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Sussman Anomaly
 Famous example that shows that subgoals are not 

independent
 goal: on(A,B), on(B,C)

 achieve on(B,C) first:
 shortest solution will just put B on top of C → subgoal has to 

be undone in order to complete the goal
 achieve on(A,B) first:

 shortest solution will not put B on C → subgoal has do be 
undone later in order to complete the goal
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Partial-Order Planning (POP)

 Progression and regression planning are totally ordered plan 
search forms

 this means that in all searched plans the sequence of actions 
is completely ordered

 Decisions must be made on how to sequence actions in all the 
subproblems

→ They cannot take advantage of problem decomposition
 If actions do not interfere with each other, they could be 

made in any order (or in parallel) → partially ordered plan
 if a plan for each subgoal only makes minimal commitments to 

orders 
 only orders those actions that must be ordered for a successful 

completion of the plan
 it can re-order steps later on (when subplans are combined)
 Least commitment strategy:

 Delay choice during search
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Shoe Example

Action( RightShoe,
PRECOND: RightSockOn
ADD:     RightShoeOn
DELETE:  -
)

Action( RightShoe,
PRECOND: RightSockOn
ADD:     RightShoeOn
DELETE:  -
)

Action( LeftShoe,
PRECOND: LeftSockOn
ADD:     LeftShoeOn
DELETE:  -
)

Action( LeftShoe,
PRECOND: LeftSockOn
ADD:     LeftShoeOn
DELETE:  -
)

Action( RightSock,
PRECOND: -
ADD:     RightSockOn
DELETE:  -
)

Action( RightSock,
PRECOND: -
ADD:     RightSockOn
DELETE:  -
)

Action( LeftSock,
PRECOND: -
ADD:     LeftSockOn
DELETE:  -
)

Action( LeftSock,
PRECOND: -
ADD:     LeftSockOn
DELETE:  -
)

Initial State:   nil
 Goal State:   RightShoeOn & LeftShoeOn
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Shoe Example
 Total-Order Planner

 all actions are completely 
ordered

 Partial-Order Planner
 may leave the order of 

some actions undetermined
 any order is valid
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State-Space vs. Plan-Space Search

State-Space Plannning
 Search goes through 

possible states

Plan-Space Planning
 Search goes through 

possible plans
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POP as a Search Problem

 A solution can be found by a search through Plan-Space:
 States are (mostly unfinished) plans

Each plan has 4 components:
 A set of actions (steps of the plan)
 A set of ordering constraints: A < B (A before B)

 Cycles represent contradictions.
 A set of causal links                    (A adds p for B)

 The plan may not be extended by adding a new action C that 
conflicts with the causal link.

 An action C conflicts with causal link                 
 if the effect of C is ¬ p and if C could come after A and before B

 A set of open preconditions
 Preconditions that are not achieved by action in the plan

A pB

A pB
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Example of Final Plan

 Actions = {RightSock, RightShoe,       
        LeftSock, LeftShoe,
        Start, Finish}

 Orderings = 
    { RightSock < RightShoe;
   LeftSock < LeftShoe}

 Causal Links = 
{ RightSock→RightSockOn→RightShoe,
 LeftSock→LeftSockOn→LeftShoe,
 RightShoe→RightShoeOn→Finish,
 LeftShoe→LeftShoeOn→Finish}

 Open preconditions = { }
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Search through Plan-Space
 Initial State (empty plan):

 contains only virtual Start and Finish actions
 ordering constraint Start < Finish
 no causal links
 all preconditions in Finish are open

 these are the original goal

 Successor Function (refining the plan):
generates all consistent successor states

 picks one open precondition p on an action B 
 generates one successor plan for every possible consistent 

way of choosing action that achieves p
 a plan is consistent iff 

 there are no cycles in the ordering constraints
 no conflicts with the causal links

 Goal test (final plan):
 A consistent plan with no open preconditions is a solution.
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Subroutines
 Refining a plan with action A, which achieves p for B:

 add causal link A→p→B  
 add the ordering constraint A < B
 add Start < A and A < Finish to the plan (only if A is new)
 resolve conflicts between 

 new causal link A→p→B and all existing actions
 new action A and all existing causal links (only if  A is new)

 Resolving a conflict between a causal link A→p→B and an 
action C

 we have a conflict if the effect of C is ¬ p and C could come 
after A and before B

 → resolved by adding the ordering constraints C < A or  B < C
 both refinements are added (two successor plans) if both are 

consistent
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Search through Plan-Space
 Operators on partial plans

 Add an action to fulfill an open condition
 Add a causal link 
 Order one step w.r.t another to remove possible conflicts

 Search gradually moves from incomplete/vague plans to 
complete/correct plans

 Backtrack if an open condition is unachievable or if a conflict 
is irresolvable

 pick the next condition to achieve at one of the previous choice 
points

 ordering of the conditions is irrelevant for completeness (the 
same plans will be found), but may be relevant for consistency
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Executing Partially Ordered Plans
 Any particular order that is consistent with the ordering 

constraints is possible
 A partial order plan is executed by repeatedly choosing any of 

the possible next actions.
 This flexibility is a benefit in non-cooperative environments.
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Example: Spare Tire Problem

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Initial State: at(flat,axle), 
at(spare,trunk)

Goal State: at(spare,axle)

Here we need a not, which is not 
part of the original STRIPS language!
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Example: Spare Tire Problem

 Initial plan: 
 Action start has the current state as effects
 Action finish has the goal as preconditions
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Example: Spare Tire Problem
 Action putOn(spare,axle) is the only action that achieves the goal 
at(spare,axle)

 the current plan is refined to one new plan:
 putOn(spare,axle) is added to the list of actions
 add constraints  putOn(spare,axle) < finish and > start
 add causal link  putOn(spare,axle)→at(spare,axle)→finish
 the preconditions of putOn(spare,axle) are now open
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Example: Spare Tire Problem
 we select the next open precondition at(spare,ground) as a goal 
 only remove(spare,trunk) can achieve this goal
 the current plan is refined to a new one as before, causal links are added
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Example: Spare Tire Problem
 we select the next open precondition not(at(flat,axle)) as a goal 
 could be achieved with two actions 

 leave-overnight
 remove(flat,axle)
→ we have two successor plans
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Example: Spare Tire Problem

Plan 1: leave-overnight
 is in conflict with the constraint 
remove(spare,trunk)→at(spare,ground)→putOn(spare,axle)

→ has to be ordered before remove(spare,trunk)
 cannot be ordered after putOn(spare,axle)because it achieves its 

precondition
 constraint leave-overnight < remove(spare,trunk) is added 
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Example: Spare Tire Problem
Plan 1: leave-overnight
 the condition at(spare,trunk) has to be achieved next

 start is the only action that can achieve this
 however, start→at(spare,trunk)→remove(spare,trunk) 

is in conflict with leave-overnight
 this conflict cannot be resolved → backtracking

leave-overnight cannot be ordered
before start, and is already ordered
before remove(spare,trunk)
 → irresolvable conflict
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Example: Spare Tire Problem

Plan 2: remove(flat,axle)
 achieves goal not(at(flat,axle))
 corresponding causal link and order relation are added
 at(flat,axle) becomes open precondition
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Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal 

 action start is added
 corresponding causal link and order relation are added
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Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal 

 action start is added
 corresponding causal link and order relation are added

 open precondition at(flat,axle)is selected as goal 
 action start can achieve this and is already part of the plan
 corresponding causal link and order relation are added

 no more open preconditions remain
→ plan is completed
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POP in First-Order Logic
 Operators may leave some 

variables unbound
 Example

 Achieve goal on(a,b) with 
action move(a,From,b)

 It remains unspecified from
where block a should be
moved (PRECOND: on(a,From))

 Two approaches
 Decide for one binding and backtrack later on (if necessary)
 Defer the choice for later (least commitment)

 Problems with least commitment:
 e.g., an action that has on(a,From)on its delete-list will only 

conflict with above if both are bound to the same variable
 can be resolved by introducing inequality constraint.

Action( move(Block,From,To),
PRECOND: on(Block,From),
         clear(Block),
         clear(To),
ADD:     on(Block,To),
         clear(From),
DELETE:  on(Block,From),
         clear(To)
)

Action( move(Block,From,To),
PRECOND: on(Block,From),
         clear(Block),
         clear(To),
ADD:     on(Block,To),
         clear(From),
DELETE:  on(Block,From),
         clear(To)
)



   Plan-Space Planning                                                                                                                                                 

   TU Darmstadt                                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 | ©  J. Fürnkranz24

Heuristics for Plan-Space Planning
 Not as well understood as heuristics for state-space planning
 General heuristic: number of distinct open preconditions

 maybe minus those that match the initial state
 underestimates costs when several actions are needed to 

achieve a condition
 overestimates costs when multiple goals may be achieved with 

a single action
 Choosing a good precondition to refine has also a strong 

impact
 select open condition that can be satisfied in the fewest 

number of ways
 analogous to most-constrained variable heuristic from CSP

 Two important special cases:
 select a condition that cannot be achieved at all (early failure!)
 select deterministic conditions that can only be achieved in one 

way
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Planning Graph
 A planning graph is a special structure used to 

 achieve better heuristic estimates.
 directly extract a solution using GRAPHPLAN algorithm

 Consists of a sequence of levels (time steps in the plan)
 Level 0 is the initial state.

 Each level consists of a set of literals and a set of actions.
 Literals = all those that could be true at that time step

 depending on the actions executed at the preceding time step
 Actions = all those actions that could have their preconditions 

satisfied at that time step
 depending on which of the literals actually hold.

 Only a restricted subset of possible negative interactions 
among actions is recorded

 Planning graphs work only for propositional problems
 STRIPS and ADL can be propositionalized
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Cake Example

Action( eat(cake),
PRECOND: have(cake)
ADD:     eaten(cake)
DELETE:  have(cake)
)

Action( eat(cake),
PRECOND: have(cake)
ADD:     eaten(cake)
DELETE:  have(cake)
)

Action( bake(cake),
PRECOND: not(have(cake))
ADD:     have(cake)
DELETE:  -
)

Action( bake(cake),
PRECOND: not(have(cake))
ADD:     have(cake)
DELETE:  -
)

 Initial state: have(cake)
 Goal state: have(cake), eaten(cake)

Persistence Actions
 pseudo-actions for which the 

effect equals the precondition
 analogous to frame axioms
 are automatically added by 

the planner

Mutual exclusions
 link actions or 

preconditions that are 
mutually exclusive
(mutex)
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Cake Example

Persistence Actions ()
 pseudo-actions for which the 

effect equals the precondition
 analogous to frame axioms
 are automatically added by 

the planner

Mutual exclusions (        )
 link actions or 

preconditions that are 
mutually exclusive
(mutex)
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Cake Example

 Start at level S0, determine action level A0 and next level S1

 A0 contains all actions whose preconditions are satisfied in the 
previous level S0

 Connect preconditions and effects of these actions
 Inaction is represented by persistence actions

 Level A0 contains the actions that could occur
 Conflicts between actions are represented by mutex links
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Cake Example

 Per construction, Level S1 contains all literals that could 
result from picking any subset of actions in A0

 Conflicts between literals that can not occur together are 
represented by mutex links.

 S1 defines multiple possible states and the mutex links are the 
constraints that hold in this set of states

 Continue until two consecutive levels are identical
 Or contain the same amount of literals (explanation later)
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Mutex Relations
 A mutex relation holds between two actions when:

 Inconsistent effects: 
 one action negates the effect of another.

 Interference: 
 one of the effects of one action is the 

negation of a precondition of the other

 Competing needs: 
 one of the preconditions of one action is 

mutually exclusive with the precondition 
of the other.

 A mutex relation holds between two literals when:
 Inconsistent support:

 If one is the negation of the other OR 
 if each possible action pair that could achieve the literals is mutex

x

not(x)

x

not(x)

x

y
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Example: Spare Tire Problem

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Initial State: at(flat,axle), 
at(spare,trunk)

Goal State: at(spare,axle)

Here we need a not, which is not 
part of the original STRIPS language!
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GRAPHPLAN Example

 S0 consist of 5 literals (initial state and the CWA literals)
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GRAPHPLAN Example

 S0 consist of 5 literals (initial state and the CWA literals)
 EXPAND-GRAPH adds actions with satisfied preconditions

 add the effects at level S1

 also add persistence actions and mutex relations
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GRAPHPLAN Example
 Repeat 

Note: Not all mutex links are shown!

Inconsistent
Effects

Interference

Competing
Needs



Inconsistent
Support
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GRAPHPLAN Example

 Repeat until all goal literals are pairwise non-mutex in Si

 If all goal literals are pairwise non-mutex, this means that a 
solution might exist 

 not guaranteed because only pairwise conflicts are checked
→ we need to search whether there is a solution
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Deriving Heuristics from the PG
 Planning Graphs provide information about the problem

 Example:
 A literal that does not appear in the final level of the graph cannot 

be achieved by any plan
 Extraction of a serial plan

 PG allows several actions to occur simultaneously at a level
 can be serialized by restricting PG to one action per level

 add mutex links between every pair of actions
 provides a good heuristic for serial plans

 Useful for backward search
 Any state with an unachievable precondition has cost = +∞
 Any plan that contains an unachievable precond has cost = +∞
 In general: level cost = level of first appearance of a literal

 clearly, level cost are an admissible search heuristic
 PG may be viewed as a relaxed problem

 checking only for consistency between pairs of actions/literals
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Costs for Conjunctions of Literals
 Max-level: maximum level cost of all literals in the goal

 admissible but not accurate
 Sum-level: sum of the level costs 

 makes the subgoal independence assumption
 inadmissible, but works well in practice
 Cake Example:

 estimated costs for have(cake) ∧ eaten(cake) is 0+1=1
 true costs are 2

 Cake Example without action bake(cake)
 estimated costs are the same
 true costs are +∞

 Set-level: find the level at which all literals appear and no 
pair has a mutex link

 gives the correct estimate in both examples above
 dominates max-level heuristic, works well with interactions
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The GRAPHPLAN Algorithm

function GRAPHPLAN(problem) returns solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
     solution ← EXTRACT-SOLUTION(graph, goals,LENGTH(graph))
     if solution ≠ failure then return solution
     else if NO-SOLUTION-POSSIBLE(graph) then return failure

           graph ← EXPAND-GRAPH(graph, problem)

 Algorithm for extracting a solution directly from the PG
 alternates solution extraction and graph expansion steps

 EXTRACT-SOLUTION:
 checks whether a plan can be found searching backwards

 EXPAND-GRAPH:
 adds actions for the current and state literals for the next level
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EXTRACT-SOLUTION

A state consists of
 a pointer to a level in the planning graph
 a set of unsatisfied goals

 Initial state
 last level of PG
 set of goals from the planning problem

 Actions
 select any non-conflicting subset of the actions of Ai-1 that 

cover the goals in the state
 Goal

 success if level S0 is reached with such with all goals satisfied
 Cost

 1 for each action

Could also be formulated as a Boolean CSP
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GRAPHPLAN Example
 Start with goal state at(spare,axle) in S2

→ only action choice is puton(spare,axle) with preconditions       
     not(at(spare,axle)) and at(spare,ground) in S1

→ two new goals in level 1
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GRAPHPLAN Example
 remove(spare,trunk) is the only action to achieve at(spare,ground)
 not(at(flat,axle)) can be achieved with leave-overnight and 

remove(flat,axle)
 leave-overnight is mutex with remove(spare,trunk)

→ remove(spare,trunk) and remove(flat,axle)
 preconditions are satisfied in S0 → we're done
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Termination of GRAPHPLAN

1. The planning graph converges because everything is finite
 number of literals is monotonically increasing

 a literal can never disappear because of the persistence actions
 number of actions is monotonically increasing

 once an action is applicable it will always be applicable 
(because its preconditions will always be there)

 number of mutexes is monotonically decreasing
 If two actions are mutex at one level, they are also mutex in all 

previous levels in which they appear together
 inconsistent effects and interferences are properties of actions
→ if they hold once, they will always hold 
 competing needs are properties of mutexes
→ if the number of actions goes up, chances increase that there is

  a pair of non-mutex actions that achieve the preconditions
2. After convergence, EXTRACT-SOLUTION will find an existing 

solution right away or in subsequent expansions of the PG
 more complex proof (not covered here)
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SATPLAN

 Key idea:
 translate the planning problem into propositional logic
 similar to situation calculus, but all facts and rules are ground

 the same literal in different situations is represented with two 
different propositions (we call them propositions at a depth i)

 actions are also represented as propositions
 rules are used to derive propositions of depth i+1 from 

actions and propositions of depth i
 Goal:

 find a true formula consisting of propositions of the initial state, 
propositions of the goal state, and some action propositions

 Method:
 use a satisfiability solver with iterative deepening on the depth

 first try to prove the goal in depth 0 (initial state)
 then try to prove the goal in depth 1
 .... until a solution is found in depth n

the plan!
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Key Problem
 Complexity

 In the worst case, a proposition has to be generated
 for each of a actions with
 each of o possible objects in the n arguments
 for a solution depth d

→ maximum number of propositions is 
 the number of rules is even larger

Solution Attempt: Symbol Splitting
 a possible solution is to convert each n-ary relation into n 

binary relations
 “the i-th argument of relation r is y”

 this will also reduce the size of the knowledge base because 
arguments that are not used can be omitted from the rules

 Drawback: multiple instances of the same rule get mixed up
→ no two actions of same type at the same time step

 Nevertheless, SATPLAN is very competitive

d⋅a⋅on
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