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Sussman Anomaly
 Famous example that shows that subgoals are not 

independent
 goal: on(A,B), on(B,C)

 achieve on(B,C) first:
 shortest solution will just put B on top of C → subgoal has to 

be undone in order to complete the goal
 achieve on(A,B) first:

 shortest solution will not put B on C → subgoal has do be 
undone later in order to complete the goal
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Partial-Order Planning (POP)

 Progression and regression planning are totally ordered plan 
search forms

 this means that in all searched plans the sequence of actions 
is completely ordered

 Decisions must be made on how to sequence actions in all the 
subproblems

→ They cannot take advantage of problem decomposition
 If actions do not interfere with each other, they could be 

made in any order (or in parallel) → partially ordered plan
 if a plan for each subgoal only makes minimal commitments to 

orders 
 only orders those actions that must be ordered for a successful 

completion of the plan
 it can re-order steps later on (when subplans are combined)
 Least commitment strategy:

 Delay choice during search
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Shoe Example

Action( RightShoe,
PRECOND: RightSockOn
ADD:     RightShoeOn
DELETE:  -
)

Action( RightShoe,
PRECOND: RightSockOn
ADD:     RightShoeOn
DELETE:  -
)

Action( LeftShoe,
PRECOND: LeftSockOn
ADD:     LeftShoeOn
DELETE:  -
)

Action( LeftShoe,
PRECOND: LeftSockOn
ADD:     LeftShoeOn
DELETE:  -
)

Action( RightSock,
PRECOND: -
ADD:     RightSockOn
DELETE:  -
)

Action( RightSock,
PRECOND: -
ADD:     RightSockOn
DELETE:  -
)

Action( LeftSock,
PRECOND: -
ADD:     LeftSockOn
DELETE:  -
)

Action( LeftSock,
PRECOND: -
ADD:     LeftSockOn
DELETE:  -
)

Initial State:   nil
 Goal State:   RightShoeOn & LeftShoeOn



   Plan-Space Planning                                                                                                                                                 

   TU Darmstadt                                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 | ©  J. Fürnkranz5

Shoe Example
 Total-Order Planner

 all actions are completely 
ordered

 Partial-Order Planner
 may leave the order of 

some actions undetermined
 any order is valid
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State-Space vs. Plan-Space Search

State-Space Plannning
 Search goes through 

possible states

Plan-Space Planning
 Search goes through 

possible plans
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POP as a Search Problem

 A solution can be found by a search through Plan-Space:
 States are (mostly unfinished) plans

Each plan has 4 components:
 A set of actions (steps of the plan)
 A set of ordering constraints: A < B (A before B)

 Cycles represent contradictions.
 A set of causal links                    (A adds p for B)

 The plan may not be extended by adding a new action C that 
conflicts with the causal link.

 An action C conflicts with causal link                 
 if the effect of C is ¬ p and if C could come after A and before B

 A set of open preconditions
 Preconditions that are not achieved by action in the plan

A pB

A pB
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Example of Final Plan

 Actions = {RightSock, RightShoe,       
        LeftSock, LeftShoe,
        Start, Finish}

 Orderings = 
    { RightSock < RightShoe;
   LeftSock < LeftShoe}

 Causal Links = 
{ RightSock→RightSockOn→RightShoe,
 LeftSock→LeftSockOn→LeftShoe,
 RightShoe→RightShoeOn→Finish,
 LeftShoe→LeftShoeOn→Finish}

 Open preconditions = { }
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Search through Plan-Space
 Initial State (empty plan):

 contains only virtual Start and Finish actions
 ordering constraint Start < Finish
 no causal links
 all preconditions in Finish are open

 these are the original goal

 Successor Function (refining the plan):
generates all consistent successor states

 picks one open precondition p on an action B 
 generates one successor plan for every possible consistent 

way of choosing action that achieves p
 a plan is consistent iff 

 there are no cycles in the ordering constraints
 no conflicts with the causal links

 Goal test (final plan):
 A consistent plan with no open preconditions is a solution.
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Subroutines
 Refining a plan with action A, which achieves p for B:

 add causal link A→p→B  
 add the ordering constraint A < B
 add Start < A and A < Finish to the plan (only if A is new)
 resolve conflicts between 

 new causal link A→p→B and all existing actions
 new action A and all existing causal links (only if  A is new)

 Resolving a conflict between a causal link A→p→B and an 
action C

 we have a conflict if the effect of C is ¬ p and C could come 
after A and before B

 → resolved by adding the ordering constraints C < A or  B < C
 both refinements are added (two successor plans) if both are 

consistent
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Search through Plan-Space
 Operators on partial plans

 Add an action to fulfill an open condition
 Add a causal link 
 Order one step w.r.t another to remove possible conflicts

 Search gradually moves from incomplete/vague plans to 
complete/correct plans

 Backtrack if an open condition is unachievable or if a conflict 
is irresolvable

 pick the next condition to achieve at one of the previous choice 
points

 ordering of the conditions is irrelevant for completeness (the 
same plans will be found), but may be relevant for consistency
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Executing Partially Ordered Plans
 Any particular order that is consistent with the ordering 

constraints is possible
 A partial order plan is executed by repeatedly choosing any of 

the possible next actions.
 This flexibility is a benefit in non-cooperative environments.
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Example: Spare Tire Problem

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Initial State: at(flat,axle), 
at(spare,trunk)

Goal State: at(spare,axle)

Here we need a not, which is not 
part of the original STRIPS language!
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Example: Spare Tire Problem

 Initial plan: 
 Action start has the current state as effects
 Action finish has the goal as preconditions



   Plan-Space Planning                                                                                                                                                 

   TU Darmstadt                                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.1 | ©  J. Fürnkranz15

Example: Spare Tire Problem
 Action putOn(spare,axle) is the only action that achieves the goal 
at(spare,axle)

 the current plan is refined to one new plan:
 putOn(spare,axle) is added to the list of actions
 add constraints  putOn(spare,axle) < finish and > start
 add causal link  putOn(spare,axle)→at(spare,axle)→finish
 the preconditions of putOn(spare,axle) are now open



   Plan-Space Planning                                                                                                                                                 

   TU Darmstadt                                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.2 | ©  J. Fürnkranz16

Example: Spare Tire Problem
 we select the next open precondition at(spare,ground) as a goal 
 only remove(spare,trunk) can achieve this goal
 the current plan is refined to a new one as before, causal links are added
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Example: Spare Tire Problem
 we select the next open precondition not(at(flat,axle)) as a goal 
 could be achieved with two actions 

 leave-overnight
 remove(flat,axle)
→ we have two successor plans
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Example: Spare Tire Problem

Plan 1: leave-overnight
 is in conflict with the constraint 
remove(spare,trunk)→at(spare,ground)→putOn(spare,axle)

→ has to be ordered before remove(spare,trunk)
 cannot be ordered after putOn(spare,axle)because it achieves its 

precondition
 constraint leave-overnight < remove(spare,trunk) is added 
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Example: Spare Tire Problem
Plan 1: leave-overnight
 the condition at(spare,trunk) has to be achieved next

 start is the only action that can achieve this
 however, start→at(spare,trunk)→remove(spare,trunk) 

is in conflict with leave-overnight
 this conflict cannot be resolved → backtracking

leave-overnight cannot be ordered
before start, and is already ordered
before remove(spare,trunk)
 → irresolvable conflict
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Example: Spare Tire Problem

Plan 2: remove(flat,axle)
 achieves goal not(at(flat,axle))
 corresponding causal link and order relation are added
 at(flat,axle) becomes open precondition
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Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal 

 action start is added
 corresponding causal link and order relation are added
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Example: Spare Tire Problem
 open precondition at(spare,trunk)is selected as goal 

 action start is added
 corresponding causal link and order relation are added

 open precondition at(flat,axle)is selected as goal 
 action start can achieve this and is already part of the plan
 corresponding causal link and order relation are added

 no more open preconditions remain
→ plan is completed
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POP in First-Order Logic
 Operators may leave some 

variables unbound
 Example

 Achieve goal on(a,b) with 
action move(a,From,b)

 It remains unspecified from
where block a should be
moved (PRECOND: on(a,From))

 Two approaches
 Decide for one binding and backtrack later on (if necessary)
 Defer the choice for later (least commitment)

 Problems with least commitment:
 e.g., an action that has on(a,From)on its delete-list will only 

conflict with above if both are bound to the same variable
 can be resolved by introducing inequality constraint.

Action( move(Block,From,To),
PRECOND: on(Block,From),
         clear(Block),
         clear(To),
ADD:     on(Block,To),
         clear(From),
DELETE:  on(Block,From),
         clear(To)
)

Action( move(Block,From,To),
PRECOND: on(Block,From),
         clear(Block),
         clear(To),
ADD:     on(Block,To),
         clear(From),
DELETE:  on(Block,From),
         clear(To)
)
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Heuristics for Plan-Space Planning
 Not as well understood as heuristics for state-space planning
 General heuristic: number of distinct open preconditions

 maybe minus those that match the initial state
 underestimates costs when several actions are needed to 

achieve a condition
 overestimates costs when multiple goals may be achieved with 

a single action
 Choosing a good precondition to refine has also a strong 

impact
 select open condition that can be satisfied in the fewest 

number of ways
 analogous to most-constrained variable heuristic from CSP

 Two important special cases:
 select a condition that cannot be achieved at all (early failure!)
 select deterministic conditions that can only be achieved in one 

way
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Planning Graph
 A planning graph is a special structure used to 

 achieve better heuristic estimates.
 directly extract a solution using GRAPHPLAN algorithm

 Consists of a sequence of levels (time steps in the plan)
 Level 0 is the initial state.

 Each level consists of a set of literals and a set of actions.
 Literals = all those that could be true at that time step

 depending on the actions executed at the preceding time step
 Actions = all those actions that could have their preconditions 

satisfied at that time step
 depending on which of the literals actually hold.

 Only a restricted subset of possible negative interactions 
among actions is recorded

 Planning graphs work only for propositional problems
 STRIPS and ADL can be propositionalized
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Cake Example

Action( eat(cake),
PRECOND: have(cake)
ADD:     eaten(cake)
DELETE:  have(cake)
)

Action( eat(cake),
PRECOND: have(cake)
ADD:     eaten(cake)
DELETE:  have(cake)
)

Action( bake(cake),
PRECOND: not(have(cake))
ADD:     have(cake)
DELETE:  -
)

Action( bake(cake),
PRECOND: not(have(cake))
ADD:     have(cake)
DELETE:  -
)

 Initial state: have(cake)
 Goal state: have(cake), eaten(cake)

Persistence Actions
 pseudo-actions for which the 

effect equals the precondition
 analogous to frame axioms
 are automatically added by 

the planner

Mutual exclusions
 link actions or 

preconditions that are 
mutually exclusive
(mutex)
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Cake Example

Persistence Actions ()
 pseudo-actions for which the 

effect equals the precondition
 analogous to frame axioms
 are automatically added by 

the planner

Mutual exclusions (        )
 link actions or 

preconditions that are 
mutually exclusive
(mutex)
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Cake Example

 Start at level S0, determine action level A0 and next level S1

 A0 contains all actions whose preconditions are satisfied in the 
previous level S0

 Connect preconditions and effects of these actions
 Inaction is represented by persistence actions

 Level A0 contains the actions that could occur
 Conflicts between actions are represented by mutex links
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Cake Example

 Per construction, Level S1 contains all literals that could 
result from picking any subset of actions in A0

 Conflicts between literals that can not occur together are 
represented by mutex links.

 S1 defines multiple possible states and the mutex links are the 
constraints that hold in this set of states

 Continue until two consecutive levels are identical
 Or contain the same amount of literals (explanation later)
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Mutex Relations
 A mutex relation holds between two actions when:

 Inconsistent effects: 
 one action negates the effect of another.

 Interference: 
 one of the effects of one action is the 

negation of a precondition of the other

 Competing needs: 
 one of the preconditions of one action is 

mutually exclusive with the precondition 
of the other.

 A mutex relation holds between two literals when:
 Inconsistent support:

 If one is the negation of the other OR 
 if each possible action pair that could achieve the literals is mutex

x

not(x)

x

not(x)

x

y
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Example: Spare Tire Problem

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(spare,trunk),
PRECOND: at(spare,trunk)
ADD:     at(spare,ground)
DELETE:  at(spare,trunk)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( remove(flat,axle),
PRECOND: at(flat,axle)
ADD:     at(flat,ground)
DELETE:  at(flat,axle)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( putOn(spare,axle),
PRECOND: at(spare,ground),
         not(at(flat,axle)),
ADD:     at(spare,axle)
DELETE:  at(spare,ground)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Action( leave-overnight,
PRECOND: -
ADD:     -
DELETE:  at(spare,ground),
         at(spare,axle),
         at(spare,trunk),
         at(flat,ground),
         at(flat,axle)
)

Initial State: at(flat,axle), 
at(spare,trunk)

Goal State: at(spare,axle)

Here we need a not, which is not 
part of the original STRIPS language!
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GRAPHPLAN Example

 S0 consist of 5 literals (initial state and the CWA literals)
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GRAPHPLAN Example

 S0 consist of 5 literals (initial state and the CWA literals)
 EXPAND-GRAPH adds actions with satisfied preconditions

 add the effects at level S1

 also add persistence actions and mutex relations
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GRAPHPLAN Example
 Repeat 

Note: Not all mutex links are shown!

Inconsistent
Effects

Interference

Competing
Needs



Inconsistent
Support
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GRAPHPLAN Example

 Repeat until all goal literals are pairwise non-mutex in Si

 If all goal literals are pairwise non-mutex, this means that a 
solution might exist 

 not guaranteed because only pairwise conflicts are checked
→ we need to search whether there is a solution


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Deriving Heuristics from the PG
 Planning Graphs provide information about the problem

 Example:
 A literal that does not appear in the final level of the graph cannot 

be achieved by any plan
 Extraction of a serial plan

 PG allows several actions to occur simultaneously at a level
 can be serialized by restricting PG to one action per level

 add mutex links between every pair of actions
 provides a good heuristic for serial plans

 Useful for backward search
 Any state with an unachievable precondition has cost = +∞
 Any plan that contains an unachievable precond has cost = +∞
 In general: level cost = level of first appearance of a literal

 clearly, level cost are an admissible search heuristic
 PG may be viewed as a relaxed problem

 checking only for consistency between pairs of actions/literals
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Costs for Conjunctions of Literals
 Max-level: maximum level cost of all literals in the goal

 admissible but not accurate
 Sum-level: sum of the level costs 

 makes the subgoal independence assumption
 inadmissible, but works well in practice
 Cake Example:

 estimated costs for have(cake) ∧ eaten(cake) is 0+1=1
 true costs are 2

 Cake Example without action bake(cake)
 estimated costs are the same
 true costs are +∞

 Set-level: find the level at which all literals appear and no 
pair has a mutex link

 gives the correct estimate in both examples above
 dominates max-level heuristic, works well with interactions
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The GRAPHPLAN Algorithm

function GRAPHPLAN(problem) returns solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
     solution ← EXTRACT-SOLUTION(graph, goals,LENGTH(graph))
     if solution ≠ failure then return solution
     else if NO-SOLUTION-POSSIBLE(graph) then return failure

           graph ← EXPAND-GRAPH(graph, problem)

 Algorithm for extracting a solution directly from the PG
 alternates solution extraction and graph expansion steps

 EXTRACT-SOLUTION:
 checks whether a plan can be found searching backwards

 EXPAND-GRAPH:
 adds actions for the current and state literals for the next level
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EXTRACT-SOLUTION

A state consists of
 a pointer to a level in the planning graph
 a set of unsatisfied goals

 Initial state
 last level of PG
 set of goals from the planning problem

 Actions
 select any non-conflicting subset of the actions of Ai-1 that 

cover the goals in the state
 Goal

 success if level S0 is reached with such with all goals satisfied
 Cost

 1 for each action

Could also be formulated as a Boolean CSP



   Plan-Space Planning                                                                                                                                                 

   TU Darmstadt                                                                                                                                                                      Einführung in die Künstliche Intelligenz

V2.0 | ©  J. Fürnkranz40

GRAPHPLAN Example
 Start with goal state at(spare,axle) in S2

→ only action choice is puton(spare,axle) with preconditions       
     not(at(spare,axle)) and at(spare,ground) in S1

→ two new goals in level 1


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GRAPHPLAN Example
 remove(spare,trunk) is the only action to achieve at(spare,ground)
 not(at(flat,axle)) can be achieved with leave-overnight and 

remove(flat,axle)
 leave-overnight is mutex with remove(spare,trunk)

→ remove(spare,trunk) and remove(flat,axle)
 preconditions are satisfied in S0 → we're done


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Termination of GRAPHPLAN

1. The planning graph converges because everything is finite
 number of literals is monotonically increasing

 a literal can never disappear because of the persistence actions
 number of actions is monotonically increasing

 once an action is applicable it will always be applicable 
(because its preconditions will always be there)

 number of mutexes is monotonically decreasing
 If two actions are mutex at one level, they are also mutex in all 

previous levels in which they appear together
 inconsistent effects and interferences are properties of actions
→ if they hold once, they will always hold 
 competing needs are properties of mutexes
→ if the number of actions goes up, chances increase that there is

  a pair of non-mutex actions that achieve the preconditions
2. After convergence, EXTRACT-SOLUTION will find an existing 

solution right away or in subsequent expansions of the PG
 more complex proof (not covered here)
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SATPLAN

 Key idea:
 translate the planning problem into propositional logic
 similar to situation calculus, but all facts and rules are ground

 the same literal in different situations is represented with two 
different propositions (we call them propositions at a depth i)

 actions are also represented as propositions
 rules are used to derive propositions of depth i+1 from 

actions and propositions of depth i
 Goal:

 find a true formula consisting of propositions of the initial state, 
propositions of the goal state, and some action propositions

 Method:
 use a satisfiability solver with iterative deepening on the depth

 first try to prove the goal in depth 0 (initial state)
 then try to prove the goal in depth 1
 .... until a solution is found in depth n

the plan!
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Key Problem
 Complexity

 In the worst case, a proposition has to be generated
 for each of a actions with
 each of o possible objects in the n arguments
 for a solution depth d

→ maximum number of propositions is 
 the number of rules is even larger

Solution Attempt: Symbol Splitting
 a possible solution is to convert each n-ary relation into n 

binary relations
 “the i-th argument of relation r is y”

 this will also reduce the size of the knowledge base because 
arguments that are not used can be omitted from the rules

 Drawback: multiple instances of the same rule get mixed up
→ no two actions of same type at the same time step

 Nevertheless, SATPLAN is very competitive

d⋅a⋅on
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