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Outline
 Introduction

 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search

Many slides based on 
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
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What are and why study games?
 Games are a form of multi-agent environment

 What do other agents do and how do they affect our success?
 Cooperative vs. competitive multi-agent environments.
 Competitive multi-agent environments give rise to adversarial 

search a.k.a. games

 Why study games?
 Fun; historically entertaining
 Interesting subject of study because they are hard
 Easy to represent and agents restricted to small number of 

actions
 Problem (and success) is easy to communicate
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Relation of Games to Search
 Search – no adversary

 Solution is method for 
finding goal

 Heuristics and CSP 
techniques can find 
optimal solution

 Evaluation function: 
 estimate of cost from start 

to goal through given node

 Examples: 
 path planning, scheduling 

activities

 Games – adversary
 Solution is strategy 

 strategy specifies move 
for every possible 
opponent reply

 Time limits force an 
approximate solution

 Evaluation function: 
 evaluate “goodness” of 

game position

 Examples: 
 chess, checkers, Othello, 

backgammon, ... 
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Types of Games

deterministic chance
perfect 

information
chess, checkers, Go, 

Othello
backgammon, 

monopoly

imperfect 
information

battleship, kriegspiel, 
matching pennies, 

Roshambo

bridge, poker, 
scrabble

 Zero-Sum Games
 one player's gain is the other player's (or players') loss

 turn-taking
 players alternate moves

 deterministic games vs. games of chance
 do random components influence the progress of the game?

 perfect vs. imperfect information
 does every player see the entire game situation?
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A Brief History of 
Search in Game Playing

 Computer considers possible lines of play 
(Babbage, 1846)

 Algorithm for perfect play 
(Zermelo, 1912; Von Neumann, 1944)

 Finite horizon, approximate evaluation 
(Zuse, 1945; Wiener, 1948; Shannon, 1950)

 First computer chess game
(Turing, 1951)

 Machine learning to improve evaluation accuracy 
(Samuel, 1952-57)

 Selective Search Programs
(Newell, Shaw, Simon 1958; Greenblatt, Eastake, Crocker 1967)

 Pruning to allow deeper search 
(McCarthy, 1956)

 Breakthrough of Brute-Force Programs
(Atkin & Slate, 1970-77)
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Checkers:
Chinook vs. Tinsley

© Jonathan Schaeffer

Name: Marion Tinsley
Profession: Teach
   mathematics
Hobby: Checkers
Record: Over 42 years
   loses only 3 (!)
   games of checkers
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Chinook

First computer to win human world championship!
Visit http://www.cs.ualberta.ca/~chinook/  to play a 
version of Chinook over the Internet.

© Jonathan Schaeffer



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz8

Chinook

 July 19 2007, after 18 years of computation:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.5393

ttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.5393
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Backgammon

© Jonathan Schaeffer

 branching factor several 
hundred

 TD-Gammon v1 –
1-step lookahead, 
learns to play games 
against itself

 TD-Gammon v2.1 –
2-ply search, does
well against world 
champions

 TD-Gammon has 
changed the way 
experts play 
backgammon.
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Chess

Kasparov

5’10” 
176 lbs 
34 years
50 billion neurons
2 pos/sec
Extensive
Electrical/chemical
Enormous

Name

Height
Weight

Age
Computers

Speed
Knowledge

Power Source
Ego

Deep Blue

6’ 5”
2,400 lbs

4 years
512 processors

200,000,000 pos/sec
Primitive
Electrical

None

© Jonathan Schaeffer

http://www.wired.com/wired/archive/9.10/chess.htm

http://www.wired.com/wired/archive/9.10/chess.html
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Reversi/Othello

© Jonathan Schaeffer

Name: Takeshi Murakami
Title: World Othello Champion
1997: Lost 6-0 against Othello
Program Logistello
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Computer Go

© Jonathan Schaeffer

Name: Chen Zhixing
Author: Handtalk (Goemate)
Profession: Retired
Computer skills: 
   Selftaught assembly
   language programmer
Accomplishments:
   dominated computer
   go for 4 years.
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Computer Go

© Jonathan Schaeffer

Active Area of research

Methods relying on Monte

Carlo tree search gave a 

strong boost in performance,

Best Humans are still out of

reach on the 19x19 board.

Name: Chen Zhixing
Author: Handtalk (Goemate)
Profession: Retired
Computer skills: 
   Selftaught assembly
   language programmer
Accomplishments:
   dominated computer
   go for 4 years.

Gave Handtalk a 9 
stone handicap and 
still easily beat 
the program,
thereby winning 
$15,000
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 UCT search
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Solving a Game
 Ultra-weak

 prove whether the first player will win, lose, or draw from the 
initial position, given perfect play on both sides

 could be a non-constructive proof, which does not help in play
 could be done via a complete minimax or alpha-beta search
 Example:

 chess when first move may be a pass
 Weak

 provide an algorithm which secures a win for one player, or a 
draw for either, against any possible moves by the opponent, 
from the initial position only

 Strong 
 provide an algorithm which can produce perfect play from any 

position 
 often in the form of a database for all positions
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Retrograde Analysis
 Retrograde Analysis Algorithm (goes back to Zermelo 1912)

 builds up a database if we want to strongly solve a game

0.Generate all possible positions 
1.Find all positions that are won for player A

i. mark all terminal positions that are won for A
ii.mark all positions where A is to move and can make a

move that leads to a marked position
iii.mark all positions where B is to move and all moves lead

 to a marked position
iv.if there are positions that have not yet been considered goto ii.

2.Find all positions that are won for B
 analogous to 1.

3.All remaining positions are draw
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Retrograde Analysis
 Several Games habe been solved completely using RA

 Tic-Tac-Toe, Go-Moku, Connect-4, ...
 For other games, solutions for partial

 Chess
 All endgames with 7 pieces (=2 kings + 5 additional pieces) 

are solved since 2012
 ca. 500 000 000 000 000 positions had to be stored, even when 

considering symmetries etc.
 Accessible on-line http://tb7.chessok.com/
 https://chessprogramming.wikispaces.com/Endgame+Tablebases

 Checkers
 In checkers, databases with up to 10 pieces were crucial for 

(weakly) solving the game
 Overall, RA is too complex for most games

 Impossible to store all possible game states

http://tb7.chessok.com/
https://chessprogramming.wikispaces.com/Endgame+Tablebases
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Status Quo in Game Playing
 Solved

 Tic-Tac-Toe, Connect-4, Go-Moku, 9-men Morris
 Most recent addition: Checkers is a draw 

 Solved with 18 years of computation time
(first endgame databases were computed in 1989)

 http://www.sciencemag.org/cgi/content/abstract/1144079
 Partly solved

 Chess
 all 6-men endgames, some 7-men endgames
 longest win: position in KQN vs. KRBN after 517 moves

 http://timkr.home.xs4all.nl/chess2/diary_16.htm
 World-Championship strength

 Chess, Backgammon, Scrabble, Othello
 Human Supremacy

 Go, Shogi, Bridge, Poker (probably the next to fall)

http://www.sciencemag.org/cgi/content/abstract/1144079
http://timkr.home.xs4all.nl/chess2/diary_16.htm


Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz19

Game setup
 Two players: MAX and MIN

 MAX moves first and they take turns until the game is over.
 ply: a half-move by one of the players
 move: two plies, one by MAX and one by MIN

 Winner gets award, looser gets penalty.
 Games as search:

 Initial state: 
 e.g., board configuration of chess

 Successor function: 
 list of (move,state) pairs specifying legal moves.

 Terminal test: 
 Is the game finished?

 Utility function (objective function, payoff function)
 Gives numerical value of terminal states  
 E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe (next)
 typically from the point of view of MAX
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Partial Game Tree for Tic-Tac-Toe

 MAX is to move at odd depths

 MIN is to move at even depths

 Terminal nodes are evaluated 
from MAX's point of view
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Optimal strategies
 Perfect play for deterministic, perfect-information games

 Find the best strategy for MAX assuming an infallible MIN 
opponent.

 Assumption: Both players play optimally
 Basic idea:

 the terminal positions are evaluated form MAX's point of view
 MAX player tries to maximize the evaluation of the position

 3  5  1 

MAX to move 5

A
B

C

MAX chooses move B 
with value 5



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz22

Optimal strategies
 Perfect play for deterministic, perfect-information games

 Find the best strategy for MAX assuming an infallible MIN 
opponent.

 Assumption: Both players play optimally
 Basic idea:

 the terminal positions are evaluated form MAX's point of view
 MAX player tries to maximize the evaluation of the position
 MIN player tries to minimize MAX's evaluation of the position

 3  5  1 

MIN to move 1

A
B

C

MIN chooses move C 
with value 1
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Optimal strategies
 Perfect play for deterministic, perfect-information games

 Find the best strategy for MAX assuming an infallible MIN 
opponent.

 Assumption: Both players play optimally
 Basic idea:

 the terminal positions are evaluated form MAX's point of view
 MAX player tries to maximize the evaluation of the position
 MIN player tries to minimize MAX's evaluation of the position

 Minimax value
 Given a game tree, the optimal strategy can be determined by 

using the minimax value of each node:

MINIMAX n={UTILITY n  if n  is a terminal state
maxs∈SUCCESSORS n MINIMAX s if n  is a MAX node
mins∈SUCCESSORS nMINIMAX s  if n  is a MIN node
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Depth-Two Minimax Search Tree

MAX chooses move a1 
with value 3

Minimax maximizes the worst-case outcome for MAX.
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Minimax Algorithm

   v ← MAX-VALUE(state)
   return action a which has value v and a, s is in SUCCESSORS(state) 
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NegaMax Formulation
 The minimax algorithm can be reformulated in a simpler way

 for evaluation functions that are symmetric around 0 
(zero-sum)

 Basic idea:
 Assume that evaluations in all nodes (and leaves) are always 

from the point of view of the player that is to move
 the MIN-player now also maximizes its value

 As the values are zero-sum, the value of a position for MAX is 
equal to minus the value of position for MIN

→ NegaMax = Negated Maximum

NEGAMAX n={UTILITYn if n  is a terminal state
maxs∈SUCCESSORS n−NEGAMAX s if n  is an internal node
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Properties of Minimax Search
 Completeness 

 Yes, if tree is finite 
 e.g., chess guarantees this through separate rules

(3-fold repetition or 50 moves w/o irreversible moves are draw)
 Note that there might also be finite solutions in infinite trees

 Optimality
 Yes, if the opponent also plays optimally

 If not, there might be better strategies (→ opponent modeling)
 Time Complexity

 O(bm)
 has to search all nodes up to maximum depth (i.e., until 

terminal positions are reached)
 for many games unfeasible (e.g., chess:                     ) 

 Space Complexity
 search proceeds depth-first → O(m∙b)

b≈ 35, m≈ 60
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Alpha-Beta Pruning

2 7 1

= 2

≥ 2

≤ 1

?

• We don’t need to compute the value 
at this node.

• No matter what it is, it can’t affect 
the value of the root node.

MAX

MAX

MIN

 Minimax needs to search an exponential number of states
 Possible solution: 

 Do not examine every node
 remove nodes that can not influence the final decision

“If you have an idea that is surely bad, don't take the time to 
  see how truly awful it is.” -- Pat Winston 

Based on a slide by Lise Getoor
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Alpha-Beta Pruning

Maintains two values [α,β] for all nodes in the current path

 Alpha: 
 the value of the best choice (i.e., highest value) for the MAX 

player at any choice node for MAX in the current path
→ MAX can obtain a value of at least α

 Beta: 
 the value of the best choice (i.e., lowest value) for the MIN 

player at any choice node for MIN in the current path
→ MIN can make sure that MAX obtains a value of at most β

The values are initialized with [−∞, +∞]
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Alpha-Beta Pruning

Alpha and Beta are used for pruning the search tree:

 Alpha-Cutoff:
 if we find a move with value ≤ α  at a MIN node, we do not 

examine alternatives to this move
 we already know that MAX can achieve a better result in a 

different variation

 Beta-Cutoff:
 if we find a move with value ≥ β at a MAX node, we do not 

examine alternatives to this move
 we already know that MIN can achieve a better result in a 

different variation
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Alpha-Beta Algorithm

    if TERMINAL-TEST(state) return UTILITY(state)
    v ← + ∞
   for a, s in SUCCESSORS(state) do
     v ← MIN(v,MAX-VALUE(s, α , β))
     if v  ≤  α then return v
      β ← MIN(β ,v)
   return v

   if TERMINAL-TEST(state) return UTILITY(state)
    v ← + ∞
   for a, s in SUCCESSORS(state) do
     v ← MIN(v,MAX-VALUE(s, α , β))
     if v  ≤  α then return v
      β ← MIN(β ,v)
   return v

     v ← MAX-VALUE(state,   ̶̶ ∞ , +∞)
     return action a which has value v and a, s is in SUCCESSORS(state) 
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Example: Alpha-Beta
 The window is initialized with [−∞, +∞]
 search runs depth-first 
 until first leaf is found (value 3)

[−∞ ,+∞]

[−∞,∞]

Aufruf von
MAX-VALUE(A,−,+)

[−∞ ,∞]

Aufruf von
MAX-VALUE(E,−,+)

Aufruf von
MIN-VALUE(B,−,+)

E
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Example: Alpha-Beta
 It is followed that at node B, MIN can obtain at least 3 
 Subsequent search below B is now initialized with [−∞, +3]
 The leaf node (value 12) is worse for MIN (higher value for MAX)

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

Aufruf von
MAX-VALUE(F,−,+3)
in der 2. Iteration der 

Schleife von MIN-VALUE
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Example: Alpha-Beta
 The next leaf is also worse for MIN (value 8)
 Node B is now completed, and evaluated with 3
 The value is propagated up to A as a new minimum for MAX

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

Aufruf von
MAX-VALUE(F,−,+3)
in der 2. Iteration der 

Schleife von MIN-VALUE
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Example: Alpha-Beta
 Subsequent searches now know that MAX can achieve at 

least 3, i.e., the alpha-beta window is [+3, +∞]
 The value 2 is found below the min node
 As the value is outside the window (2 < 3), we can prune all 

other nodes at this level 

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2
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Example: Alpha-Beta

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2

 Subsequent searches now know that MAX can achieve at 
least 3, i.e., the alpha-beta window is [+3, +∞]

 The value 14 is found below the min node

[3,∞]

[3,∞]



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz37

Example: Alpha-Beta
 The next search now knows that MAX can achieve at least 3 

but MIN can hold him down to 14
 i.e., the alpha-beta window is [+3, +14]
 For the final node the window is [+3, +5]

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2

[3,∞]

[3,∞]

[3,14 ]

[3,5]

2

3
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Evaluation Order
 Note that the order of the evaluation of the nodes is crucial
 e.g., if in node D, the node with evaluation 2 is seached first,  

another cutoff would have been possible
→ good move order is crucial for good performance

[−∞ ,3]

[−∞ ,3]

[−∞ ,∞]

[−∞ ,∞]

3

[3,∞]

[3,∞]

≤ 2

[3,∞]

[3,∞]

14 2 

≤ 2
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General Alpha-Beta Pruning

 Consider a node n 
somewhere in the tree

 If Player has a better choice 
 at parent node of n
 or at any choice point 

further up
    n will never be reached in 

actual play.
 Hence we can prune n

 as soon as we can 
establish that there is a 
better choice
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Alpha-Cutoff vs. Beta-Cutoff

Graph by Alexander Reinefeld

 Of course, cutoffs can also occur at MAX-nodes
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Shallow vs. Deep Cutoffs

Graph by Alexander Reinefeld

 Cutoffs may occur arbitrarily deep in (sub-)trees



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz42

Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

Example due to L. Getoor
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]
[−∞ , 0]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

Example due to L. Getoor

0

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]
[−∞ ,0 ]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0 -3

Example due to L. Getoor

0

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[0,∞]

[0,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0 -3

Example due to L. Getoor

0

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[0,∞]

[0,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0 -3

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[0,∞]

[0,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0 -3 3

3

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ , 0]

[−∞ , 0]

[−∞ , 0]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0 -3 3

3

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,0]

[−∞ ,0]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,∞]

[−∞ ,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

5

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0 ]

[−∞ ,0 ]

[−∞ ,0 ]

[−∞ , 0]

[−∞ , 0]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0 ]

[−∞ ,0 ]

[−∞ ,0 ]

[−∞ , 0]

[−∞ , 0]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0 ]

[−∞ ,0 ]

[−∞ ,0 ]

[−∞ , 0]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0 ]

[−∞ ,0 ]

[−∞ ,0 ]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

Example due to L. Getoor

[−∞ ,∞]

[−∞ ,0 ]

[−∞ ,0 ]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

0

Example due to L. Getoor

[−∞ ,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0, 5]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[1,∞]

[1,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[1,∞]

[1,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

0

Example due to L. Getoor

[0,∞]

[0,∞]

[0,∞]

[0,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[1,∞]

[1,∞]

[1,∞]

[1,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

Example due to L. Getoor

[0,∞]

[0,∞]

[1,∞]

[1,∞]

[1,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

1

Example due to L. Getoor

[0,∞]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

1

Example due to L. Getoor

[0,1]

[0,∞]

[0, 1]

[0,1]

[0, 1]

[0,1]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

Example due to L. Getoor

[0,1]

[0,∞]

[0, 1]

[0,1]

[0, 1]

[0,1]
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Alpha-Beta Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

Example due to L. Getoor

Principal Variation
The line that will be 
played if both players 
play optimally. The PV 
determines the value of 
the position at the root.
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Properties of Alpha-Beta Pruning
 Pruning does not affect final results
 Entire subtrees can be pruned.
 Effectiveness depends on ordering of branches

 Good move ordering improves effectiveness of pruning
 With “perfect ordering,” time complexity is O(bm/2)

 this corresponds to a branching factor of      
→ Alpha-beta pruning can look twice as deep as minimax in the 

same amount of time
 However, perfect ordering not possible

 perfect ordering implies perfect play w/o search
 random orders have a complexity of O(b3m/4)
 crude move orders are often possible and get you within a 

constant factor of O(bm/2)
 e.g., in chess: captures and pawn promotions first, forward 

moves before backward moves

b
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More Information
 Animated explanations and examples of Alpha-Beta at work 

(in German)
 http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo19.php

http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo19.php
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Alpha-Beta – NegaMax Formulation

Code by Alexander Reinefeld

Recursive call with negated window

Note the negated return value!

[ MIN=− MAX ,  MIN=−MAX ]
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Alpha-Beta (Min-Max Formulation)

Graph by Alexander Reinefeld

2 5 9 1 4

[5,+∞]

[−∞ ,+∞]

[−∞ ,+∞] [−∞ , 5]

[5,+∞]

[−∞ ,+∞]
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Alpha-Beta (NegaMax Formulation)

Graph by Alexander Reinefeld

‒2 ‒5 ‒9 ‒1 ‒4

[5,+∞]

[−∞ ,+∞]

[−∞ ,+∞] [−∞ , 5]

[−∞ ,−5]

[−∞ ,+∞]

Values at min-nodes are 
negated, and alpha and 
beta-values are swapped

The child max-node 
returns -4 as the result .

(9>5)

(− 4>−5)
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Minimal Window Search
 If we have a good guess about the value of the position, we 

can further increase efficiency of Alpha-Beta by starting with 
a narrower interval than [−∞, +∞]

 such an aspiration window will result in more cut-offs
 with the danger that they may not be correct

 Extreme case: Minimal Window β = α + 1
 No value can be between these two values

 assuming an integer-valued evaluation function
 Possible results:

 FAIL HIGH:

 FAIL LOW:

 Thus, MWS tests efficiently (many cutoffs) whether a position 
is better than a given value or not

Value≥ =1 ⇒ Value

Value≤
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NegaScout
(Principal Variation Search)

 if we can establish that the value of a node is lower 
(FAIL LOW), the node is not interesting (a better node exists)

 If FAIL-HIGH, we know that this is better, but not how much
 need to re-search the tree with a bigger window

Based on a slide by Alexander Reinefeld



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz76

NegaScout (Reinefeld 1982)

Code by Alexander Reinefeld

FAIL-HIGH: 
t is outside the null window 
(but still within the original window)
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Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

1. Fall: t < a:
 Zug brachte keine Verbesserung

 nächster Zug wird mit 
-NEGASCOUT(s,-a-1,-a) 
durchsucht

-NEGASCOUT(s,-a-1,-a)
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Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

2. Fall: a ≤ t < β:
 Zug bringt zumindest t
 Genauer Wert läßt sich aber nicht 

bestimmen, da Zweige aufgrund 
des falschen β-Werts geprunt 
worden sein könnten

 2. Zug muß nochmals durchsucht 
werden mit -NEGASCOUT(s,-β,-t)

-NEGASCOUT(s, -β, -t)
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Schematische Darstellung
 des Ablaufs in einem MAX-Knoten

NEGASCOUT(s,α,β)

-NEGASCOUT(s,-β,-α)

a

-NEGASCOUT(s,-a-1,-a)

t

3. Fall: t ≥ β:
 Zug bringt mehr als β
 Weder dieser noch ein anderer 

Zug wird gespielt werden, da ein 
anderer Pfad im Baum dem 
Gegner mehr verspricht.
→ Beta-Cutoff
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NegaScout Example

Example by Alexander Reinefeld

≥8  4

NegaScout assumes
MIN can get at least 6
→ we can prune this 
branch because MAX 
has already at least 8.

−4

‒2 ‒5 ‒9 -8 ‒1 ‒4

4

≤ -8

+4
+8

+4
+1

 

hope for ≤ 5 / ≥ -5
(-6, -5)

The assumption has 
turned out to be correct 
(4 ≤ 5), so the null Window 
cut-off was justified.
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NegaScout Example

Example by Alexander Reinefeld

Re-Search would 
happen if this subtree
fails high (t > 5)

≥8 4

Then this node 
would return ≥ t

... and the right branch of this node would 
be re-searched with the window [t, +∞]

NegaScout assumes
MIN can get at least 6
→ we can prune this 
branch because MAX 
has already at least 8.

 −4

‒2 ‒5 ‒9 -8 ‒1 ‒4

-4

≤ -8

+4
+8

+4
+1

 

hope for ≤ 5 / ≥ -5
(-6, -5)
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Performance of NegaScout
 Essentially, NegaScout assumes that the first node is best

(i.e., the first node is in the principal variation)
 if this assumption is wrong, it has to do re-searches
 if it is correct, it is much more efficient than Alpha-Beta

→ it works best if the move ordering is good
 for random move orders it will take longer than Alpha-Beta
 10% performance increase in chess engines

 It can be shown that NegaScout prunes every node that is 
also pruned by Alpha-Beta

 Various other algorithms were proposed, but NegaScout is 
still used in practice

 SSS*: based on best-first search
 MTD(f): improves NegaScout by returning upper or lower 

bounds on the true value, needs memory (TTable) for that
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Move Ordering
 The move ordering is crucial to the performance of alpha-

beta search
 Domain-dependent heuristics:

 capture moves first
 ordered by value of capture

 forward moves first
 Domain-independent heuristics:

 Killer Heuristic
 manage a list of moves that produced cutoffs at the current level 

of search 
 Idea: if there is a strong threat, this should be searched first

 History Heuristic
 maintain a table of all possible moves (independent of current 

position)
 if a move produces a cutoff, its value is increased by a value that 

grows fast with the search depth (e.g., d 2 or 2d )
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Outline
 Introduction

 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search



Game Playing:  Adversarial Search                                                                                            

   TU Darmstadt                                                                                                                                                                     Einführung in die Künstliche Intelligenz

 V2.0  |  J. Fürnkranz86

Imperfect Real-World Decisions
 In general the search tree is too big to make it possible to 

reach the terminal states!
 even though alpha-beta effectively doubles the search depth

 Examples:
 Checkers: ~1040 nodes
 Chess: ~10120 nodes

 For most games, it is not practical within a reasonable 
amount of time

 Key idea (Shannon 1950):
 Cut off search earlier 

 replace TERMINAL-TEST by CUTOFF-TEST
 which determines whether the current position needs to be 

searched deeper
 Use heuristic evaluation function EVAL 

 replace calls to UTILITY with calls to EVAL
 which evaluates how promising the position at the cutoff is
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Brute-Force vs. Selective Search
 Shannon Type-A (Brute Force)

 search all positions until a fixed horizon 
 CUTOFF-TEST test only tests for the depth

of a position
 Shannon Type-B (Selective Search)

 CUTOFF-TEST prunes uninteresting lines 
(as humans do)

 Selective Search preferred by Shannon and contemporaries
 early program limit branching factor (e.g., Newell/Simon/Show 

to the „magical number“ 7)
 Brute-Force Search was shown to outperform selective 

search in the 70s
 Current programs use a mixture

 selective search near the leaves
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Fixed-Depth Alpha-Beta

Cutoff the search at a pre-determined depth
 CUTOFF-TEST compares the current search depth to a fixed 

maximum depth D and returns true if the depth has been 
reached or if the position is a terminal position

 At a terminal position: 
 return the game-theoretic score 

 At a max-depth position: 
 return the value of the evaluation function EVAL

 At an interior node:
 recursively call alpha-beta
 increment the current search depth by one

Note:
 the incrementation of the search depth is often realized with a 

decrement of an initial search depth, and a cutoff at 0.
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Evaluation Function

 Evaluation function or static evaluator is used to evaluate the 
“goodness” of a game position.

 Contrast with heuristic search where the evaluation function 
was a non-negative estimate of the cost from the start node to 
a goal and passing through the given node

 The zero-sum assumption allows us to use a single 
evaluation function to describe the goodness of a board with 
respect to both players. 

 f (n) >> 0: position n good for me and bad for you
 f (n) << 0: position n bad for me and good for you
 f (n)  ≈  0: position n is a neutral position
 f (n) = +∞: win for me
 f (n) = −∞: win for you  

Based on a slide by L. Getoor
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Heuristic Evaluation Function
 Idea: 

 produce an estimate of the expected utility of the game from a 
given position.

 Performance:

 depends on quality of EVAL.

 Requirements:

 EVAL should order terminal-nodes in the same way as 
UTILITY.

 Computation should not take too long (many leaf nodes have 
to be evaluated)

 For non-terminal states the EVAL should be strongly correlated 
with the actual chance of winning.
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Linear Evaluation Functions
 Most evaluation functions are linear combinations of features



 a feature fi encodes a certain characteristic of the position

 e.g., # white queens/rooks/knights,..., # of possible moves, 
# of center squares under control, etc.

 originate from experience with the game
 Advantages:

 conceptually simple, typically fast to compute
 Disadvantages:

 tuning of the weights may be very hard (→ machine learning)
 adding up the weighted features makes the assumption that 

each feature is independent of the other features

EVAL s=w
1
⋅f

1
sw

2
⋅f

2
s...w

n
⋅f

n
 s=∑

i=1

n

w
i
f

i
 s
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Evaluation Function Examples

 Example of an evaluation function for Tic-Tac-Toe: 
 f(n) = [# 3-lengths open for me] − [# 3-lengths open for you] 
 where a 3-length is a complete row, column, or diagonal

 Alan Turing’s function for chess
 f(n) = w(n)/b(n) where 

 w(n) = sum of the point value of white’s pieces 
 b(n) = sum of black’s

 Chess champion program Deep Blue has about 6000 features 
in its evaluation function

 Current state-of-the-art programs use non-linear functions
 e.g. different feature weights in different game phases

Based on a slide by L. Getoor
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Evaluation functions

Evaluation is typically very brittle
 small changes in the position may cause large leaps in the 

evaluation

                         Black is clearly winning               White is clearly winning
                              (up in material)                      (can take black's queen)

→ Evaluation and Search are not independent:
 What is taken care of by search need not be in EVAL

→ Evaluation only applied to stable „quiescent“ position
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Quiescence Search
 Evaluation only useful for quiescent states 

 states w/o wild swings in value in near future
 e.g.: states in the middle of an exchange are not quiet

 Algorithm
 When search depth reached, compute quiescence state 

evaluation heuristic
 If state quiescent, then proceed as usual; otherwise increase 

search depth if quiescence search depth not yet reached
 Example:

 In chess, typically all capturing moves, and all pawn 
promotions are followed

 no depth parameter needed, because there is only a finite 
number of captures and pawn promotions

 Note that this is different with checks!
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Horizon Effect
Fixed depth search 
thinks it can avoid
the queening move

 Problem with fixed-depth search:
 if we only search n moves ahead, 

it may be possible that the 
catastrophy can be delayed by a 
sequence of moves that do not 
make any progress

 also works in other direction 
(good moves may not be found)

 Examples:
 computer starts to give away

its pieces in hopeless positions
(because this avoids the mate)

 checks:
Black can give many
consecutive checks
before white escapes
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Search Extensions
 game-playing programs sometimes extend the search depth

 typically by skipping the step that increments the current 
search depth

 increments with fractional values are also possible (multiple 
fractional extensions are needed for an extension by 1)

 search is then continued as usual (until horizon is reached)
 but the depth of the of the horizon may be different in different 

branches of the trees
 Danger:

 extensions have to be designed carefully so that the search will 
always terminate (within reasonable time)

 Typical idea:
 extend the search when a forced move is found that limits the 

possible replies to one (or very few) possible actions
 Examples in chess:

 checks, recaptures, moves with passed pawns
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Forward Pruning
 Alpha-Beta only prunes search trees when it is safe to do so

 the evaluation will not change (guaranteed)
 Human players prune most of the possible moves

 and make many mistakes by doing so...

 Several variants of forward pruning techniques are used in 
state-of-the-art chess programs

 Null-move pruning
 Futility pruning
 Razoring

 See, e.g., 
 Ernst A. Heinz: Scalable Search in Computer Chess. 

Vieweg 2000.
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Null-Move Pruning
 Idea: in most games, making a move improves the position
 Approach:

 add a „null-move“ to the search, i.e., assume that current 
player does not make a move

 if the null-move search (sometimes at reduced depth) results in 
a cutoff, assume that making a move will do the same

 Danger:
 sometimes it is good to make no move (Zugzwang)

 Improvements:
 do not make a null-move if

 in check
 in endgame
 previous move was a null-move

 verified null-move-pruning: do not cut off but reduce depth 
 adaptive null-move pruning:

 use variable depth reduction for the null-move search
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Iterative Deepening

Repeated fixed-depth searches for depths d = 1, ..., D
 as for single-agent search
 frequently used in game-playing programs

Advantages:
 works well with transposition tables
 improved dynamic move-ordering in alpha-beta

 what worked well in the previous iteration is tried first in the next 
iteration

 simplifies time managements 
 if there is a fixed time limit per move, this can be handled flexibly 

by adjusting the number of iterations during the search
 previous iterations provide useful information that allow to guess 

whether the next iteration can be completed in time
→ Quite frequently the total number of nodes searched is smaller 

than with non-iterative search!
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Why Should Deeper Search Work?
 If we have a perfect evaluation function, we do not need 

search.
 If we have an imperfect evaluation function, why should its 

performance get better if we search deeper?

 Game Tree Pathologies
 One can construct situations or 

games where deeper search 
results in bad performance

 Diminishing returns:
 the gain of deeper searches

goes down with the depth 
 can be observed in most games
 various different explanations

Graph by Martin Fierz

Results of Checkers pograms 
that play with depth d against 

themselves with depth d-2
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Transposition Tables
 Repeated states may occur

 different permutations of the move sequences lead to the 
same positions

 Can cause exponential growth in search cost

Transposition Tables:
 Basic idea:

 store found positions in a hash table
 if it occurs a second time, the value of the node does not have 

to be recomputed
 Essentially identical to the closed  list in GRAPH-SEARCH
 May increase the efficiency by a factor of 2
 Various strategies for swapping positions once the table size 

is exhausted
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Transposition Tables - Implementation

Each entry in the hash table stores
 State evaluation value (including whether this was as exact 

value or a fail high/low value)
 Search depth of stored value (in case we search deeper)
 Hash key of position (to eliminate collisions)
 (optional) Best move from position

Zobrist Hash Keys:
 Generate 3d-array of random 64-bit numbers 

 One key for each combination of piece type, location and color
 Start with a 64-bit hash key initialized to 0
 Loop through current position, XOR’ing hash key with Zobrist 

value of each piece found 
 Can be updated incrementally by XORing the “from” location 

and the “to” location to move a piece
Based on slides by Daniel Tauritz
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Zobrist Keys for Connect-4
 Key Table:

Example by Hendrik Baier
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Zobrist Keys for Connect-4
 Computation of a position key:

hash key for above position

Example by Hendrik Baier
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Multiplayer games
 Games allow more than two players
 Single minimax values become vectors

 one evaluation value for each player
 Example:

 three players (A, B, C) →

Two-Player 0-sum
are a special case
where fA(n) = −fB(n)

(hence only one 
value is needed)

f n = f An  , f B n  , f C n
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Multiplayer games
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Outline
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 What are games?
 History and State-of-the-art in Game Playing

 Game-Tree Search
 Minimax
 α-β pruning
 NegaScout

 Real-time Game-Tree Search
 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search
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Games of Chance
 Many games combine skill and chance 

 i.e., they contain a random element like the roll of dice
 This brings us closer to real-life

 in real-life we often encounter unforeseen situations

 Examples
 Backgammon, Monopoly, ...

 Problem
 Player MAX cannot directly maximize his gain because he 

does not know what MIN's legal actions will be
 MIN makes a roll of the dice after MAX has completed his ply

 and vice versa (MIN cannot minimize)
→ Minimax or Alpha-Beta no longer applicable

→ Standard game trees are extended with chance nodes
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Game-Tree with Chance Nodes

Chance nodes for 
the roll of two dice

associated probability
outcome of the dice roll
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Optimal Strategy with Chance Nodes
 MAX wants to play the move that maximizes his chances of 

winning
 Problem:

 the exact outcome of a MAX-node cannot be computed 
because each MAX-node is followed by a chance node

 analogously for MIN-nodes
 Expected Minimax value

 compute the expected value of the outcome at each chance 
node

E XPECTIMINIMAX n={UTILITYn if n  is a terminal state
maxs∈SUCCESSORS nE XPECTIMINIMAX if n  is a MAX node
mins∈SUCCESSORS nE XPECTIMINIMAX if n  is a MIN node

∑
s∈SUCCESSORS n

P s⋅E XPECTIMINIMAX if n  is a chance node
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Example

coin tosses
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Example

0.5⋅20.5⋅4=3 −1=0.5⋅00.5⋅−2

3

coin tosses

EXPECTIMINIMAX gives perfect play, like MINIMAX
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Re-Scaling of Evaluation Functions
 Minimax:

 no problem, as long as values are ordered in the same way
(monotonic transformations)

MAX plays the same move in both cases
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Re-Scaling of Evaluation Functions
 Expectiminimax:

 Monotonic transformations may change the result

 only positive linear transformations preserve behavior
→ EVAL should be proportional to the expected outcome!
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Nondeterministic Games in Practice
 Complexity

 In addition to the branching factor, the number of different 
outcomes c adds at each chance node to the complexity

 Total complexity is O(bmcm)
→ deep look-ahead not feasible

 prob. of reaching a given node shrinks with increasing depth
 forming plans is not that important 

→ deep look-ahead is also not that valuable
 Example:

 TD-Gammon uses only 2-ply look-ahead + very good EVAL

 Alpha-Beta Pruning is also possible (but less effective)
 at MIN and MAX nodes as usual
 at chance nodes, expected values can be bounded before all 

nodes have been searched if the value range is bounded

c = 2    for coin flip
c = 6    for rolling one die
c = 21  for rolling two dice
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Games of Imperfect Information
 The players do not have access to the entire world state

 e.g., card games, when opponent's initial cards are unknown
 We can calculate a probability for each possible deal

 seems just like one big dice roll at the beginning of the game
 Intuitive Idea:

 compute the minimax value of each action in each deal
 choose the action with the highest expected value over all 

deals
 Main problem:

 too many possible deals to do this efficiently
→ take a sample of all possible deals

 Example:
 GIB (a very good Bridge program) generates 100 deals 

consistent with bidding information (this also restricts!)
 picks the move that wins the most tricks on average
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Imperfect Information - Example

Scenario a) MIN has 4♥

→ both players will make two tricks

Scenario b) MIN has 4♦

→ both players will make two tricks

MAX can play
optimally if MAX

knows MIN's cards
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Imperfect Information - Example

Scenario c) MIN has either 4♥ or 4♦ 
 but MAX does not know which!

→ MAX does not know which card to drop 
and has a 50% chance of losing the game!

 Lesson:
 The intuition that the value of an action is the average of its value in 

all actual states is wrong!
 the value of an action also depends on the agents' belief state 

 if I know that it is more probable that he has 4♥, the expected value 
should be adjusted accordingly

 may lead to information-gathering or information-disclosing actions 
(e.g., signalling bids or unpredictable (random) play)
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BA

Belief States in Minimax Search
 Minimax always assumes that the opponent plays its best 

response (it is said to be conservative)

 This may be a bad idea:

 MAX will play move B
 If there is a small chance that MIN does not play according to 

MAX's evaluation
 because the evaluation is wrong or MIN makes a mistake

    then A would be the better choice!
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Opponent Modeling
 For simple games we know optimal solutions

 Complete search through Minimax tree
 Game-Theory: Nash-Equilibrium

 Optimal solutions are not Maximal!
 Example: Roshambo (Rock/Paper/Scissors)

 Optimal Solution: Pick a random move
 clearly suboptimal against a player that always plays rock!

→ Roshambo Computer Tournament (1999, 2000)
 Opponent Modeling

 try to predict the opponent's next move
 try to predict what move the opponent predicts that your next 

move will be, ....
 For some games, opponent modeling is essential for 

success
 Poker (Schaeffer et al., University of Alberta)

Somewhat off-topic, but see also:
http://www.youtube.com/watch?v=3nxjjztQKtY
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 evaluation functions
 practical enhancements
 selective search

 Games of imperfect information and games of chance
 Simulation Search

 Monte-Carlo search
 UCT search

http://www.youtube.com/watch?v=3nxjjztQKtY
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Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

Picture taken from (Schaeffer 2000)

searched

not searched

evaluation 
function
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Simulation Search – Key Idea
 The complete tree is not searchable

 thus minimax/alpha-beta limit the depth of the search tree
 search all variations to a certain depth

 alternatively, we can limit the breadth of the search tree
 sample some lines to the full depth

Picture taken from (Schaeffer 2000)
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Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the 
number of wins in a series of complete games

 at each chance node select one of the options at random 
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast 
evaluation function)

 Examples:
 roll-out analysis in Backgammon

 play a large number of games from the same position
 each game has different dice rolls

 in Scrabble:
 different draws of the remaining tiles from the bag

 in card games (e.g., GIB in Bridge)
 different distributions of the opponents' cards
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Simulation Search
 Algorithm Sketch:

 estimate the expected value of each move by counting the 
number of wins in a series of complete games

 at each chance node select one of the options at random 
(according to the probabilities)

 at MAX and MIN nodes make moves (e.g., guided by a fast 
evaluation function)

 Properties:
 We need a fast algorithm for making the decisions at each 

MAX and each MIN node
 the program plays both sides, of course

 Often works well even if the program is not that strong
→ fast is possible

 Easily parallelizable
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Monte-Carlo Search
 Extreme case of Simulation search:

 play a large number of games where both players make their 
moves randomly

 average the scores of these games
 make the move that has the highest average score

 Has been treen with some success in Go
 e.g., Bruegmann 1993
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Integrating Simulation Search 
and Game Tree Search

 Monte-Carlo Search can be integrated with conventional 
game-tree search algorithms:

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and B. Bouzy. 
Progressive strategies for Monte-Carlo Tree Search.  New Mathematics and Natural Computation, 4(3), 2008.
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UCT Search
(Kocsis & Szepesvari, 2006)

 Selection
 Select the node  
 Parameter C trades off between

 Exploitation: Try to play the best possible move
 maximize value(s)

 Exploration: Try new moves to learn something new
 s gets a high value when the number of visits in the node is low

 in relation to the number of visits in the parent node n
 Sometimes:

 only use UCT if the node has been visited at least T times
 frequently used value T = 30

 UCT is an adaptation of a solution to the 
Multi-Armed Bandit Problem to game tree search

 you are in a Casino with k one-armed bandits 
with different winning probabilities

 try to maximize your winnings

smax=arg maxs∈Successorsn value sC⋅ ln #visitsn

  #visits s
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UCT Search
(Kocsis & Szepesvari, 2006)

 Expansion
 add a randomly selected node to the game tree

 Simulation
 perform one iteration of a Monte-Carlo search starting from the 

selected node
 Backpropagation

 adapt value(n) for each node n in the partial game tree
 the value is just the average result of all games that pass 

through this node
 Move Choice

 make the move that has been visited most often (reliability)
 not necessarily the one with the highest value (high variance)

 UCT is currently very popular in Computer Go Research
 e.g., MoGo (Gelly, Wang, Munos, Teytaud, 2006)
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Perspective on Games: Pro

“Saying Deep Blue doesn’t really think 
about chess is like saying an airplane 
doesn't really fly because it doesn't flap 
its wings”

Drew McDermott

© Jonathan Schaeffer
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Perspective on Games: Con

“Chess is the Drosophila of artificial intelligence. 
However, computer chess has developed much 
as genetics might have if the geneticists had 
concentrated their efforts starting in 1910 on 
breeding racing Drosophila. We would have 
some science, but mainly we would have very 
fast fruit flies.”

John McCarthy

© Jonathan Schaeffer
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Additional Reading
 Jonathan Schaeffer. The Games Computers (and People) Play, 

Advances in Computers 50 , Marvin Zelkowitz (ed.) Academic Press, pp. 
189-266, 2000. 

 excellent survey paper

 Jonathan Schaeffer and Jaap van den Herik (eds.) 
Chips Challenging Champions: Games, Computers and 
Artificial Intelligence, North-Holland 2002.

 very good collection of state-of-the-art papers

 Jonathan Schaeffer: One Jump Ahead: Challenging 
Human Supremacy in Checkers, Springer 1998.

 non-technical first-hand account on the 
Chinook project

 Feng-Hsiung Hsu: Behind Deep Blue: Building the Computer 
That Defeated the World Chess Champion, Princeton 2002

 non-technical first-hand account on Deep Blue

http://www.cs.ualberta.ca/~jonathan/Papers/Papers/advances.ps
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