
 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz1

 Introduction
 Planning vs. Problem-Solving
 Representation in Planning Systems

 Situation Calculus
 The Frame Problem

 STRIPS representation language
 Blocks World

 Planning with State-Space Search
 Progression Algorithms
 Regression Algorithms

 Planning with Plan-Space Search
 Partial-Order Planning
 The Plan Graph and GraphPlan
 SatPlan

Planning

Some based on Slides by
Lise Getoor and Tom Lenaerts

Material from
Russell & Norvig,

 chapters 7.7. and 10

Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz2

Planning problem

 Planning is the task of coming up with a sequence of actions
that will achieve a goal starting from an initial state

 many search-based problem-solving agents are special cases
 Given:

 a set of action descriptions (defining the
possible primitive actions by the agent),

 an initial state description, and
 a goal state description or predicate,

 Find a plan, which is
 a sequence of action instances, such that executing them in

the initial state will change the world to a state satisfying the
goal-state description.

 Goals are usually specified as a conjunction of subgoals to
be achieved

Key Novelty:Key Novelty:
Actions and States areActions and States are
described with propertiesdescribed with properties

Key Novelty:Key Novelty:
Actions and States areActions and States are
described with propertiesdescribed with properties

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz3

Application Scenario
 Classical planning environment

 fully observable, deterministic, finite, static, discrete
 Practical Applications

 design and manufacturing
 military operations
 games
 space exploration

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz4

Planning vs. Problem Solving

 Planning and problem solving methods can often solve the
same sorts of problems

 Planning is more powerful because of the representations
and methods used

 States, goals, and actions are decomposed into sets of
sentences (usually in first-order logic)

 Planning can analyze the effects of actions
 The successor function is a black box: it must be “applied” to

a state to know which actions are possible in that state and
what are the effects of each one

 An explicit representation of the possible actions and their
effects would help the problem solver

 Subgoals can often be planned independently, reducing the
complexity of the planning problem

 Search may be through plan space rather than state space

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz5

Representation in Planning

Problem solving Logic representation

Planning

 In Problem Solving, actions, states, and goals are black
boxes

 each problem has its own representation
 agent does not understand the representations of actions,

states, and goals
→ cannot exploit relations between them

 Planning works with explicit representations of actions,
states, and goals

 typically in some form of logical calculus

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz6

Key Problems
 Which actions are relevant?

 Example: Goal is have(milk)
 the agent may have billions of possible actions

 e.g., one buy-action for each possible product in a store
 an intelligent planner will know that buy(X) will cause have(X),

and only consider the action buy(milk)
 What is a good heuristic functions?

 Problem:
 states are domain-specific data structures, and new heuristics

must be supplied for each new problem
 Example: Goal is buying n different items

 Number of plans grows exponentially with n
→ Problem-independent heuristics are needed

 e.g., number of subgoals that have already been reached
 How to decompose a problem?

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz7

Decomposable Problems
 Goals are often given as a conjunction of subgoals

 e.g., have(milk) & have(bread)
 each subgoal can be solved independently

Other problems can be decomposed into subproblems:
 Example: overnight delivery of a set of packages

 Planning a complete route for all packages at once is very
expensive (O(n!) different routes)

→ Better decompose the problem:
 First distribute the packages to the airports nearest to the

respective destinations
 Then plan separate routes from each airport to the final

destinations
→ O(k∙(n/k)!) different routes if we have k airports

 much less than O(n!))

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz8

Nearly Decomposable Problems
 Completely decomposable problems are rare

 typically there are interactions between subgoals

→ Nearly decomposable problems
 planning for subgoals is possible
 but additional work may be required to bring the partial results

together
 Example:

 Independent plans for have(milk)and have(bread) may
have the result that two different super-markets are visited

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz9

Major Approaches to Planning
 Situation calculus
 State space planning
 Partial order planning
 Planning graphs
 Planning with Propositional Logic
 Hierarchical decomposition (HTN planning)
 Reactive planning

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz10

Planning in First-Order Logic

Principal Idea:
 Formulate planning problem in First-Order Logic (FOL)

 states (and goals) are conjunctions of literals
 actions are logical rules

 Use theorem prover to find a proof for the goal
 the actions used in this proof are the plan
 e.g., use PROLOG

Key Problem:
 How to represent change?

a) add and delete sentences from the Knowledge Base (KB)
 to reflect changes

b) all facts are indexed by a situation variable → situation
calculus

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz11

PROLOG-like Logical Notation
 Constant: represents some objects

 starts with a number or a lower-case letter
 e.g., etc.

 functions are like constants, but complex expressions
 Variable: denotes some unknown object/constant

 starts with an upper-case letter or an underscore
 e.g. etc.

 within a conjunction of literals, same variables refer to same objects
 but may be different objects in different conjunctions / rules

 Predicate: denotes a relation between two objects
 starts with a lower-case letter

 e.g.,
 Literal: a predicate symbol with some arguments

 e.g., parent(pam,bob), at(pam,X), airport(X)
 Rule: an implication, typically written Head :- Cond1, Cond2,

 e.g., grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz12

Situation Calculus
 A situation is a snapshot of the world at some instant in time
 Every true or false statement is made with respect to a

particular situation
 Add situation variables to every predicate.
 at(agent,1,1) becomes at(agent,1,1,s0):
at(agent,1,1) is true in situation (i.e., state) s0.

 Add a new function, result(a,s), that maps a situation s
into a new situation as a result of performing action a.

 For example, result(forward,s) is a function that returns
the successor state (situation) to s after performing action
forward

 Note that this is just notation!
 Logical functions are not implemented or evaluated!
 They are used in pattern matching

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.2 | J. Fürnkranz13

Situation Calculus
 Actions can be respresented as logical rules that describe

which states can be valid
 Example:

 The action agent-walks-to-location-y could thbe represented by
the PROLOG rule

at(A,Y,result(walk(Y),S)) :- at(A,X,S).

agent A is now at location Y in state result(walk(Y),S)
if it was at location X in state S and performed action walk(Y)

 Action sequences result in nested function expressions
 at(home,result(go(home),
 result(go(grocery),
 result(go(hardwarestore),s0))))

 In the state that results from the application of go(home) to the
state that results from the application of go(grocery) to the state
that results from the application of go(hardwarestore) to the state
s0 the proposition at(home) holds.

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz15

Situation Calculus Planning
 Initial state

 a logical sentence that describes current situation S0

at(home,s0), not(have(milk,s0)), not(have(bread,s0)),
not(have(drill,s0))

 Goal state
 a logical sentence that describes the goal state

at(home,G), have(milk,G), have(bread,G), have(drill,G)

 Actions (Operators)
 logical rules that describe the effects of actions

 have(milk,result(A,S)) :- at(grocery,S),
 A = buy(milk).
 have(milk,result(A,S)) :- have(milk,S),
 A != drop(milk).

 etc.

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz17

Situation Calculus Planning
 Solution

 A sequence of actions P (a plan) that, when applied to the
initial state, yields a situation satisfying the goal query

at(home,G), have(milk,G), have(bread,G), have(drill,G)

with

G = result(P,S)

 G could, for example, be something like

 Projection
 determine the effect of a sequence of actions

 Planning
 find the sequence of action with the desired effect

G = result(go(home), result(buy(drill),
 result(go(hardwareStore), result(buy(bread),
 result(buy(milk), result(go(grocery), s0))))))

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz18

The Frame Problem
 the action rules only specify what aspects change when an

action is performed
 have(milk,result(A,S)) :- at(grocery,S),
 A = buy(milk).

 we also need rules that describe what does not change!
 at(grocery,result(A,S)) :- at(grocery,S),
 A = buy(milk).

If we are in a grocery store and buy milk, we remain in the grocery store.

 such frame axioms are necessary for all possible
combination of state predicates and actions

 representational frame problem:
 we do not want to represent each such possible combination

 inferential frame problem:
 most of the work will be spent in deriving that nothing changes

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz19

SC Planning: More Problems
 Qualification problem:

 difficulty in specifying all the conditions that must hold in order
for an action to work

 e.g., go action might fail for various reasons
(locked doors, hit by a truck while crossing the street, ...)

 Ramification problem:
 difficulty in specifying all of the effects that will hold after an

action is taken
 e.g., if the agent carries something, a go action will move that

thing too...
 Complexity:

 problem solving (search) is exponential in the worst case
 Optimality:

 resolution theorem proving can only find a proof (plan), not
necessarily a good plan

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz20

Representation Languages
 for Planning

 Some of the afore-mentioned problems can be solved by
better knowledge representation

 some of them will necessarily remain
(e.g., qualification and ramification problems)

 Alternative approach
 we restrict the language
 use a special-purpose algorithm (a planner) rather than

general theorem prover
 Criteria for a good representation language

 Expressive enough to describe a wide variety of problems
 Restrictive enough to allow efficient algorithm
 Planning algorithm should be able to take advantage of the

logical structure of the problem.

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz21

The STRIPS Language
 STRIPS (STanford Research Institute Problem Solver)

 classical planning system (Fikes & Nilsson, 1971)
 representation of states and actions quite influential

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz22

STRIPS: Representation of States
 Decompose the world in logical conditions and represent a

state as a conjunction of positive literals.
 Propositional literals

 e.g., poor ∧ unknown
 First-Order literals

 e.g., at(plane1, melbourne) ∧ at(plane2, sydney)
 grounded (contain no variables)
 function-free (contain no function symbols)

 Closed world assumption
 what is not known to be true, is assumed to be false

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz23

STRIPS: Representation of Goals
 like any other state, a goal is a conjunction of positive ground

literals
 e.g. rich ∧ famous

 may be partially instantiated:
 e.g., at(P,paris) ∧ plane(P)

(some plane should be in Paris)

 A goal is satisfied if the state contains all literals in goal
 e.g. rich ∧ famous ∧ miserable satisfies goal

 In the case of partially instantiated first-order predicates, the
state must contain some instantiation of the literals

 e.g., at(spirit_of_st_louis,paris) ∧
 plane(spirit_of_st_louis)

 satisfies the goal with the substitution
 = {P/spirit_of_st_louis}

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz24

STRIPS: Representation of Actions

Preconditions: determine the applicability of an action
 conjunction of function-free literals
 the action is applicable if the preconditions match the current

state (similar to goals)

Effects: describe the state change after executing an action
 conjunction of function-free

literals
 typically divided into:

 ADD-list:
 facts that become true

after executing the action
 DELETE-list

 facts that become false
after executing the action

Action(fly(P, From, To),

PRECOND: at(P,From),
 plane(P),
 airport(From),
 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

Action(fly(P, From, To),

PRECOND: at(P,From),
 plane(P),
 airport(From),
 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz25

Semantics of the STRIPS Language
 What actions are applicable in a state?

 An action is applicable in any state that satisfies the
precondition.

 For First-Order action schema applicability involves a
substitution for the variables in the PRECOND.

 Example:
at(p1,jfk), at(p2,sfo), plane(p1), plane(p2),
airport(jfk), airport(sfo)

satisfies
at(P,From), plane(P), airport(From), airport(To)

with

 ={P/p1,From/jfk,To/sfo}

 Thus the action fly(P, From, To) is applicable.

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz26

Semantics of the STRIPS Language

 What effects do the actions have?
 The result of executing action a in state s is the state t
 t is same as s except

 Any literal P in the ADD-list is added
 Any literal P in the DELETE-list is removed

 Example
ADD: at(P,To)
DELETE: at(P,From)

with substitution ={P/p1,From/jfk,To/sfo} results in state
at(p1,jfk), at(p2,sfo), plane(p1), plane(p2),
airport(jfk), airport(sfo), at(p1,sfo),

 STRIPS assumption
 every literal NOT in the effect remains unchanged
 avoids representational frame problem

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz27

Example: Blocks World
 Very famous AI toy domain
 The blocks world is a micro-world

that consists of
 a table
 a set of blocks
 a robot hand

 Operation
 The robot hand can grasp a single block
 The robot hand can move over the table (with or without a

block)
 The robot hand can release a block it is holding
 Blocks can be stacked on top of each other if the top is clear
 Any number of blocks can be on the table
 The hand can only hold one block

A

B

C

TABLE

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz28

State Representation

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty

A B

C

TABLE

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz29

Goal Representation

A

B

C

on(a,table), on(b,a), on(c,b)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz30

Action Application

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty,

A B

C

TABLE

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz31

Action Application

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty,
holding(c), clear(a)

A B

C

TABLE

unstack(c,a)

 ={X/c, Y/a}

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz32

Action Application
Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

Action(unstack(X,Y),
PRECOND: handempty,
 block(X),
 block(Y),
 clear(X),
 on(X,Y),
ADD: holding(X),
 clear(Y),
DELETE: handempty,
 clear(X),
 on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table),
clear(b),
holding(c), clear(a)

TABLE
A B

C

unstack(c,a)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz33

More Blocks-World Actions

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(pickup(X),
PRECOND: handempty,
 block(X),
 clear(X),
 on(X,table),
ADD: holding(X),
DELETE: handempty,
 clear(X),
 on(X,table)
)

Action(pickup(X),
PRECOND: handempty,
 block(X),
 clear(X),
 on(X,table),
ADD: holding(X),
DELETE: handempty,
 clear(X),
 on(X,table)
)

Action(putdown(X),
PRECOND: holding(X)
ADD: handempty,
 clear(X),
 on(X,table)
DELETE: holding(X)
)

Action(putdown(X),
PRECOND: holding(X)
ADD: handempty,
 clear(X),
 on(X,table)
DELETE: holding(X)
)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz34

Example: Air Cargo Transport
 Initial state:

at(c1,sfo), at(c2,jfk), at(p1,sfo),
at(p2,sfo), cargo(c1), cargo(c2),
plane(p1), plane(p2), airport(jfk),
airport(sfo)

 Goal state:
at(c1,jfk), at(c2,sfo)

Action(unload(C,P,A),

PRECOND: in(C,P),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: at(C,A)
DELETE: in(C,P)
)

Action(unload(C,P,A),

PRECOND: in(C,P),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: at(C,A)
DELETE: in(C,P)
)

Action(load(C,P,A),

PRECOND: at(C,A),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: in(C,P)
DELETE: at(C,A)
)

Action(load(C,P,A),

PRECOND: at(C,A),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
ADD: in(C,P)
DELETE: at(C,A)
)

Action(fly(P,From,To),

PRECOND: at(P,From),

 plane(P),

 airport(From),

 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

Action(fly(P,From,To),

PRECOND: at(P,From),

 plane(P),

 airport(From),

 airport(To)
ADD: at(P,To)
DELETE: at(P,From)
)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz35

Planning with State-Space Search

Progression

Regression

at(p1,jfk)
at(p2,jfk)

at(p1,jfk)
at(p2,sfo)

at(p1,sfo)
at(p2,jfk)

fly(p1,jfk,
 sfo)

fly(p2,jfk,
 sfo)

fly(p1,jfk,
 sfo)

fly(p2,jfk,
 sfo)

at(p1,sfo)
at(p2,jfk)

at(p1,jfk)
at(p2,sfo)

at(p1,sfo)
at(p2,sfo)

 Progression planners
 forward state-space search

 Regression planners
 backward state-space search

Initial State

Goal State

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz36

Progression Algorithm

Formulation as state-space search problem:
 Initial state = initial state of the planning problem

 Literals not appearing are false
 Actions = those whose preconditions are satisfied

 Add positive effects, delete negative
 Goal test = does the state satisfy the goal
 Step cost = each action costs 1

 could be changed if necessary

Search Algorithms
 function-free → finite → any complete graph

search algorithm will yield a complete planner
 Efficiency is a problem

 irrelevant action problem
 good heuristic required for efficient search

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | J. Fürnkranz37

Regression Algorithm
 In order to be able to use a backward search, we must be

able to apply the STRIPS operators backwards
 Relevant actions

 actions that achieve one of the subgals
 i.e., the subgoal is on the actions' ADD-list

 Example:
 Goal state:
 at(c1,a), at(c2,a),..., at(c20,a)
 Relevant action for first conjunct: unload(c1,P,a)

 Consistent actions
 Actions must not undo subgoals that are already achieved
 Example:

 load(c1,P) will never appear in a plan for the above task
because it will delete the subgoal at(c1,a) which has been
achieved with the first action

→ How can an action be applied backwards?

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz38

Inverse Action Application

General process for predecessor construction
 Given a goal description G
 Let A be an action that is relevant and consistent
 The predecessor state is determined as follows:

 Positive effects of A that appear in G are deleted.
 because they are assumed to have been added by A

(otherwise we do not need A in the plan)
 Each precondition literal of A is added (unless it already appears)

 because in order to apply A, we must now make find actions that
enable the precconditions.

→ New Goal = Old Goal – ADD(A) + PRECOND(A)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz39

Inverse Action Application

A

B

C

on(a,table), on(b,a), on(c,b)

 Goal:

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz40

Inverse Action Application

stack(c,b)

A

B

C

on(a,table), on(b,a), on(c,b)

 Goal:

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

 ={X/c, Y/b}

holding(c), block(c), block(b), clear(b)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz41

Inverse Action Application

A

B

C

 New Goal:

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
 on(X,Y),
DELETE: holding(X),
 clear(Y)
)

on(a,table), on(b,a),

holding(c), block(c), block(b), clear(b)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz42

Regression Algorithm

Formulation as state-space search problem:
 Initial state = goal state of the planning problem

 Literals not appearing may be true or false
 Actions = those whose add-list satisfy the current state

 delete positive effects, add preconditions
 Goal test = is the current state satisfied in the initial state of

the planning problem?
 Step cost = each action costs 1

 could be changed if necessary

Search algorithm
 again, any standard algorithm can perform the search

 Main Advantage of Regression Planning
 only relevant actions are considered

 → often much lower branching factor than for forward search

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz43

Heuristics for State-Space Search
 Even for regression we need good heuristics

 How many actions are needed to achieve the goal?
 Exact solution is NP hard, find a good estimate

Two approaches to find an admissible search heuristic:
 The optimal solution to a relaxed problem

 remove all preconditions from actions
 almost identical to the number of open subgoals

 remove only the delete-list and find a (minimal) set of actions
that collectively achieve the goals

 problem: finding a minimal set cover is NP-hard, and relaxing the
constraint looses admissibility of heuristic

 The subgoal independence assumption:
 The cost of solving a conjunction of subgoals is approximated

by the sum of the costs of solving them independently
 is only admissible if co-ordination causes additional complexity

(not admissible for the have(milk) & have(bread) plan)

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz44

Expressiveness and Extensions

 The STRIPS language is a very simple subset of FOL
 Important limitation: function-free literals

 All such problems can be represented in propositional logic
 use one proposition for each possible combination of predicate

symbol and arguments
 Function symbols lead to infinitely many states and actions

 infinitely many arguments can be constructed with function
symbols, hence propositionalization is not possible

 Various extensions have been proposed:
 Action Description language (ADL)

 recent extension to STRIPS language
 allows for types, explicit negation (no CWA), relations and

conditions in goals, equality predicate built in, ...
 Planning domain definition language (PDDL)

 standardization of various AI planning formalisms

 Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | J. Fürnkranz45

Comparison STRIPS-ADL

	Outline
	Planning problem
	Folie 3
	Planning vs. problem solving
	Representations in Planning
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Situation Calculus Planning
	Folie 11
	Situation calculus
	Folie 13
	Folie 15
	Folie 17
	SC planning: analysis
	Folie 19
	Folie 20
	General language features
	Folie 22
	Folie 23
	Folie 24
	Language semantics?
	Folie 26
	Folie 27
	State Representation
	Goal Representation
	Action Representation
	Folie 31
	Folie 32
	Folie 33
	Example: air cargo transport
	Planning with state-space search
	Progression algorithm
	Regression algorithm
	Regression algorithm
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Heuristics for state-space search
	Expressiveness and extensions
	Folie 45

