Feature Selection with Monte-Carlo Tree Search

Robert Pinsler 20.01.2015

Agenda

Feature Selection

Feature Selection as a Markov Decision Process

Feature UCT Selection

Experimental Validation

Summary and Outlook

Feature Selection

Motivation

- less to store and collect
- faster to process

Reduced generalization error

- less noise (less irrelevant features)
- simpler hypothesis spaces (less redundant features)

Better understanding

- easier to understand
- easier to visualize

DARMSTADT

Supervised Approaches

 independently rank features with score function, select top n

no correlations *or* redundancy

- explore superset of feature, measure generalization error of all subsets
- whole combinatorial optimization problem

 combine feature selection and learning

no correlations *or* redundancy

exploration vs. exploitation dilemma

 $V: \mathcal{S} \mapsto [0, 1]$ $\pi: \mathcal{S} \mapsto \mathbf{A}$

FS as a Markov Decision Process

$$\mathcal{M} = (S, A, P, R)$$

 \mathcal{F} set of features plus stopping feature f_s final states: all states $F \subseteq \mathcal{F}$ containing f_s state space $A = \{ \text{add } f, f \in \mathcal{F} \}$ action space $P : \mathcal{S} \times \mathcal{F} \times \mathcal{S} \mapsto \mathbb{R}^+$ transition function $P(F, f, F') \text{ is nonzero if } F' = F \cup \{f\}$

policy

Goal: find optimal policy

$$\pi^* = \underset{\pi}{\operatorname{argmin}} \operatorname{\mathbf{Err}} \left(\mathcal{A} \left(F_{\pi} \right) \right)$$
 $\underset{\pi}{\mathcal{A}}^{(F \setminus \{f_s\})}$ learned hypothesis based on F generalization error of learned hypothesis

reward function (also denoted as R)

Finding an Optimal Policy

$$\pi^* = \underset{\pi}{\operatorname{argmin}} \operatorname{\mathbf{Err}} \left(\mathcal{A} \left(F_{\pi} \right) \right)$$

Following Bellman's optimality principle

$$V^{\star}(F) = \begin{cases} \mathbf{Err}(\mathcal{A}(F)) & \text{if } F \text{ is final} \\ \min_{f \in \mathcal{F} \setminus F} V^{\star}(F \cup \{f\}) & \text{otherwise} \end{cases}$$
$$\pi^{\star}(F) = \underset{f \in \mathcal{F} \setminus F}{\operatorname{argmin}} V^{\star}(F \cup \{f\})$$

optimal, but *intractable* (state space exponential in #features)
Why not cast problem into 1-player game and use MCTS with UCT?

Restrict number of arms

UCB1-tuned instead of UCB1

limit exploration term by including empirical variance of rewards

 T_F no. of visits in node F

 $t_{F,a}$ no. of times action a has been selected in F

 c_e exploration parameter

 $\hat{u}_{F,a}$ average reward of a from F

 $\hat{\sigma}_{F,a}^2$ empirical variance of rewards

$$a^* = \arg\max_{a \in A} \left\{ \hat{\mu}_{F,a} + \sqrt{\frac{c_e \ln(T_F)}{t_{F,a}} \min\left(\frac{1}{4}, \hat{\sigma}_{F,a}^2 + \sqrt{\frac{2\ln(T_F)}{t_{F,a}}}\right)} \right\}$$

Continuous heuristic

set c_e to very small value

Discrete heuristic

consider only $[T_F^b]$ children (b < 1)

→ progressive widening

Feature Selection Feature Selection as MDP Feature UCT Selection Validation Summary and Outlook

AMAF heuristic

incorporate additional knowledge gained within search

g-RAVE_f =
$$average\{V(F_t), f \in F_t\}$$

 ℓ -RAVE_{F,f} = $average\{V(F_t), F \leadsto F_t, f \in F_t\}$

associate RAVE score to each size of feature set:

$$g\text{-RAVE}_{f_s^{(d)}} = average\{V(F_t), |F_t| = d+1\}$$

Selection of New Nodes

Discrete heuristic

select top-ranked feature after RAVE whenever integer part of T_F^b is incremented

Continuous heuristic

replace UCB1-tuned formula by

$$(1-\alpha)\cdot\hat{\mu}_{F,f} + \alpha \left((1-\beta)\cdot\ell\text{-RAVE}_{F,f} + \beta\cdot\text{g-RAVE}_f\right)$$

$$+\sqrt{\frac{c_e \ln (T_F)}{t_{F,f}}} \min \left(\frac{1}{4}, \hat{\sigma}_{F,f}^2 + \sqrt{\frac{2 \ln (T_F)}{t_{F,f}}}\right)$$

$$\alpha = \frac{c}{c+t}$$
 impact of ℓ -RAVE

$$\beta = \frac{c}{c_l + t_l}$$
 impact of g-RAVE

no. of iterations involved in
$$\ell$$
-RAVE computation

$$t_{F,f}$$
 no. of times feature f has been selected in F

$$c, c_l$$
 parameter

Instant Reward Function

k-nearest neighbor (k-NN)

$$s_F(z) = |\{z' \in \mathcal{N}_{F,k}(x), \ y' > 0\}|$$

Euclidean distance based on features in F

training set

aggressive subsample of \mathcal{L}

z = (x, y)labeled example in \mathcal{V}

 $\mathcal{N}_{F,k}(x)$ set of k-NN of x in \mathcal{L} after d_F

 $s_F(z)$ number of positive examples among $\mathcal{N}_{F,k}(x)$

Area under the ROC curve (AUC) *

aka Mann Whitney Wilcoxon sum of ranks test

$$V(F) = \frac{|\{(z, z') \in \mathcal{V}^2, \ s_F(x) < s_F(x'), \ y < y'\}|}{|\{(z, z') \in \mathcal{V}^2, \ y < y'\}|}$$

^{*} Note that 0 really is the minimum as we do not simply predict a class which we could change. Instead we want to find a feature set with minimum generalization error

Feature UCT Selection (FUSE)

FUSE

Input: number of iterations T and many-armed behavior MA

navior iviA

Output: search tree \mathcal{T} and g-RAVE score

Initialize $\mathcal{T} \leftarrow \emptyset$, $\forall f$, g-RAVE(f) = 0

for t = 1 to T do

Iterate(\mathcal{T} , g-RAVE, \emptyset)

end for

Iterate_random

Input: search tree \mathcal{T} , score g-RAVE, subset F

Output: reward V

while $rand() < q^{|F|} do$

 $f^* \leftarrow \text{uniformly selected feature in } \mathcal{F} \setminus (F \cup \{f_s\})$

 $F \leftarrow F \cup \{f^{\star}\}$

end while

 $V \leftarrow V(F)$; Update g-RAVE

Iterate

Input: search tree T, score g-RAVE, subset FOutput: reward Vif F final then

 $V \leftarrow V(F \setminus \{f_s\})$; Update g-RAVE

else

if $t(F) \neq 0$ then if MA = progressive widening then

 $f^* \leftarrow \underset{f \in AllowedFeatures(F)}{\operatorname{argmax}} \text{UCB1-tuned}(F, f)$

else

 $f^* \leftarrow \underset{f \in \mathcal{F} \setminus F}{\operatorname{argmax}} \operatorname{tradeoff} \operatorname{UCB}/\operatorname{RAVE}(F, f)$

end if

 $V \leftarrow iterate(\mathcal{T}, \text{g-RAVE}, F \cup \{f^{\star}\})$

else

 $V \leftarrow iterate_random(\mathcal{T}, g\text{-RAVE}, F)$

end if

Update T_F , t_f , $\hat{\mu}_{F,f}$, $\hat{\sigma}_{F,f}^2$ and ℓ -RAVE_{F,.}

end if

Search tree (most visited path)

RAVE score

FUSE

RAVE score guides FUSE exploration

FUSER

FUSE helps build RAVE score, indicating feature relevance

Feature Selection Feature Selection as MDP Feature UCT Selection Validation Summary and Outlook

Data set	Samples	Features	Properties
Madelon	2,600	500	XOR-like
Arcene	200	10,000*	disjunction of overlapping sub concepts
Colon	62	2,000	"easy"

^{*} only top 2000 are considered for FUSE and CFS, ranked after their ANOVA score

Baseline approaches

- Correlation-based Feature Selection (CFS)
- RandomForest-based Gini score (Gini-RF) *
- Lasso
- RAND^R average RAVE score built from random 20-feature subsets

* with 1,000 trees

- 200,000 iterations
- Gaussian SVM as end learner (5-fold CV optimized hyper-parameters)

FUSE algorithms "best of both worlds"

- detect feature interdependencies (like Gini-RF, better with few features)
- filter out redundant features (like CFS, better with many features)

Results (contd.)

- all equal on colon
- **FUSE vs. FUSE**^R: FUSE does not control depth of search tree efficiently
 - → FUSE^R better
- discrete vs. continuous: same performance with optimal parameters
 - → discrete more robust due to less parameters

Performance on Madelon dataset

- FUSE^R converges more slowly than FUSE but improves after 10,000 iterations
- FUSE^R is faster by an order of magnitude than RAND^R
- runtime 45 minutes (Arcene: 5min, Colon: 4min) *

^{*} on Intel Core 2x2.6GHz CPU with 2GB memory, only considering FS on the training set

Summary and Outlook

Contributions

- formalized FS task as a Reinforcement Learning problem
- proposed efficient approximation for optimal policy
- used UCT to define FUSE algorithm
- according to benchmark state of the art, but costly

Future directions

- extend to multi-class problems
- extend to mixed (continuous and discrete) search spaces
- combine FUSE with other end learners
- reconsider instant reward
- extend to feature construction

Critical Evaluation

- original approach for FS
- promising validation results

However...

- many degrees of freedom
 - interdependencies not fully understood
 - problem is simply shifted
- inherits problems from k-NN when working with
 - high dimensionality
 - skewed class distributions
- extensions probably further increase computational costs
- RF, Lasso as wrappers is fair for comparison, but unlike (usually) used in practice

Feature Selection with Monte-Carlo Tree Search

Robert Pinsler 20.01.2015

Thank you! Questions?

See next slide for sources

Sources

- Auer et. al.: Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning. 2002.
- Gaudel, Romaric; Sebag, Michèle: Feature Selection as a One-Player Game.
 In: Proceedings of the 27th International Conference on Machine Learning. 2010.
- Gelly, Sylvain; Silver, David: Combining Online and Offline Knowledge in UCT.
 In: Proceedings of the 24th International Conference on Machine Learning. 2007.
- Guyon, Isabelle; Elisseeff, André: An Introduction to Feature Extraction.
 In: Guyon, Isabelle et. al. (editors): Feature Extraction. 2006.
- Guyon, Isabelle; Elisseeff, André: An Introduction to Variable and Feature Selection.
 In: Journal of Machine Learning Research. 2003.
- Helmbold, David P.; Parker-Wood, Aleatha: All-Moves-As-First Heuristics in Monte-Carlo Go. In: Proceedings of the 2009 International Conference on Artificial Intelligence. 2009.
- Kocsis, Levente et. al.: Bandit based Monte-Carlo Planning. In: Proceedings of the 17th European Conference on Machine Learning. 2006.
- Sebag, Michele: Monte Carlo Tree Search: From Playing Go to Feature Selection.
 Presentation. 2010.
- http://theconnectivist-img.s3.amazonaws.com/wp-content/uploads/2013/10/Airplane-1300x724.jpg – last accessed: 17.01.2015 10:00pm.

