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Minimax

 Assume that black is first to move

 Outcome of a game is either 

 0 = win for white

 1 = win for black

 Black wants to maximize the outcome

 White wants to minimize it

 Given a small enough game tree (or 
enough time) minimax can be used to 
compute perfect play

 Problem: this is not always possible
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Expected Outcome

 Bruce Abramson (1990)

 Used the idea of simulating random playouts of a game position

 Concerns: Minimax approach has several problems

 Hard to calculate, hard to estimate

 Misses precision to extend beyond two-player games

 He proposes a domain-independent model of static evaluation

 Namely the Expected Outcome of a game given random play
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Expected Outcome

 Expected outcome is defined as

 where

 𝐺 = game tree node

 𝑘 = #leafs in subtree

 𝑉𝑙𝑒𝑎𝑓= leafs value

 𝑃𝑙𝑒𝑎𝑓= probability that leaf will be reached, given random play

𝐸𝑂(𝐺) =  

𝑙𝑒𝑎𝑓=1

𝑘

𝑉𝑙𝑒𝑎𝑓𝑃𝑙𝑒𝑎𝑓
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Expected Outcome
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EO(G) is the chance of winning 
when playing the move that 
leads to G.
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Expected Outcome

 Problem

 The perfect play assumption is easily defended

 The random play assumption on the other hand not really

 A strong move against a random player does not have to be good against a 
real one

 Consider this hypothetical scenario

 Two identical chess midgame positions

 Human player has 1 minute to make a move on each board

 Board 1 is then played out randomly, whereas board 2 is played out by 
(oracularly defined) minimax play

 Obviously on board 1 the player wants to play the move with the highest EO, 
whereas on board 2 he wants to play the strongest minimax move

 Assumption: The correct move is frequently (not always) the same
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Expected Outcome

 Apply EO methods to games with incomplete information (e.g. 
games where the game tree is too big)

 Example Othello (8x8)

 EO has to be estimated

 Do this by sampling a finite number of random playouts

 Sample N = 16 leaves, calculate 𝜇0 =
𝑊𝐼𝑁𝑆

𝑁

 Then  𝜇1 =
𝑊𝐼𝑁𝑆

2𝑁
, … 𝜇𝑖 =

𝑊𝐼𝑁𝑆

2𝑖𝑁
until 𝜇𝑖 − 𝜇𝑖−1 ≤ 𝜖

 This Sampler beat Weighted-Squares (fairly strong) 48-2

 Although it occasionally took >2h to make a move

 Disk Difference shows that Sampler is a full class better than 
Weighted-Squares
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Monte-Carlo Simulation

Monte-Carlo Tree Search and Rapid Action value Estimation in 
Computer Go (Gelly and Silver, 2011)

 Definition:

Where 

 N(s,a) = # of times action a was selected in state s, 𝑧𝑖 = value of ith
simulation, N(s) = the total number of simulations

 = A function that return 1 if action a was selected in state s 
and 0 otherwise
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Monte-Carlo Tree Search

 Uses MC Simulation to evaluate the nodes of a search tree

 How to generate

 Start with an empty Tree T

 Every simulation adds one node to the T (the first node visited 
that is not yet in the tree)

 After each simulation every node in T updates it’s MC value

 As the tree grows bigger the node values approximate the 
minimax value (n  infinity)
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Monte-Carlo Tree Search
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Monte-Carlo Tree Search
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Monte-Carlo Tree Search
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UCT (Upper Confidence Bound 1 applied to trees)

 Idea: optimism in case of uncertainty when searching the tree

 Greedy action selection typically avoids searching actions after one or 
more poor outcomes

 UCT treats each state of the search tree as a multi-armed bandit

 The action value is augmented by an exploration bonus that is 
highest for rarely visited state-action pairs

 The tree policy selects the action a* maximizing the augmented 
value

c = Exploration 
constant
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All Moves As First Heuristic

MC alone can’t generalize between related positions

 Idea: have one general value for each move independent from 
when it’s played

 Combine all branches where an action a is played at any point 
after s

MC simulation can be used to  approximate the AMAF value

 Gelly and Silver (2011) used this in computer Go
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Rapid Action Value Estimation

 The RAVE algorithm uses the all-moves-as-first heuristic to 
share knowledge between nodes

 As normal MC has to play out many games for any action in any state 
it is a good idea to save capacity by using the AMAF heuristic

 Moves are often unaffected by moves played elsewhere on the 
board

  One general value for each move

 Especially in GO the branching factor is very big



18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods |  Timo Nolle  |  17

MC-RAVE

 The RAVE algorithm learns very quickly, but is often wrong

 Idea: Combine the RAVE value with the MC value and make decisions 
based on that

 Each node in the Tree then has an AMAF and a MC value

 𝛽 is a weighting parameter for state s and action a

 It depends on the number of simulations that have been seen

 When only a few simulations have been seen the AMAF value has to be 
weighted more highly (𝛽 𝑠, 𝑎 ≈ 1). 

 When many simulations have been seen, the MC value is weighted more 
highly( 𝛽 𝑠, 𝑎 ≈ 0)

 Heuristic MC-Rave: add a heuristic that initializes node values
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UCT-RAVE

 Application of the optimism-in-the-face-of-uncertainty principle
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Playing Go

 For the last 30 years computers have evaluated Go positions by 
using handcrafted heuristics, based on human expert 
knowledge, patterns, and rules

With MC no human knowledge about positions is required

When heuristic MCTS was added to MoGo it was the first 
program to reach the dan (master) level and the first to beat a 
professional player

 Traditional programs rated about 1800 Elo

MC programs with RAVE rated about 2500 Elo

 After initial jump of MC programs in go

 Computer programs improved about one rank every year
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Playing Bridge

 GIB: Imperfect Information in a Computationally Challenging 
Game (Ginsberg, 2001)

 Used MC for generating deals that are consistent with both the 
bidding and the play of the deal thus far

MC used for card play and bidding (though reliant on big bidding 
database)
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Playing Scrabble

World-championship-caliber Scrabble (Sheppard, 2001)

MAVEN on of the first programs to employ simulated games for 
the purpose of positional analysis

 Different algorithms for early-, mid-, and endgame

 Problem the earlygame engine favors move A, but the midgame 
engine prefers another move B

 Simulation can be used here to get an answer

 Just simulate out the game after the moves A and B and calculate the 
winning probability for each move
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Playing Scrabble

MAVEN averages 35.0 points per move, games ar over in 10.5 
moves and MAVEN plays 1.9 bingos per game

 Human experts average 33.0 points, 11.5 moves per game and 
about 1.5 bingos per game

MAVEN is stronger than any human
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Problems with MC

 On the Laziness of Monte-Carlo Game Tree Search in Non-tight 
situations (Althofer, 2008)

 Invented the double step race

 Every move you are allowed to
move either 1 or 2 squares

 The player first to reach the green 
square wins

 For a human the optimal strategy is obvious: always move 2 squares 
except you are 1 square away from the finish

 The figure shows an example of a 6-vs-6 Double Step Race
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Problems with MC

 Experiment

 Look at different DSRs (6-vs-3 – 6-vs-10), play 10.000 games.

 The game tree was generated by playing n random games from the starting position

 Table: Number of wins for Black (from 10.000 games)

n 6-vs-3 6-vs-4 6-vs-5 6-vs-6 6-vs-7 6-vs-8 6-vs-9 6-vs-10

1 361 2204 4805 6933 9340 9649 9967 9988

2 193 1987 5799 6970 9654 9752 9991 9996

4 47 1468 7039 7450 9905 9868 9999 9999

8 2 836 8573 8228 9989 9969 10000 9999

16 0 286 9557 9264 10000 9992 10000 10000

32 0 40 9936 9875 10000 10000 10000 10000

64 0 0 10000 9991 10000 10000 10000 10000
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Problems with MC

 Table: Number of games with a bad single step on the first move for Black

 Evaluation: MC performs better in tight positions, when Black already has an 
advantage, it tends to be “lazy”

n 6-vs-3 6-vs-4 6-vs-5 6-vs-6 6-vs-7 6-vs-8 6-vs-9 6-vs-10

1 4714 3992 3511 3732 4259 4798 4935 4954

2 4363 3270 2797 2993 3625 4493 4803 4955

4 3864 2368 2091 2081 2870 3988 4755 4897

8 2968 1319 1131 1281 1835 3331 4502 4920

16 1775 568 396 465 0831 2399 4185 4912

32 642 118 64 86 250 1334 3395 4687

64 80 9 0 6 32 438 2339 4453
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Problems with MC

 Game Self-Play with Pure Monte-Carlo: The Basin Structure (Althofer, 
2010)

 Continuation on the first paper

 Self play experiments

 One two MC players (with different MC parameters) play the Double Step 
Race

 MC(k) vs MC(2k) for example
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DSR-6

MC(k) vs MC(2k) Number of games Score

1-2 999.999 42.4 %

2-4 999.999 40.9 %

3-6 999.999 41.0 %

4-8 999.999 41.4 %

5-10 999.999 41.9 %

6-12 999.999 42.3 %

8-16 999.999 43.5 %

16-32 100.000 46.6 %

32-64 100.000 49.4 %

64-128 100.000 50.0 %
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DSR-10

MC(k) vs MC(2k) Number of games Score

1-2 999.999 41.6 %

2-4 999.999 40.1 %

4-8 999.999 39.3 %

8-16 999.999 38.8 %

16-32 999.999 41.6 %

32-64 999.999 46.9 %

64-128 999.999 49.6 %

128-256 999.999 50.0 %
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DSR-14

MC(k) vs MC(2k) Number of games Score

1-2 100.000 40.4 %

2-4 100.000 39.0 %

4-8 100.000 37.9 %

8-16 100.000 36.9 %

16-32 100.000 37.3 %

32-64 100.000 43.0 %

64-128 100.000 48.3 %

128-256 100.000 49.9 %
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DSR-32

MC(k) vs MC(2k) Number of games Score

1-2 10.000 38.7

2-4 10.000 35.6

4-8 10.000 33.1

8-16 999.999 30.9

16-32 100.000 30.1

32-64 110.000 30.3

64-128 10.000 34.9

128-256 10.000 44.8
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Evaluation

 This “basin” structure also appeared in other games

 E.g., Clobber, conHex, “Fox versus Hounds”, “EinStein wurfelt nicht”

 Some even had double basins

 “… it is not clear which applications the knowledge about the 
existence and shape of self-play basins will have.”
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Problems with MC

 More simulations do not always lead to better results (Browne, 2010)

 For example in a game of Gomoku flat MC fails to find the right move 
a

 Problem is move b creates two next-move wins for Black as 
opposed to one next-move win for white even though it is White’s 
turn next move

 This improves how-
ever when using 
tree search

 Though it takes a 
long time to con-
verge
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QUESTIONS
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