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Outline

We present the most important result from the paper “Finite-time
Analysis of the Multiarmed Bandit Problem” by Auer et al., which is the
foundation of bandit-based methods in Monte Carlo Tree Search.
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Introduction

e Consider a sequential decision problem where we are given K options
each associated with a stochastically distributed reward (or cost).

e We seek to maximize rewards (or minimze costs) by figuring out the
best option and taking that option as often as possible in a growing
number of turns. — exploration vs. exploitation

e Different interpretations are imagineable, most well-known is the
model called multiarmed bandit problem.



Multiarmed Bandit Problem

o We are given random variables X; ,, for 1 <1 < K, n € N, where
X n describes the reward obtained by playing the i-th bandit for the
n-th time.

e We assume independence of all random variables and identical
(unknown) distributions for fixed ¢ with u; = E[Xj ,] being the
expectation of playing machine ¢ at any time n.



Regret

e Goal: Choose a policy that maximizes the expected rewards when
successively playing the bandits.

e Equivalently, we can minimize the regret after n plays, which is
defined as

K
R(n) = p*n — Z p; B[T(n))],

where 1* = max; u; and T);(n) denotes the number of times bandit
j has been played during the first n plays in total.



Regret

It will be helpful to rewrite the regret as follows. Put A; = p* —

we use n = Z]K:1 T;(n) to get

K
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Previous Results

e In a paper from 1985, Lai and Robbins described policies which
ensured for any suboptimal machine j that

E[T;(n)] <c¢j(n)-lnn, wherec;j(n) —c¢; € R asn — oo,

given the reward distributions are in a certain class.

e Moreover, they showed that under some mild assumptions any
arbitrary policy satisfies

E[T)(n)] > ¢; -Inn

for large n, leaving the former policies (asymptotically) optimal.



Main Result

In a nutshell, the main result of Auer et al. is to give a very simple and
efficient policy, called UCB1, which achieves

E[T;j(n)] <c-lnn+¢, where0<c¢d €R,

for all n, under very little assumptions on the underlying reward
distributions.

This yields a bound on the regret R(n) within a constant factor of Inn
uniformly for all n.



UCB1

We define X, = L3 | X ,, i.e. the average reward of machine j in n
successive plays.
The (deterministic) policy UCB1 proceeds as follows:
1. Forn=1,..., K, play bandit n. (Initialize by playing each machine
once.)

2. After n > K plays, select machine

2Inn
Tj(n)’

1 = arg max Xj,Tj(n) +
J

The name UCB1 (Upper Confidence Bound) relates to the second
summand and will become clearer considering the proof.



Theorem

Let K > 1 and X, ,, be random rewards with support in [0,1]. Suppose
we play the bandits successively following policy UCB1. Then it holds
that

R(n)< |8 > (T) +(1+7;2)(§:1Aj>.

Iy <p /



Hoeffding's Inequality

For the proof, we need the following fact from probability theory. It is a
special case of Hoeffding's inequality.

Let X1,...,X, be independent, identically distributed random variables
with common range [0, 1] and mean . Denote their average by
X, =L(X1 4+ X,). Then, for all a > 0, we have
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Proof

For better presentation, we put ¢; s = ,/%. Also, for all expressions

referring to some optimal bandit we add * as a superscript.

Moreover, let the random variables I; indicate the index of the machine
played at time t. We use [A] to denote the indicator function of some
event A.

Thus, according to UCB1 we can write

[[; =i =1 <= i=argmax ij,Tj(tfl) + 1,1y (t-1)
j

to express bandit ¢ has been picked at time t.
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Proof

Leti € {1,..., K} be any index and ¢ € N. Then we have

Tin)=1+ > [Li=d<t+ Y [Li=i Ti(t—1)>1
t=K+1 t=K+1

n

<{l+ Z (XFeony T a1y < Xime-1) + G11,0-1)
t=K+1

Ti(t—1) = (]
oo t—1 t—1
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Proof

Observe that, if X} +c¢; 5 < X s, + 15, then at least one of the
following must hold

X* S /J/* —Cts
Xi,si 2 M + Ct,s;
W< g+ 2ce s,

This is true, since if we assume the contrary, then
XEters >t > pi+2cs, > Xis, + Cros,s

a contradiction.
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Proof

Using Hoeffding's inequality, we can bound the first two events by
2
P[X; < /_j,* _ ct,s] < 6—28(\/21nt/s> _ e—41nt _ t_4
and similarly P[X; s, > pi +cps,] <t72

The third relation does not hold anymore as soon as s; gets large
enough. More precisely, for s; > (81nn)/A? we have

W= i = 2¢s, = — i — 24/ (2Int) /s; > p* — pi — Ay = 0.



Proof

Hence, choosing ¢ = [(81nn)/AZ], we finally obtain

< 8lnn 1 ﬂj
- A2 3
With R(n) = 3_;.,. <.~ A E[T;(n)], this is the assertion
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Conclusion

e The multiarmed bandit problem is “solved optimally” by policies
that bound the regret asymptotically by Inn.

e We have examined UCBL1 as a very simple policy achieving this
bound uniformly over n.

e This policy is widely used and leads to the UCT algorithm in Monte
Carlo Tree Search.



