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= Monte-Carlo Simulation
Monte-Carlo Tree Search
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= Playing Games
= Go, Bridge, Scrabble
= Problems with MC
» Laziness
= Basin structure
= Dangers of Random playouts
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Assume that black is first to move

Outcome of a game is either
= 0 = win for white
= 1 = win for black

Black wants to maximize the outcome
White wants to minimize it

Given a small enough game tree (or
enough time) minimax can be used to
compute perfect play

Problem: this is not always possible

ev : G — {max,min} U [0, 1]

if ev(p) € [0,1];
if ev(p) = max;

ev(p),
eve(p) = {Illc‘:lxpf[_s(p) ev.(p),
if ev(p) = min.

Miny e s(p) eVe(p'),

if ev(p) € [0,1] return ev(p)
if ev(p) = max return max, ¢, minimax(p’)
yminimax(p’)

if eV(p) =min return llllllpres(p
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Expected Outcome

= Bruce Abramson (1990)
= Used the idea of simulating random playouts of a game position

= Concerns: Minimax approach has several problems
» Hard to calculate, hard to estimate
= Misses precision to extend beyond two-player games

= He proposes a domain-independent model of static evaluation
= Namely the Expected Outcome of a game given random play
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Expected Outcome

» Expected outcome is defined as

k
EO(G) = z Vleafpleaf
leaf=1
= where

= G = game tree node
» k = #leafs in subtree
" Vieas= leafs value
= P.qr= probability that leaf will be reached, given random play
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Expected Outcome ) UNVERSITAT
EO(G) =(1 - 0 - 1 1) 23
“—< 0t *§>—z

EO(G) is the chance of winning
when playing the move that
leads to G.

p 1/2 1/4 1/4
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Expected Outcome

= Problem
» The perfect play assumption is easily defended
= The random play assumption on the other hand not really

= A strong move against a random player does not have to be good against a
real one

= Consider this hypothetical scenario
= Two identical chess midgame positions
= Human player has 1 minute to make a move on each board

= Board 1 is then played out randomly, whereas board 2 is played out by
(oracularly defined) minimax play

= Obviously on board 1 the player wants to play the move with the highest EO,
whereas on board 2 he wants to play the strongest minimax move

= Assumption: The correct move is frequently (not always) the same
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Expected Outcome

= Apply EO methods to games with incomplete information (e.qg.
games where the game tree is too big)
= Example Othello (8x8)

= EO has to be estimated
= Do this by sampling a finite number of random playouts

WINS
= Sample N = 16 leaves, calculate u
WINS WINS .
= Then u; = —y o M T Ty until |u; —pi_1l <€

= This Sampler beat Weighted-Squares (fairly strong) 48-2
= Although it occasionally took >2h to make a move

= Disk Difference shows that Sampler is a full class better than
Weighted-Squares
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Monte-Carlo Simulation

= Monte-Carlo Tree Search and Rapid Action value Estimation in
Computer Go (Gelly and Silver, 2011)

= Definition:
1 N (s)
Q(Sv CL) — N(S, a) 7;21 L‘(S, CL)ZZ
= Where

= N(s,a) = # of times action a was selected in state s, z; = value of ith
simulation, N(s) = the total nhumber of simulations

» [,(s,a) = A function that return 1 if action a was selected in state s
and O otherwise
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Monte-Carlo Tree Search

» Uses MC Simulation to evaluate the nodes of a search tree

» How to generate
= Start with an empty Tree T

= Every simulation adds one node to the T (the first node visited
that is not yet in the tree)

= After each simulation every node in T updates it's MC value

= As the tree grows bigger the node values approximate the
minimax value (n 2 infinity)
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Monte-Carlo Tree Search

Simulation 1 Simulation 2

t ¢ Tree Policy

Tree Policy

Default Policy Default Policy

* New node in the tree

O Node stored in the tree

> State visited but not stored

' [0 Terminal outcome

' —— Current simulation

—— Previous simulation
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Monte-Carlo Tree Search UNIVERSITAT
Simulation 3 Simulation 4
A A
v Tree Policy Tree Policy
A
y
A
Default Policy Default Policy
* New node in the tree
O Node stored in the tree
> State visited but not stored
p v v [0 Terminal outcome

—— Current simulation

—— Previous simulation
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Monte-Carlo Tree Search UNIVERSITAT
Simulation 5
A
Tree Policy
y
A
Default Policy
Sﬁ? New node in the tree
O Node stored in the tree
> State visited but not stored
[0 Terminal outcome
v

—— Current simulation

—— Previous simulation
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UCT (Upper Confidence Bound 1 applied to trees)

= Jdea: optimism in case of uncertainty when searching the tree

= Greedy action selection typically avoids searching actions after one or
more poor outcomes

» UCT treats each state of the search tree as a multi-armed bandit

= The action value is augmented by an exploration bonus that is
highest for rarely visited state-action pairs

= The tree policy selects the action a* maximizing the augmented
value

log N (s) c = Exploration

D(s.a) = Q(s.a) +c
Q7(s,a) = Q(s,a) +« N(s,a) constant

a* = argmax Q%(s,a)
a
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All Moves As First Heuristic

= MC alone can’t generalize between related positions

= Jdea: have one general value for each move independent from
when it’'s played

= Combine all branches where an action a is played at any point
after s

= MC simulation can be used to approximate the AMAF value

. 1 ;"-;'{.‘;)H
QQ(s,a) = —= I;(s,a)z;.
(s, a; Foa) ; (s, a)

= Gelly and Silver (2011) used this in computer Go
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Rapid Action Value Estimation

= The RAVE algorithm uses the all-moves-as-first heuristic to
share knowledge between nodes

= As normal MC has to play out many games for any action in any state
it is @ good idea to save capacity by using the AMAF heuristic

= Moves are often unaffected by moves played elsewhere on the
board

= &> One general value for each move

= Especially in GO the branching factor is very big
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MC-RAVE

= The RAVE algorithm learns very quickly, but is often wrong

= Jdea: Combine the RAVE value with the MC value and make decisions
based on that

= Each node in the Tree then has an AMAF and a MC value

-

Q«(s.a) =(1—[F(s,a))Q(s,a)+ B(s,a)Q(s,a)

=  is a weighting parameter for state s and action a

= It depends on the number of simulations that have been seen

= When only a few simulations have been seen the AMAF value has to be
weighted more highly (B(s,a) = 1).

= When many simulations have been seen, the MC value is weighted more
highly( B(s,a) = 0)

» Heuristic MC-Rave: add a heuristic that initializes node values
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UCT-RAVE

= Application of the optimism-in-the-face-of-uncertainty principle

f
. [log N (s
QR¥(s,a) = Q.(s,a) + E\f N (s i)}
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Playing Go

= For the last 30 years computers have evaluated Go positions by
using handcrafted heuristics, based on human expert
knowledge, patterns, and rules

= With MC no human knowledge about positions is required

= When heuristic MCTS was added to MoGo it was the first
program to reach the dan (master) level and the first to beat a
professional player

= Traditional programs rated about 1800 Elo
= MC programs with RAVE rated about 2500 Elo
= After initial jump of MC programs in go
= Computer programs improved about one rank every year
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Playing Bridge

= GIB: Imperfect Information in a Computationally Challenging
Game (Ginsberg, 2001)

= Used MC for generating deals that are consistent with both the
bidding and the play of the deal thus far

= MC used for card play and bidding (though reliant on big bidding
database)
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Playing Scrabble

= World-championship-caliber Scrabble (Sheppard, 2001)

= MAVEN on of the first programs to employ simulated games for
the purpose of positional analysis

= Different algorithms for early-, mid-, and endgame
= Problem the earlygame engine favors move A, but the midgame
engine prefers another move B
= Simulation can be used here to get an answer
= Just simulate out the game after the moves A and B and calculate the
winning probability for each move
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Playing Scrabble

= MAVEN averages 35.0 points per move, games ar over in 10.5
moves and MAVEN plays 1.9 bingos per game

= Human experts average 33.0 points, 11.5 moves per game and
about 1.5 bingos per game

= MAVEN is stronger than any human
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Problems with MC

= On the Laziness of Monte-Carlo Game Tree Search in Non-tight
situations (Althofer, 2008)

= Invented the double step race ‘

= Every move you are allowed to

move either 1 or 2 squares O

= The player first to reach the green
square wins

= For a human the optimal strategy is obvious: always move 2 squares
except you are 1 square away from the finish

= The figure shows an example of a 6-vs-6 Double Step Race
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Problems with MC
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» Experiment

» Look at different DSRs (6-vs-3 - 6-vs-10), play 10.000 games.
» The game tree was generated by playing n random games from the starting position
= Table: Number of wins for Black (from 10.000 games)

6-vs-3 6-vs-4 6-vs-5 6-vs-6

6-vs-7

1 361 2204 4805 6933
2 193 1987 5799 6970
4 47 1468 7039 7450
8 2 836 8573 8228
16 0 286 9557 9264
32 0 40 9936 9875
64 0 0 10000 9991

9340

9654
9905
9989
10000
10000
10000

9649

9752

9868
9969
9992
10000
10000

9967

9991

9999
10000
10000
10000
10000

9988
9996
9999
9999
10000
10000
10000
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Problems with MC
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6-vs-4

6-vs-7

6-vs-8

6-vs-9

6-vs-10

6-vs-3
1 4714
2 4363
4 3864
8 2968
16 1775
32 642
64 80

3992
3270
2368
1319
568
118
9

3511
2797
2091
1131
396
64
0o

3732
2993
2081
1281
465
86
6

4259
3625
2870
1835
0831
250
32

4798
4493
3988
3331
2399
1334
438

4935
4803
4755
4502
4185
3395
2339

4954
4955
4897
4920
4912
4687
4453

= Evaluation: MC performs better in tight positions, when Black already has an
advantage, it tends to be “lazy”
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Problems with MC

= Game Self-Play with Pure Monte-Carlo: The Basin Structure (Althofer,
2010)
= Continuation on the first paper
= Self play experiments

= One two MC players (with different MC parameters) play the Double Step
Race

= MC(k) vs MC(2k) for example
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DSR-6

MC(k) vs MC(2k) Number of games
1-2 999.999 42.4 %
2-4 999.999 40.9 %
3-6 999.999 41.0 %
4-8 999.999 41.4 %
5-10 999.999 41.9 %
6-12 999.999 42.3 %
8-16 999.999 43.5 %
16-32 100.000 46.6 %
32-64 100.000 49.4 %
64-128 100.000 50.0 %
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DSR-10

MC(k) vs MC(2k) Number of games

1-2 999.999 41.6 %

2-4 999.999 40.1 %

4-8 999.999 39.3 %

8-16 999.999 38.8 %

16-32 999.999 41.6 %
32-64 999.999 46.9 %
64-128 999.999 49.6 %
128-256 999.999 50.0 %
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DSR-14

MC(k) vs MC(2k) Number of games

1-2 100.000 40.4 %

2-4 100.000 39.0 %

4-8 100.000 37.9 %

8-16 100.000 36.9 %

16-32 100.000 37.3 %
32-64 100.000 43.0 %
64-128 100.000 48.3 %
128-256 100.000 49.9 %
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DSR-32

MC(k) vs MC(2k) Number of games

1-2 10.000 38.7

2-4 10.000 35.6

4-8 10.000 33.1

8-16 999.999 30.9
16-32 100.000 30.1
32-64 110.000 30.3
64-128 10.000 34.9
128-256 10.000 44.8
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Evaluation

= This “basin” structure also appeared in other games
= E.g., Clobber, conHex, “Fox versus Hounds”, “"EinStein wurfelt nicht”
= Some even had double basins

="... it is not clear which applications the knowledge about the
existence and shape of self-play basins will have.”
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Problems with MC

= More simulations do not always lead to better results (Browne, 2010)
= For example in a game of Gomoku flat MC fails to find the right move
a

* Problem is move b creates two next-move wins for Black as
opposed to one next-move win for white even though it is White’'s
turn next move

= This improves how-
ever when using :
tree search

= Though it takes a

long time to con- :(

verge

S
e
e
L
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QUESTIONS

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 33



References

» Expected-Outcome: A General Model of Static Evaluation, Abramson, 1990

= On the Laziness of Monte-Carlo Game Tree Search in Non-tight Situations,
Althofer, 2008

= Game Self-Play with Pure Monte-Carlo: The Basin Structure, Althéfer, 2010
= On the Dangers of Random Playouts, Browne 2010

= Monte-Carlo tree search and rapid action value estimation in computer Go, Gelly
and Silver, 2011

= GIB: Imperfect Information in a Computationally Challenging Game, Ginsberg,
2001

= World-championship-caliber Scrabble, Sheppard, 2002

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 34



