
Monte-Carlo Methods
Timo Nolle

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 2

Outline

 Minimax

 Expected Outcome

 Monte-Carlo

 Monte-Carlo Simulation

 Monte-Carlo Tree Search

 UCT

 AMAF

 RAVE

 MC-RAVE

 UCT-RAVE

 Playing Games

 Go, Bridge, Scrabble

 Problems with MC

 Laziness

 Basin structure

 Dangers of Random playouts

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 3

Minimax

 Assume that black is first to move

 Outcome of a game is either

 0 = win for white

 1 = win for black

 Black wants to maximize the outcome

 White wants to minimize it

 Given a small enough game tree (or
enough time) minimax can be used to
compute perfect play

 Problem: this is not always possible

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 4

Expected Outcome

 Bruce Abramson (1990)

 Used the idea of simulating random playouts of a game position

 Concerns: Minimax approach has several problems

 Hard to calculate, hard to estimate

 Misses precision to extend beyond two-player games

 He proposes a domain-independent model of static evaluation

 Namely the Expected Outcome of a game given random play

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 5

Expected Outcome

 Expected outcome is defined as

 where

 𝐺 = game tree node

 𝑘 = #leafs in subtree

 𝑉𝑙𝑒𝑎𝑓= leafs value

 𝑃𝑙𝑒𝑎𝑓= probability that leaf will be reached, given random play

𝐸𝑂(𝐺) =

𝑙𝑒𝑎𝑓=1

𝑘

𝑉𝑙𝑒𝑎𝑓𝑃𝑙𝑒𝑎𝑓

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 6

Expected Outcome

G

101

1/2 1/4 1/4

𝐸𝑂 𝐺 = 1 ∗
1

2
+ 0 ∗

1

4
+ 1 ∗

1

2
=
3

4

p

…

EO(G) is the chance of winning
when playing the move that
leads to G.

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 7

Expected Outcome

 Problem

 The perfect play assumption is easily defended

 The random play assumption on the other hand not really

 A strong move against a random player does not have to be good against a
real one

 Consider this hypothetical scenario

 Two identical chess midgame positions

 Human player has 1 minute to make a move on each board

 Board 1 is then played out randomly, whereas board 2 is played out by
(oracularly defined) minimax play

 Obviously on board 1 the player wants to play the move with the highest EO,
whereas on board 2 he wants to play the strongest minimax move

 Assumption: The correct move is frequently (not always) the same

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 8

Expected Outcome

 Apply EO methods to games with incomplete information (e.g.
games where the game tree is too big)

 Example Othello (8x8)

 EO has to be estimated

 Do this by sampling a finite number of random playouts

 Sample N = 16 leaves, calculate 𝜇0 =
𝑊𝐼𝑁𝑆

𝑁

 Then 𝜇1 =
𝑊𝐼𝑁𝑆

2𝑁
, … 𝜇𝑖 =

𝑊𝐼𝑁𝑆

2𝑖𝑁
until 𝜇𝑖 − 𝜇𝑖−1 ≤ 𝜖

 This Sampler beat Weighted-Squares (fairly strong) 48-2

 Although it occasionally took >2h to make a move

 Disk Difference shows that Sampler is a full class better than
Weighted-Squares

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 9

Monte-Carlo Simulation

Monte-Carlo Tree Search and Rapid Action value Estimation in
Computer Go (Gelly and Silver, 2011)

 Definition:

Where

 N(s,a) = # of times action a was selected in state s, 𝑧𝑖 = value of ith
simulation, N(s) = the total number of simulations

 = A function that return 1 if action a was selected in state s
and 0 otherwise

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 10

Monte-Carlo Tree Search

 Uses MC Simulation to evaluate the nodes of a search tree

 How to generate

 Start with an empty Tree T

 Every simulation adds one node to the T (the first node visited
that is not yet in the tree)

 After each simulation every node in T updates it’s MC value

 As the tree grows bigger the node values approximate the
minimax value (n infinity)

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 11

Monte-Carlo Tree Search

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 12

Monte-Carlo Tree Search

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 13

Monte-Carlo Tree Search

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 14

UCT (Upper Confidence Bound 1 applied to trees)

 Idea: optimism in case of uncertainty when searching the tree

 Greedy action selection typically avoids searching actions after one or
more poor outcomes

 UCT treats each state of the search tree as a multi-armed bandit

 The action value is augmented by an exploration bonus that is
highest for rarely visited state-action pairs

 The tree policy selects the action a* maximizing the augmented
value

c = Exploration
constant

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 15

All Moves As First Heuristic

MC alone can’t generalize between related positions

 Idea: have one general value for each move independent from
when it’s played

 Combine all branches where an action a is played at any point
after s

MC simulation can be used to approximate the AMAF value

 Gelly and Silver (2011) used this in computer Go

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 16

Rapid Action Value Estimation

 The RAVE algorithm uses the all-moves-as-first heuristic to
share knowledge between nodes

 As normal MC has to play out many games for any action in any state
it is a good idea to save capacity by using the AMAF heuristic

 Moves are often unaffected by moves played elsewhere on the
board

 One general value for each move

 Especially in GO the branching factor is very big

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 17

MC-RAVE

 The RAVE algorithm learns very quickly, but is often wrong

 Idea: Combine the RAVE value with the MC value and make decisions
based on that

 Each node in the Tree then has an AMAF and a MC value

 𝛽 is a weighting parameter for state s and action a

 It depends on the number of simulations that have been seen

 When only a few simulations have been seen the AMAF value has to be
weighted more highly (𝛽 𝑠, 𝑎 ≈ 1).

 When many simulations have been seen, the MC value is weighted more
highly(𝛽 𝑠, 𝑎 ≈ 0)

 Heuristic MC-Rave: add a heuristic that initializes node values

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 18

UCT-RAVE

 Application of the optimism-in-the-face-of-uncertainty principle

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 19

Playing Go

 For the last 30 years computers have evaluated Go positions by
using handcrafted heuristics, based on human expert
knowledge, patterns, and rules

With MC no human knowledge about positions is required

When heuristic MCTS was added to MoGo it was the first
program to reach the dan (master) level and the first to beat a
professional player

 Traditional programs rated about 1800 Elo

MC programs with RAVE rated about 2500 Elo

 After initial jump of MC programs in go

 Computer programs improved about one rank every year

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 20

Playing Bridge

 GIB: Imperfect Information in a Computationally Challenging
Game (Ginsberg, 2001)

 Used MC for generating deals that are consistent with both the
bidding and the play of the deal thus far

MC used for card play and bidding (though reliant on big bidding
database)

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 21

Playing Scrabble

World-championship-caliber Scrabble (Sheppard, 2001)

MAVEN on of the first programs to employ simulated games for
the purpose of positional analysis

 Different algorithms for early-, mid-, and endgame

 Problem the earlygame engine favors move A, but the midgame
engine prefers another move B

 Simulation can be used here to get an answer

 Just simulate out the game after the moves A and B and calculate the
winning probability for each move

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 22

Playing Scrabble

MAVEN averages 35.0 points per move, games ar over in 10.5
moves and MAVEN plays 1.9 bingos per game

 Human experts average 33.0 points, 11.5 moves per game and
about 1.5 bingos per game

MAVEN is stronger than any human

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 23

Problems with MC

 On the Laziness of Monte-Carlo Game Tree Search in Non-tight
situations (Althofer, 2008)

 Invented the double step race

 Every move you are allowed to
move either 1 or 2 squares

 The player first to reach the green
square wins

 For a human the optimal strategy is obvious: always move 2 squares
except you are 1 square away from the finish

 The figure shows an example of a 6-vs-6 Double Step Race

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 24

Problems with MC

 Experiment

 Look at different DSRs (6-vs-3 – 6-vs-10), play 10.000 games.

 The game tree was generated by playing n random games from the starting position

 Table: Number of wins for Black (from 10.000 games)

n 6-vs-3 6-vs-4 6-vs-5 6-vs-6 6-vs-7 6-vs-8 6-vs-9 6-vs-10

1 361 2204 4805 6933 9340 9649 9967 9988

2 193 1987 5799 6970 9654 9752 9991 9996

4 47 1468 7039 7450 9905 9868 9999 9999

8 2 836 8573 8228 9989 9969 10000 9999

16 0 286 9557 9264 10000 9992 10000 10000

32 0 40 9936 9875 10000 10000 10000 10000

64 0 0 10000 9991 10000 10000 10000 10000

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 25

Problems with MC

 Table: Number of games with a bad single step on the first move for Black

 Evaluation: MC performs better in tight positions, when Black already has an
advantage, it tends to be “lazy”

n 6-vs-3 6-vs-4 6-vs-5 6-vs-6 6-vs-7 6-vs-8 6-vs-9 6-vs-10

1 4714 3992 3511 3732 4259 4798 4935 4954

2 4363 3270 2797 2993 3625 4493 4803 4955

4 3864 2368 2091 2081 2870 3988 4755 4897

8 2968 1319 1131 1281 1835 3331 4502 4920

16 1775 568 396 465 0831 2399 4185 4912

32 642 118 64 86 250 1334 3395 4687

64 80 9 0 6 32 438 2339 4453

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 26

Problems with MC

 Game Self-Play with Pure Monte-Carlo: The Basin Structure (Althofer,
2010)

 Continuation on the first paper

 Self play experiments

 One two MC players (with different MC parameters) play the Double Step
Race

 MC(k) vs MC(2k) for example

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 27

DSR-6

MC(k) vs MC(2k) Number of games Score

1-2 999.999 42.4 %

2-4 999.999 40.9 %

3-6 999.999 41.0 %

4-8 999.999 41.4 %

5-10 999.999 41.9 %

6-12 999.999 42.3 %

8-16 999.999 43.5 %

16-32 100.000 46.6 %

32-64 100.000 49.4 %

64-128 100.000 50.0 %

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 28

DSR-10

MC(k) vs MC(2k) Number of games Score

1-2 999.999 41.6 %

2-4 999.999 40.1 %

4-8 999.999 39.3 %

8-16 999.999 38.8 %

16-32 999.999 41.6 %

32-64 999.999 46.9 %

64-128 999.999 49.6 %

128-256 999.999 50.0 %

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 29

DSR-14

MC(k) vs MC(2k) Number of games Score

1-2 100.000 40.4 %

2-4 100.000 39.0 %

4-8 100.000 37.9 %

8-16 100.000 36.9 %

16-32 100.000 37.3 %

32-64 100.000 43.0 %

64-128 100.000 48.3 %

128-256 100.000 49.9 %

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 30

DSR-32

MC(k) vs MC(2k) Number of games Score

1-2 10.000 38.7

2-4 10.000 35.6

4-8 10.000 33.1

8-16 999.999 30.9

16-32 100.000 30.1

32-64 110.000 30.3

64-128 10.000 34.9

128-256 10.000 44.8

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 31

Evaluation

 This “basin” structure also appeared in other games

 E.g., Clobber, conHex, “Fox versus Hounds”, “EinStein wurfelt nicht”

 Some even had double basins

 “… it is not clear which applications the knowledge about the
existence and shape of self-play basins will have.”

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 32

Problems with MC

 More simulations do not always lead to better results (Browne, 2010)

 For example in a game of Gomoku flat MC fails to find the right move
a

 Problem is move b creates two next-move wins for Black as
opposed to one next-move win for white even though it is White’s
turn next move

 This improves how-
ever when using
tree search

 Though it takes a
long time to con-
verge

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 33

QUESTIONS

18.11.2014 | Seminar aus Maschinellem Lernen: Monte-Carlo Methods | Timo Nolle | 34

References

 Expected-Outcome: A General Model of Static Evaluation, Abramson, 1990

 On the Laziness of Monte-Carlo Game Tree Search in Non-tight Situations,
Althöfer, 2008

 Game Self-Play with Pure Monte-Carlo: The Basin Structure, Althöfer, 2010

 On the Dangers of Random Playouts, Browne 2010

 Monte-Carlo tree search and rapid action value estimation in computer Go, Gelly
and Silver, 2011

 GIB: Imperfect Information in a Computationally Challenging Game, Ginsberg,
2001

 World-championship-caliber Scrabble, Sheppard, 2002

