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz101

Transposition Tables
 Repeated states may occur

 different permutations of the move sequences lead to the
same positions

 Can cause exponential growth in search cost

Transposition Tables:
 Basic idea:

 store found positions in a hash table
 if it occurs a second time, the value of the node does not have

to be recomputed
 Essentially identical to the closed list in GRAPH-SEARCH
 May increase the efficiency by a factor of 2
 Various strategies for swapping positions once the table size

is exhausted

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz102

Transposition Tables - Implementation

Each entry in the hash table stores
 State evaluation value (including whether this was as exact

value or a fail high/low value)
 Search depth of stored value (in case we search deeper)
 Hash key of position (to eliminate collisions)
 (optional) Best move from position

Zobrist Hash Keys:
 Generate 3d-array of random 64-bit numbers

 One key for each combination of piece type, location and color
 Start with a 64-bit hash key initialized to 0
 Loop through current position, XOR’ing hash key with Zobrist

value of each piece found
 Can be updated incrementally by XORing the “from” location

and the “to” location to move a piece
Based on slides by Daniel Tauritz

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz103

Zobrist Keys for Connect-4
 Key Table:

Example by Hendrik Baier

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz104

Zobrist Keys for Connect-4
 Computation of a position key:

hash key for above position

Example by Hendrik Baier

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz105

Multiplayer games
 Games allow more than two players
 Single minimax values become vectors

 one evaluation value for each player
 Example:

 three players (A, B, C) →

Two-Player 0-sum
are a special case
where fA(n) = −fB(n)

(hence only one
value is needed)

f n = f An  , f B n  , f C n

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz106

Multiplayer games
 Games allow more than two players
 Single minimax values become vectors

 one evaluation value for each player
 Example:

 three players (A, B, C) →

Two-Player 0-sum
are a special case
where fA(n) = −fB(n)

(hence only one
value is needed)

f n = f An  , f B n  , f C n

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz107

Outline
 Introduction

 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz108

Games of Chance
 Many games combine skill and chance

 i.e., they contain a random element like the roll of dice
 This brings us closer to real-life

 in real-life we often encounter unforeseen situations

 Examples
 Backgammon, Monopoly, ...

 Problem
 Player MAX cannot directly maximize his gain because he

does not know what MIN's legal actions will be
 MIN makes a roll of the dice after MAX has completed his ply

 and vice versa (MIN cannot minimize)
→ Minimax or Alpha-Beta no longer applicable

→ Standard game trees are extended with chance nodes

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz109

Game-Tree with Chance Nodes

Chance nodes for
the roll of two dice

associated probability
outcome of the dice roll

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz110

Optimal Strategy with Chance Nodes
 MAX wants to play the move that maximizes his chances of

winning
 Problem:

 the exact outcome of a MAX-node cannot be computed
because each MAX-node is followed by a chance node

 analogously for MIN-nodes
 Expected Minimax value

 compute the expected value of the outcome at each chance
node

E XPECTIMINIMAX n={UTILITYn if n is a terminal state
maxs∈SUCCESSORS nE XPECTIMINIMAX if n is a MAX node
mins∈SUCCESSORS nE XPECTIMINIMAX if n is a MIN node

∑
s∈SUCCESSORS n

P s⋅E XPECTIMINIMAX if n is a chance node

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz111

Example

coin tosses

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz112

Example

0.5⋅20.5⋅4=3 −1=0.5⋅00.5⋅−2

3

coin tosses

EXPECTIMINIMAX gives perfect play, like MINIMAX

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz113

Re-Scaling of Evaluation Functions
 Minimax:

 no problem, as long as values are ordered in the same way
(monotonic transformations)

MAX plays the same move in both cases

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz114

Re-Scaling of Evaluation Functions
 Expectiminimax:

 Monotonic transformations may change the result

 only positive linear transformations preserve behavior
→ EVAL should be proportional to the expected outcome!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz115

Nondeterministic Games in Practice
 Complexity

 In addition to the branching factor, the number of different
outcomes c adds at each chance node to the complexity

 Total complexity is O(bmcm)
→ deep look-ahead not feasible

 prob. of reaching a given node shrinks with increasing depth
 forming plans is not that important

→ deep look-ahead is also not that valuable
 Example:

 TD-Gammon uses only 2-ply look-ahead + very good EVAL

 Alpha-Beta Pruning is also possible (but less effective)
 at MIN and MAX nodes as usual
 at chance nodes, expected values can be bounded before all

nodes have been searched if the value range is bounded

c = 2 for coin flip
c = 6 for rolling one die
c = 21 for rolling two dice

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz116

Games of Imperfect Information
 The players do not have access to the entire world state

 e.g., card games, when opponent's initial cards are unknown
 We can calculate a probability for each possible deal

 seems just like one big dice roll at the beginning of the game
 Intuitive Idea:

 compute the minimax value of each action in each deal
 choose the action with the highest expected value over all

deals
 Main problem:

 too many possible deals to do this efficiently
→ take a sample of all possible deals

 Example:
 GIB (a very good Bridge program) generates 100 deals

consistent with bidding information (this also restricts!)
 picks the move that wins the most tricks on average

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz117

Imperfect Information - Example

Scenario a) MIN has 4♥

→ both players will make two tricks

Scenario b) MIN has 4♦

→ both players will make two tricks

MAX can play
optimally if MAX

knows MIN's cards

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz118

Imperfect Information - Example

Scenario c) MIN has either 4♥ or 4♦
 but MAX does not know which!

→ MAX does not know which card to drop
and has a 50% chance of losing the game!

 Lesson:
 The intuition that the value of an action is the average of its value in

all actual states is wrong!
 the value of an action also depends on the agents' belief state

 if I know that it is more probable that he has 4♥, the expected value
should be adjusted accordingly

 may lead to information-gathering or information-disclosing actions
(e.g., signalling bids or unpredictable (random) play)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz119

BA

Belief States in Minimax Search
 Minimax always assumes that the opponent plays its best

response (it is said to be conservative)

 This may be a bad idea:

 MAX will play move B
 If there is a small chance that MIN does not play according to

MAX's evaluation
 because the evaluation is wrong or MIN makes a mistake

 then A would be the better choice!

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz120

Opponent Modeling
 For simple games we know optimal solutions

 Complete search through Minimax tree
 Game-Theory: Nash-Equilibrium

 Optimal solutions are not Maximal!
 Example: Roshambo (Rock/Paper/Scissors)

 Optimal Solution: Pick a random move
 clearly suboptimal against a player that always plays rock!

→ Roshambo Computer Tournament (1999, 2000)
 Opponent Modeling

 try to predict the opponent's next move
 try to predict what move the opponent predicts that your next

move will be,
 For some games, opponent modeling is essential for

success
 Poker (Schaeffer et al., University of Alberta)

Somewhat off-topic, but see also:
http://www.youtube.com/watch?v=3nxjjztQKtY

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz121

Outline
 Introduction

 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search

http://www.youtube.com/watch?v=3nxjjztQKtY

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz122

Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

Picture taken from (Schaeffer 2000)

searched

not searched

evaluation
function

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz123

Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

 alternatively, we can limit the breadth of the search tree
 sample some lines to the full depth

Picture taken from (Schaeffer 2000)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz124

Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the
number of wins in a series of complete games

 at each chance node select one of the options at random
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast
evaluation function)

 Examples:
 roll-out analysis in Backgammon

 play a large number of games from the same position
 each game has different dice rolls

 in Scrabble:
 different draws of the remaining tiles from the bag

 in card games (e.g., GIB in Bridge)
 different distributions of the opponents' cards

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz125

Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the
number of wins in a series of complete games

 at each chance node select one of the options at random
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast
evaluation function)

 Properties:
 We need a fast algorithm for making the decisions at each

MAX and each MIN node
 the program plays both sides, of course

 Often works well even if the program is not that strong
→ fast is possible

 Easily parallelizable

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz126

Monte-Carlo Search
 Extreme case of Simulation search:

 play a large number of games where both players make their
moves randomly

 average the scores of these games
 make the move that has the highest average score

 Has been treen with some success in Go
 e.g., Bruegmann 1993

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz127

Integrating Simulation Search
and Game Tree Search

 Monte-Carlo Search can be integrated with conventional
game-tree search algorithms:

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and B. Bouzy.
Progressive strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation, 4(3), 2008.

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz128

UCT Search
(Kocsis & Szepesvari, 2006)

 Selection
 Select the node
 Parameter C trades off between

 Exploitation: Try to play the best possible move
 maximize value(s)

 Exploration: Try new moves to learn something new
 s gets a high value when the number of visits in the node is low

 in relation to the number of visits in the parent node n
 Sometimes:

 only use UCT if the node has been visited at least T times
 frequently used value T = 30

 UCT is an adaptation of a solution to the
Multi-Armed Bandit Problem to game tree search

 you are in a Casino with k one-armed bandits
with different winning probabilities

 try to maximize your winnings

smax=arg maxs∈Successorsn value sC⋅ ln #visitsn

 #visits s

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz129

UCT Search
(Kocsis & Szepesvari, 2006)

 Expansion
 add a randomly selected node to the game tree

 Simulation
 perform one iteration of a Monte-Carlo search starting from the

selected node
 Backpropagation

 adapt value(n) for each node n in the partial game tree
 the value is just the average result of all games that pass

through this node
 Move Choice

 make the move that has been visited most often (reliability)
 not necessarily the one with the highest value (high variance)

 UCT is currently very popular in Computer Go Research
 e.g., MoGo (Gelly, Wang, Munos, Teytaud, 2006)

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz130

Perspective on Games: Pro

“Saying Deep Blue doesn’t really think
about chess is like saying an airplane
doesn't really fly because it doesn't flap
its wings”

Drew McDermott

© Jonathan Schaeffer

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz131

Perspective on Games: Con

“Chess is the Drosophila of artificial intelligence.
However, computer chess has developed much
as genetics might have if the geneticists had
concentrated their efforts starting in 1910 on
breeding racing Drosophila. We would have
some science, but mainly we would have very
fast fruit flies.”

John McCarthy

© Jonathan Schaeffer

Game Playing: Adversarial Search

 TU Darmstadt Einführung in die Künstliche Intelligenz

 V2.0 | J. Fürnkranz132

Additional Reading
 Jonathan Schaeffer. The Games Computers (and People) Play,

Advances in Computers 50 , Marvin Zelkowitz (ed.) Academic Press, pp.
189-266, 2000.

 excellent survey paper

 Jonathan Schaeffer and Jaap van den Herik (eds.)
Chips Challenging Champions: Games, Computers and
Artificial Intelligence, North-Holland 2002.

 very good collection of state-of-the-art papers

 Jonathan Schaeffer: One Jump Ahead: Challenging
Human Supremacy in Checkers, Springer 1998.

 non-technical first-hand account on the
Chinook project

 Feng-Hsiung Hsu: Behind Deep Blue: Building the Computer
That Defeated the World Chess Champion, Princeton 2002

 non-technical first-hand account on Deep Blue

http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps

	Folie 1
	What are and why study games?
	Relation of Games to Search
	Folie 4
	Folie 5
	Chinook vs. Tinsley
	Chinook
	Folie 8
	Backgammon
	Man vs. Machine
	Reversi/Othello
	Go: On the One Side
	Go: On the One Side
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Game setup
	Partial Game Tree for Tic-Tac-Toe
	Folie 21
	Folie 22
	Optimal strategies
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Alpha-beta pruning
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	General alpha-beta pruning
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Final Comments about Alpha-Beta Pruning
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Games of imperfect information
	Folie 87
	Folie 88
	Evaluation function
	Heuristic EVAL
	Folie 91
	Evaluation function examples
	Folie 93
	Folie 94
	Horizon effect
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Multiplayer games
	Folie 106
	Folie 107
	Folie 108
	Folie 109
	Folie 110
	Folie 111
	Folie 112
	Folie 113
	Folie 114
	Folie 115
	Folie 116
	Folie 117
	Folie 118
	Folie 119
	Gegner Modellieren
	Folie 121
	Folie 122
	Folie 123
	Folie 124
	Folie 125
	Folie 126
	Folie 127
	Folie 128
	Folie 129
	Perspective on Games: Pro
	Perspective on Games: Con
	Folie 132

