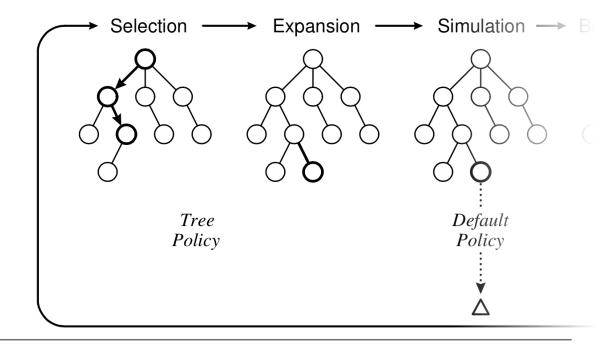


TECHNISCHE UNIVERSITÄT DARMSTADT

Florian Weber



Motivation

- Selection assigns some numeric score to each action in order to balance exploration with exploitation
 - We heard already of the use of UCB1 for node selection in UCT
 - In the following this approach is called MCTS

• Enhancement:

- Bias the search in
 - a specific direction,
 - certain actions,
 - reward estimates

Agenda

1 Domain Independent Enhancements

- 2 Domain Dependent Enhancements
- 3 All Moves As First Heuristic (AMAF)
- 4 Rapid Action Value Estimation (RAVE)

First Play Urgency (FPU)

- How MCTS does it: Visit unexplored nodes in random order
 - Trees with large branching factors
 => exploitation will rarely occur

• Idea of FPU:

- Score unvisited nodes with a fixed value
- Score visited ones with UCB1
 - => early exploitations are encouraged

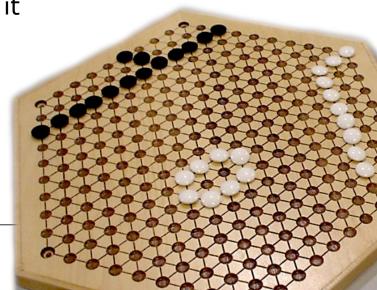
Transpositions

- How MCTS does it: Moves are represented as a search tree.
 - We have a transposition when several paths are leading to the same position
 - The statistics are dependent on the path to the position
- Idea of Transpositions: A Directed Acyclic Graph (DAG) is used to store the information about transpositions
 - Identifying transpositions is easy. Mostly transposition tables are used
 - Statistics are cumulated for the position independently of where it occurs in the tree

Domain Independent Enhancements Move Groups

- How MCTS does it: A lot of simulation is needed to find groups with a highly correlated expected reward (high branching factor)
- Idea of Move Groups: Similar moves (hence correlated actions) are grouped to reduce the branching factor
 - All actions are collected into Move Groups
 - UCB1 decides which of them is used to select a move from

Monte Carlo Paraphrase Generation (MCPG)


- How MCTS does it: The (average) score expectation is used for selection
- Idea of MCPG: The maximum reachable score for each state is used for selection
- Benefits/where is it used?
 - It is named after it's usage in generating paraphrases of natural language statements

Agenda

- 1 Domain Independent Enhancements
- 2 Domain Dependent Enhancements
- 3 All Moves As First Heuristic (AMAF)
- 4 Rapid Action Value Estimation (RAVE)

Decisive and Anti-Decisive Moves

- In many games you can find decisive and anti-decisive moves
 - Decisive move
 - One that leads immediately to a win
 - Anti-decisive move
 - Prevents the opponent from doing a decisive move in the next turn
- Idea: Selection and simulation policy:
 - If either player has a decisive move, play it
 - Otherwise play standard policy

Selection Enhancements

Progressive Bias

- How MCTS does it: The information of nodes visited only a few times is not reliable
- Idea of Progressive Bias: Provide in this case more accurate information via a domain specific heuristic value H_i
 - Term added to the selection formula:

$$f(n_1) = rac{H_i}{n_i+1}$$
 node with index *i*, visited n_i times

- The influence of $f(n_1)$ is high when a few games have been played
- It decreases when more games have been played

Search Seeding

- How MCTS does it: Every node is initialized with zero wins & visits
- Idea of Search Seeding: The statistics at each node is initialized (=seeded) according to some heuristic knowledge. It's like a warm up for the nodes.
 - This extra knowledge can safe time since the need for simulation may be reduced
- Different approaches
 - Adding virtual wins & visits, prior estimates would remain permanently
 - Some transient estimate blended into the regular value
 - \rightarrow see Progressive Bias

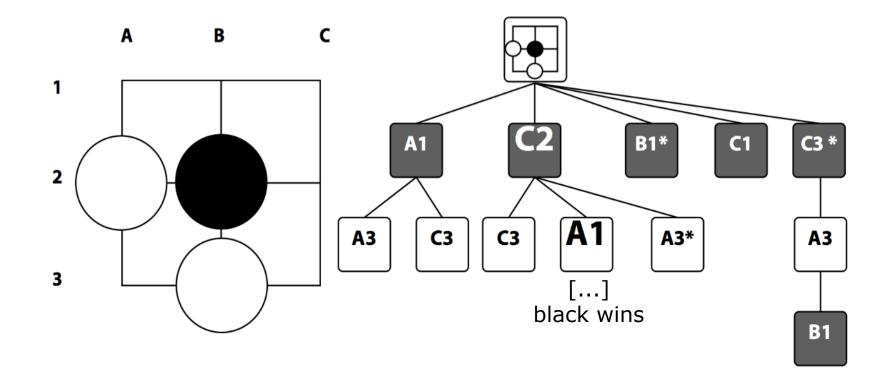
Opening Books

1) Using Opening Books for MCTS:

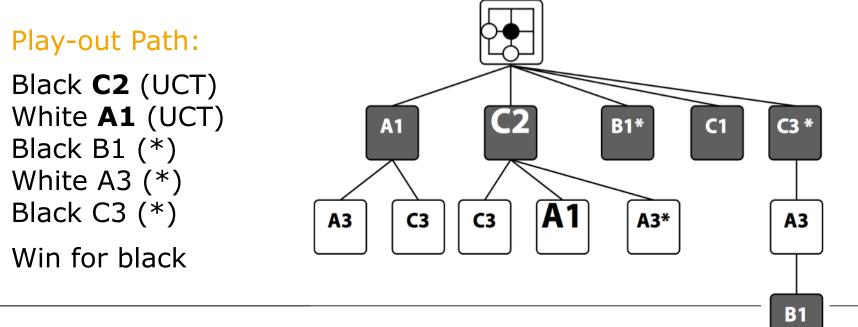
• Employing the book till an unlisted position is reached

2) Build your own ones:

- Generating an opening book with MCTS
 - Meta Monte-Carlo Search
 - Generate book online/offline

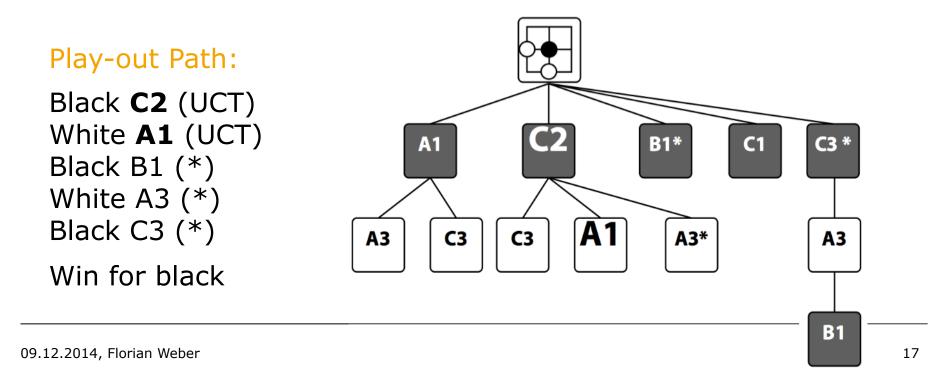

Domain Dependent Enhancements History Heuristic

- Idea: Using information about moves previously played
- Grandfather heuristic: history information is used to initialize action value estimates for new nodes
 - Expected return $Q_{grand}(s_t,a) = Q_{UCT}(s_{t-2},a)$ with state s_t , action a
- General game player CadiaPlayer: history heuristic used for seeding node values

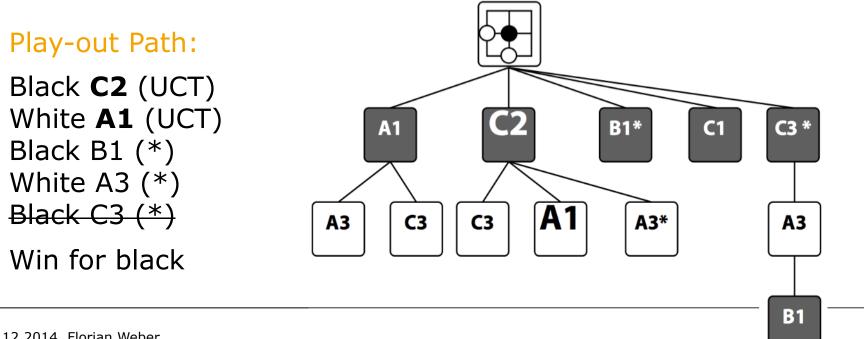

Selection Enhancements Agenda

- 1 Domain Independent Enhancements
- 2 Domain Dependent Enhancements
- 3 All Moves As First Heuristic (AMAF)
- 4 Rapid Action Value Estimation (RAVE)

 How MCTS does it: after the play-out the estimated rewards for selected nodes are updated (here: C2, A1)



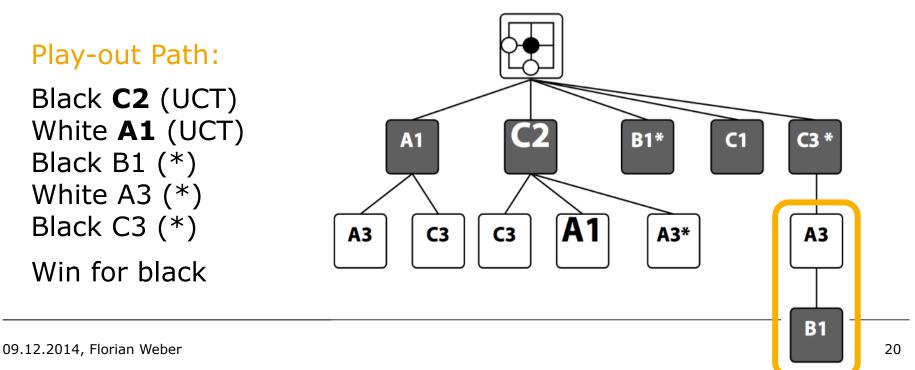
- How MCTS does it: after the play-out the estimated rewards for selected nodes are updated (here: C2, A1)
- Idea of AMAF: the reward estimate for an action *a* from a state *s* is updated whenever *a* is encountered during a play-out, even if *a* was not the actual move chosen


Some-First AMAF

- Idea: The history of the play-out moves is truncated after the first *m* random moves
 - For m=0 => standard UCT
 - For *m*>*play-out length* => standard AMAF

Some-First AMAF

- Idea: The history of the play-out moves is truncated after the first *m* random moves
 - For *m*=2 ...

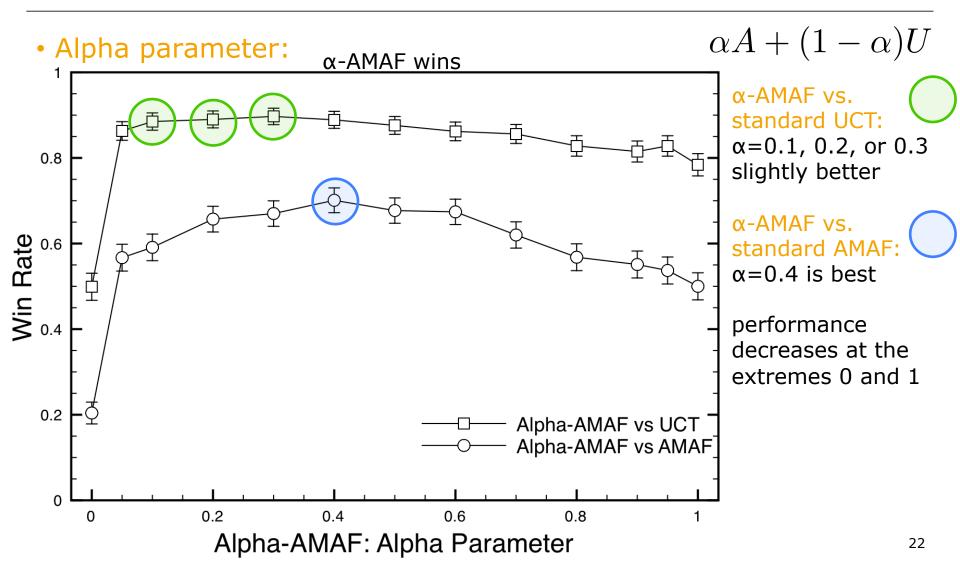


Cutoff AMAF

- Idea: Warm up with AMAF data, then use more accurate UCT
 - Update statistics for the first *k* simulations
 - Afterwards standard UCT is used
 - For k=0 => standard UCT
 - For *sufficiently high* k => standard AMAF

Permutation AMAF

- Idea: Also updates nodes that can be reached by permutations of moves that preserve the state reached
 - Stone colors and player alternation are preserved
 - In our example additional to the AMAF updates, the nodes A3 and B1 are updated



α-**AMAF**

- Idea: Blends UCT score $\,U\,{\rm with}$ AMAF score A
 - The score is calculated like this:

 $\alpha A + (1 - \alpha)U$

- For $\alpha=0$ => standard UCT
- For $\alpha = 1 =>$ standard AMAF
- So which $\alpha\,$ should we choose?

Selection Enhancements Agenda

- 1 Domain Independent Enhancements
- 2 Domain Dependent Enhancements
- 3 All Moves As First Heuristic (AMAF)
- 4 Rapid Action Value Estimation (RAVE)

Rapid Action Value Estimation (RAVE)

- Idea: similar to α -AMAF but
 - Instead of using a fixed $\,\alpha,$ the α value used at each node decreases with each visit:

 $\alpha = max \left\{ 0, \frac{V - v(n)}{V} \right\} \qquad \begin{array}{l} v(n) \text{ play-outs through node,} \\ \text{fixed integer } V > \theta \end{array}$

- Exploited areas of the tree will use the accurate statistics (UCT) more than unexploited areas of the tree
- As a reminder:
 - a-amaf: $\alpha A + (1-\alpha)U$
 - For $\alpha=0$ => standard UCT
 - For $\alpha=1$ => standard AMAF

Rapid Action Value Estimation (RAVE)

Variants

(1) Killer RAVE: Only the most important moves are used for the RAVE updates

- Important moves:
 - Those which have been flagged as strong in other parts of the tree
- Benefits/where is it used?
 - More beneficial than standard RAVE for game Havannah

(2) RAVE-max: More robust variant of RAVE

- Replacing the RAVE value of move j, Y_i with
 - $max(X_j, Y_j)$, $X_j = mean(j)$
- Able to correct extreme cases of RAVE underestimation
- Benefits/where is it used?
 - Good for degenerated cases for game Sum of Switches
 - Less successful for Go

Rapid Action Value Estimation (RAVE) **PoolRAVE**

- Idea: Modify MCTS as follows:
 - Build a pool of the k best moves according to RAVE
 - Choose one move m from the pool
 - Play m with a probability p, else the default policy

• Benefits/where is it used?

- The probability *p* is used to prevent being too deterministic
 - It helps to keep the diversity of the simulations when biasing Monte-Carlo

	Go	Havannah	Arimaa	Sum of Switches	Cadia Player
UCT	Х	Х	Х	Х	Х
First Play Urgency	Х				
Move Groups	Х				
Transpositions	Х		Х		
MCPG					
(Anti)Decisive Moves	Х	Х			
Progesssive Bias	Х				
Opening Books	Х				
Search Seeding	Х				
History Heuristic	Х		Х		Х
AMAF	Х	Х			
RAVE	Х	Х	Х	Х	Х
Killer RAVE		Х			
RAVE-max				Х	
PoolRAVE	Х	Х			

Thank you very much for you attention!

QUESTIONS?