
 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz1

 Introduction
 Planning vs. Problem-Solving
 Representation in Planning Systems

 Situation Calculus
 The Frame Problem

 STRIPS representation language
 Blocks World

 Planning with State-Space Search
 Progression Algorithms
 Regression Algorithms

 Planning with Plan-Space Search
 Partial-Order Planning
 The Plan Graph and GraphPlan
 SatPlan

Planning

Slides based on Slides
by Russell/Norvig,

Lise Getoor
and Tom Lenaerts

Material from
Russell & Norvig,

 chapters 10.3. and 11

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz2

Sussman Anomaly
 Famous example that shows that subgoals are not

independent
 goal: on(A,B), on(B,C)

 achieve on(B,C) first:
 shortest solution will just put B on top of C → subgoal has to

be undone in order to complete the goal
 achieve on(A,B) first:

 shortest solution will not put B on C → subgoal has do be
undone later in order to complete the goal

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz3

Partial-Order Planning (POP)

 Progression and regression planning are totally ordered plan
search forms

 this means that in all searched plans the sequence of actions
is completely ordered

 Decisions must be made on how to sequence actions in all the
subproblems

→ They cannot take advantage of problem decomposition
 If actions do not interfere with each other, they could be

made in any order (or in parallel) → partially ordered plan
 if a plan for each subgoal only makes minimal commitments to

orders
 only orders those actions that must be ordered for a successful

completion of the plan
 it can re-order steps later on (when subplans are combined)
 Least commitment strategy:

 Delay choice during search

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz4

Shoe Example

Action(RightShoe,
PRECOND: RightSockOn
ADD: RightShoeOn
DELETE: -
)

Action(RightShoe,
PRECOND: RightSockOn
ADD: RightShoeOn
DELETE: -
)

Action(LeftShoe,
PRECOND: LeftSockOn
ADD: LeftShoeOn
DELETE: -
)

Action(LeftShoe,
PRECOND: LeftSockOn
ADD: LeftShoeOn
DELETE: -
)

Action(RightSock,
PRECOND: -
ADD: RightSockOn
DELETE: -
)

Action(RightSock,
PRECOND: -
ADD: RightSockOn
DELETE: -
)

Action(LeftSock,
PRECOND: -
ADD: LeftSockOn
DELETE: -
)

Action(LeftSock,
PRECOND: -
ADD: LeftSockOn
DELETE: -
)

Initial State: nil
 Goal State: RightShoeOn & LeftShoeOn

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz5

Shoe Example
 Total-Order Planner

 all actions are completely
ordered

 Partial-Order Planner
 may leave the order of

some actions undetermined
 any order is valid

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz6

State-Space vs. Plan-Space Search

State-Space Plannning
 Search goes through

possible states

Plan-Space Planning
 Search goes through

possible plans

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz7

POP as a Search Problem

 A solution can be found by a search through Plan-Space:
 States are (mostly unfinished) plans

Each plan has 4 components:
 A set of actions (steps of the plan)
 A set of ordering constraints: A < B (A before B)

 Cycles represent contradictions.
 A set of causal links (A adds p for B)

 The plan may not be extended by adding a new action C that
conflicts with the causal link.

 An action C conflicts with causal link
 if the effect of C is ¬ p and if C could come after A and before B

 A set of open preconditions
 Preconditions that are not achieved by action in the plan

A pB

A pB

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz8

Example of Final Plan

 Actions = {RightSock, RightShoe,
 LeftSock, LeftShoe,
 Start, Finish}

 Orderings =
 { RightSock < RightShoe;
 LeftSock < LeftShoe}

 Causal Links =
{ RightSock→RightSockOn→RightShoe,
 LeftSock→LeftSockOn→LeftShoe,
 RightShoe→RightShoeOn→Finish,
 LeftShoe→LeftShoeOn→Finish}

 Open preconditions = { }

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz9

Search through Plan-Space
 Initial State (empty plan):

 contains only virtual Start and Finish actions
 ordering constraint Start < Finish
 no causal links
 all preconditions in Finish are open

 these are the original goal

 Successor Function (refining the plan):
generates all consistent successor states

 picks one open precondition p on an action B
 generates one successor plan for every possible consistent

way of choosing action that achieves p
 a plan is consistent iff

 there are no cycles in the ordering constraints
 no conflicts with the causal links

 Goal test (final plan):
 A consistent plan with no open preconditions is a solution.

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz10

Subroutines
 Refining a plan with action A, which achieves p for B:

 add causal link A→p→B
 add the ordering constraint A < B
 add Start < A and A < Finish to the plan (only if A is new)
 resolve conflicts between

 new causal link A→p→B and all existing actions
 new action A and all existing causal links (only if A is new)

 Resolving a conflict between a causal link A→p→B and an
action C

 we have a conflict if the effect of C is ¬ p and C could come
after A and before B

 → resolved by adding the ordering constraints C < A or B < C
 both refinements are added (two successor plans) if both are

consistent

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz11

Search through Plan-Space
 Operators on partial plans

 Add an action to fulfill an open condition
 Add a causal link
 Order one step w.r.t another to remove possible conflicts

 Search gradually moves from incomplete/vague plans to
complete/correct plans

 Backtrack if an open condition is unachievable or if a conflict
is irresolvable

 pick the next condition to achieve at one of the previous choice
points

 ordering of the conditions is irrelevant for completeness (the
same plans will be found), but may be relevant for consistency

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz12

Executing Partially Ordered Plans
 Any particular order that is consistent with the ordering

constraints is possible
 A partial order plan is executed by repeatedly choosing any of

the possible next actions.
 This flexibility is a benefit in non-cooperative environments.

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz13

Example: Spare Tire Problem

Action(remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD: at(spare,ground)
DELETE: at(spare,trunk)
)

Action(remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD: at(spare,ground)
DELETE: at(spare,trunk)
)

Action(remove(flat,axle),
PRECOND: at(flat,axle)
ADD: at(flat,ground)
DELETE: at(flat,axle)
)

Action(remove(flat,axle),
PRECOND: at(flat,axle)
ADD: at(flat,ground)
DELETE: at(flat,axle)
)

Action(putOn(spare,axle),
PRECOND: at(spare,ground),
 not(at(flat,axle)),
ADD: at(spare,axle)
DELETE: at(spare,ground)
)

Action(putOn(spare,axle),
PRECOND: at(spare,ground),
 not(at(flat,axle)),
ADD: at(spare,axle)
DELETE: at(spare,ground)
)

Action(leave-overnight,
PRECOND: -
ADD: -
DELETE: at(spare,ground),
 at(spare,axle),
 at(spare,trunk),
 at(flat,ground),
 at(flat,axle)
)

Action(leave-overnight,
PRECOND: -
ADD: -
DELETE: at(spare,ground),
 at(spare,axle),
 at(spare,trunk),
 at(flat,ground),
 at(flat,axle)
)

Initial State: at(flat,axle),
at(spare,trunk)

Goal State: at(spare,axle)

Here we need a not, which is not
part of the original STRIPS language!

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz14

Example: Spare Tire Problem

 Initial plan:
 Action start has the current state as effects
 Action finish has the goal as preconditions

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz15

Example: Spare Tire Problem
 Action putOn(spare,axle) is the only action that achieves the goal
at(spare,axle)

 the current plan is refined to one new plan:
 putOn(spare,axle) is added to the list of actions
 add constraints putOn(spare,axle) < finish and > start
 add causal link putOn(spare,axle)→at(spare,axle)→finish
 the preconditions of putOn(spare,axle) are now open

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.2 | © J. Fürnkranz16

Example: Spare Tire Problem
 we select the next open precondition at(spare,ground) as a goal
 only remove(spare,trunk) can achieve this goal
 the current plan is refined to a new one as before, causal links are added

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz17

Example: Spare Tire Problem
 we select the next open precondition not(at(flat,axle)) as a goal
 could be achieved with two actions

 leave-overnight
 remove(flat,axle)
→ we have two successor plans

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz18

Example: Spare Tire Problem

Plan 1: leave-overnight
 is in conflict with the constraint
remove(spare,trunk)→at(spare,ground)→putOn(spare,axle)

→ has to be ordered before remove(spare,trunk)
 cannot be ordered after putOn(spare,axle)because it achieves its

precondition
 constraint leave-overnight < remove(spare,trunk) is added

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz19

Example: Spare Tire Problem
Plan 1: leave-overnight
 the condition at(spare,trunk) has to be achieved next

 start is the only action that can achieve this
 however, start→at(spare,trunk)→remove(spare,trunk)

is in conflict with leave-overnight
 this conflict cannot be resolved → backtracking

leave-overnight cannot be ordered
before start, and is already ordered
before remove(spare,trunk)
 → irresolvable conflict

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz20

Example: Spare Tire Problem

Plan 2: remove(flat,axle)
 achieves goal not(at(flat,axle))
 corresponding causal link and order relation are added
 at(flat,axle) becomes open precondition

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz21

Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal

 action start is added
 corresponding causal link and order relation are added

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz22

Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal

 action start is added
 corresponding causal link and order relation are added

 open precondition at(flat,axle)is selected as goal
 action start can achieve this and is already part of the plan
 corresponding causal link and order relation are added

 no more open preconditions remain
→ plan is completed

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz23

POP in First-Order Logic
 Operators may leave some

variables unbound
 Example

 Achieve goal on(a,b) with
action move(a,From,b)

 It remains unspecified from
where block a should be
moved (PRECOND: on(a,From))

 Two approaches
 Decide for one binding and backtrack later on (if necessary)
 Defer the choice for later (least commitment)

 Problems with least commitment:
 e.g., an action that has on(a,From)on its delete-list will only

conflict with above if both are bound to the same variable
 can be resolved by introducing inequality constraint.

Action(move(Block,From,To),
PRECOND: on(Block,From),
 clear(Block),
 clear(To),
ADD: on(Block,To),
 clear(From),
DELETE: on(Block,From),
 clear(To)
)

Action(move(Block,From,To),
PRECOND: on(Block,From),
 clear(Block),
 clear(To),
ADD: on(Block,To),
 clear(From),
DELETE: on(Block,From),
 clear(To)
)

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz24

Heuristics for Plan-Space Planning
 Not as well understood as heuristics for state-space planning
 General heuristic: number of distinct open preconditions

 maybe minus those that match the initial state
 underestimates costs when several actions are needed to

achieve a condition
 overestimates costs when multiple goals may be achieved with

a single action
 Choosing a good precondition to refine has also a strong

impact
 select open condition that can be satisfied in the fewest

number of ways
 analogous to most-constrained variable heuristic from CSP

 Two important special cases:
 select a condition that cannot be achieved at all (early failure!)
 select deterministic conditions that can only be achieved in one

way

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz25

Planning Graph
 A planning graph is a special structure used to

 achieve better heuristic estimates.
 directly extract a solution using GRAPHPLAN algorithm

 Consists of a sequence of levels (time steps in the plan)
 Level 0 is the initial state.

 Each level consists of a set of literals and a set of actions.
 Literals = all those that could be true at that time step

 depending on the actions executed at the preceding time step
 Actions = all those actions that could have their preconditions

satisfied at that time step
 depending on which of the literals actually hold.

 Only a restricted subset of possible negative interactions
among actions is recorded

 Planning graphs work only for propositional problems
 STRIPS and ADL can be propositionalized

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz26

Cake Example

Action(eat(cake),
PRECOND: have(cake)
ADD: eaten(cake)
DELETE: have(cake)
)

Action(eat(cake),
PRECOND: have(cake)
ADD: eaten(cake)
DELETE: have(cake)
)

Action(bake(cake),
PRECOND: not(have(cake))
ADD: have(cake)
DELETE: -
)

Action(bake(cake),
PRECOND: not(have(cake))
ADD: have(cake)
DELETE: -
)

 Initial state: have(cake)
 Goal state: have(cake), eaten(cake)

Persistence Actions
 pseudo-actions for which the

effect equals the precondition
 analogous to frame axioms
 are automatically added by

the planner

Mutual exclusions
 link actions or

preconditions that are
mutually exclusive
(mutex)

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz27

Cake Example

Persistence Actions ()
 pseudo-actions for which the

effect equals the precondition
 analogous to frame axioms
 are automatically added by

the planner

Mutual exclusions ()
 link actions or

preconditions that are
mutually exclusive
(mutex)

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz28

Cake Example

 Start at level S0, determine action level A0 and next level S1

 A0 contains all actions whose preconditions are satisfied in the
previous level S0

 Connect preconditions and effects of these actions
 Inaction is represented by persistence actions

 Level A0 contains the actions that could occur
 Conflicts between actions are represented by mutex links

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz29

Cake Example

 Per construction, Level S1 contains all literals that could
result from picking any subset of actions in A0

 Conflicts between literals that can not occur together are
represented by mutex links.

 S1 defines multiple possible states and the mutex links are the
constraints that hold in this set of states

 Continue until two consecutive levels are identical
 Or contain the same amount of literals (explanation later)

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz30

Mutex Relations
 A mutex relation holds between two actions when:

 Inconsistent effects:
 one action negates the effect of another.

 Interference:
 one of the effects of one action is the

negation of a precondition of the other

 Competing needs:
 one of the preconditions of one action is

mutually exclusive with the precondition
of the other.

 A mutex relation holds between two literals when:
 Inconsistent support:

 If one is the negation of the other OR
 if each possible action pair that could achieve the literals is mutex

x

not(x)

x

not(x)

x

y

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz31

Example: Spare Tire Problem

Action(remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD: at(spare,ground)
DELETE: at(spare,trunk)
)

Action(remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD: at(spare,ground)
DELETE: at(spare,trunk)
)

Action(remove(flat,axle),
PRECOND: at(flat,axle)
ADD: at(flat,ground)
DELETE: at(flat,axle)
)

Action(remove(flat,axle),
PRECOND: at(flat,axle)
ADD: at(flat,ground)
DELETE: at(flat,axle)
)

Action(putOn(spare,axle),
PRECOND: at(spare,ground),
 not(at(flat,axle)),
ADD: at(spare,axle)
DELETE: at(spare,ground)
)

Action(putOn(spare,axle),
PRECOND: at(spare,ground),
 not(at(flat,axle)),
ADD: at(spare,axle)
DELETE: at(spare,ground)
)

Action(leave-overnight,
PRECOND: -
ADD: -
DELETE: at(spare,ground),
 at(spare,axle),
 at(spare,trunk),
 at(flat,ground),
 at(flat,axle)
)

Action(leave-overnight,
PRECOND: -
ADD: -
DELETE: at(spare,ground),
 at(spare,axle),
 at(spare,trunk),
 at(flat,ground),
 at(flat,axle)
)

Initial State: at(flat,axle),
at(spare,trunk)

Goal State: at(spare,axle)

Here we need a not, which is not
part of the original STRIPS language!

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz32

GRAPHPLAN Example

 S0 consist of 5 literals (initial state and the CWA literals)

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz33

GRAPHPLAN Example

 S0 consist of 5 literals (initial state and the CWA literals)
 EXPAND-GRAPH adds actions with satisfied preconditions

 add the effects at level S1

 also add persistence actions and mutex relations

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz34

GRAPHPLAN Example
 Repeat

Note: Not all mutex links are shown!

Inconsistent
Effects

Interference

Competing
Needs



Inconsistent
Support

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz35

GRAPHPLAN Example

 Repeat until all goal literals are pairwise non-mutex in Si

 If all goal literals are pairwise non-mutex, this means that a
solution might exist

 not guaranteed because only pairwise conflicts are checked
→ we need to search whether there is a solution



 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz36

Deriving Heuristics from the PG
 Planning Graphs provide information about the problem

 Example:
 A literal that does not appear in the final level of the graph cannot

be achieved by any plan
 Extraction of a serial plan

 PG allows several actions to occur simultaneously at a level
 can be serialized by restricting PG to one action per level

 add mutex links between every pair of actions
 provides a good heuristic for serial plans

 Useful for backward search
 Any state with an unachievable precondition has cost = +∞
 Any plan that contains an unachievable precond has cost = +∞
 In general: level cost = level of first appearance of a literal

 clearly, level cost are an admissible search heuristic
 PG may be viewed as a relaxed problem

 checking only for consistency between pairs of actions/literals

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz37

Costs for Conjunctions of Literals
 Max-level: maximum level cost of all literals in the goal

 admissible but not accurate
 Sum-level: sum of the level costs

 makes the subgoal independence assumption
 inadmissible, but works well in practice
 Cake Example:

 estimated costs for have(cake) ∧ eaten(cake) is 0+1=1
 true costs are 2

 Cake Example without action bake(cake)
 estimated costs are the same
 true costs are +∞

 Set-level: find the level at which all literals appear and no
pair has a mutex link

 gives the correct estimate in both examples above
 dominates max-level heuristic, works well with interactions

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz38

The GRAPHPLAN Algorithm

function GRAPHPLAN(problem) returns solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
 solution ← EXTRACT-SOLUTION(graph, goals,LENGTH(graph))
 if solution ≠ failure then return solution
 else if NO-SOLUTION-POSSIBLE(graph) then return failure

 graph ← EXPAND-GRAPH(graph, problem)

 Algorithm for extracting a solution directly from the PG
 alternates solution extraction and graph expansion steps

 EXTRACT-SOLUTION:
 checks whether a plan can be found searching backwards

 EXPAND-GRAPH:
 adds actions for the current and state literals for the next level

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz39

EXTRACT-SOLUTION

A state consists of
 a pointer to a level in the planning graph
 a set of unsatisfied goals

 Initial state
 last level of PG
 set of goals from the planning problem

 Actions
 select any non-conflicting subset of the actions of Ai-1 that

cover the goals in the state
 Goal

 success if level S0 is reached with such with all goals satisfied
 Cost

 1 for each action

Could also be formulated as a Boolean CSP

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz40

GRAPHPLAN Example
 Start with goal state at(spare,axle) in S2

→ only action choice is puton(spare,axle) with preconditions
 not(at(spare,axle)) and at(spare,ground) in S1

→ two new goals in level 1



 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.1 | © J. Fürnkranz41

GRAPHPLAN Example
 remove(spare,trunk) is the only action to achieve at(spare,ground)
 not(at(flat,axle)) can be achieved with leave-overnight and

remove(flat,axle)
 leave-overnight is mutex with remove(spare,trunk)

→ remove(spare,trunk) and remove(flat,axle)
 preconditions are satisfied in S0 → we're done



 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz42

Termination of GRAPHPLAN

1. The planning graph converges because everything is finite
 number of literals is monotonically increasing

 a literal can never disappear because of the persistence actions
 number of actions is monotonically increasing

 once an action is applicable it will always be applicable
(because its preconditions will always be there)

 number of mutexes is monotonically decreasing
 If two actions are mutex at one level, they are also mutex in all

previous levels in which they appear together
 inconsistent effects and interferences are properties of actions
→ if they hold once, they will always hold
 competing needs are properties of mutexes
→ if the number of actions goes up, chances increase that there is

 a pair of non-mutex actions that achieve the preconditions
2. After convergence, EXTRACT-SOLUTION will find an existing

solution right away or in subsequent expansions of the PG
 more complex proof (not covered here)

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz43

SATPLAN

 Key idea:
 translate the planning problem into propositional logic
 similar to situation calculus, but all facts and rules are ground

 the same literal in different situations is represented with two
different propositions (we call them propositions at a depth i)

 actions are also represented as propositions
 rules are used to derive propositions of depth i+1 from

actions and propositions of depth i
 Goal:

 find a true formula consisting of propositions of the initial state,
propositions of the goal state, and some action propositions

 Method:
 use a satisfiability solver with iterative deepening on the depth

 first try to prove the goal in depth 0 (initial state)
 then try to prove the goal in depth 1
 until a solution is found in depth n

the plan!

 Plan-Space Planning

 TU Darmstadt Einführung in die Künstliche Intelligenz

V2.0 | © J. Fürnkranz44

Key Problem
 Complexity

 In the worst case, a proposition has to be generated
 for each of a actions with
 each of o possible objects in the n arguments
 for a solution depth d

→ maximum number of propositions is
 the number of rules is even larger

Solution Attempt: Symbol Splitting
 a possible solution is to convert each n-ary relation into n

binary relations
 “the i-th argument of relation r is y”

 this will also reduce the size of the knowledge base because
arguments that are not used can be omitted from the rules

 Drawback: multiple instances of the same rule get mixed up
→ no two actions of same type at the same time step

 Nevertheless, SATPLAN is very competitive

d⋅a⋅on

	Outline
	Folie 2
	Partial-order planning
	Shoe example
	Partial-order planning(POP)
	Folie 6
	POP as a search problem
	Example of final plan
	Folie 9
	Folie 10
	Process summary
	Folie 12
	Example: Spare tire problem
	Folie 14
	Solving the problem
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Some details …
	Folie 24
	Planning graphs
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	PG and heuristic estimation
	Folie 37
	The GRAPHPLAN Algorithm
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44

