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Outline

We present the most important result from the paper “Finite-time

Analysis of the Multiarmed Bandit Problem” by Auer et al., which is the

foundation of bandit-based methods in Monte Carlo Tree Search.

Outline:

1. Introduction

2. Multiarmed Bandit Problem & Regret

3. UCB1 & Main Result

4. Proof
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Introduction

• Consider a sequential decision problem where we are given K options

each associated with a stochastically distributed reward (or cost).

• We seek to maximize rewards (or minimze costs) by figuring out the

best option and taking that option as often as possible in a growing

number of turns. −→ exploration vs. exploitation

• Different interpretations are imagineable, most well-known is the

model called multiarmed bandit problem.
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Multiarmed Bandit Problem

• We are given random variables Xi,n for 1 ≤ i ≤ K, n ∈ N, where

Xi,n describes the reward obtained by playing the i-th bandit for the

n-th time.

• We assume independence of all random variables and identical

(unknown) distributions for fixed i with µi = E[Xi,n] being the

expectation of playing machine i at any time n.

4 / 17



Regret

• Goal: Choose a policy that maximizes the expected rewards when

successively playing the bandits.

• Equivalently, we can minimize the regret after n plays, which is

defined as

R(n) = µ∗n−
K∑
j=1

µj E[Tj(n)],

where µ∗ = maxj µj and Tj(n) denotes the number of times bandit

j has been played during the first n plays in total.
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Regret

It will be helpful to rewrite the regret as follows. Put ∆j = µ∗ − µj , then

we use n =
∑K
j=1 Tj(n) to get

R(n) = µ∗n−
K∑
j=1

µj E[Tj(n)] = E

µ∗n− K∑
j=1

µjTj(n)


= E

 K∑
j=1

(µ∗ − µj)Tj(n)

 = E

 K∑
j=1

∆jTj(n)


=

∑
j:µj<µ∗

∆j E[Tj(n)].
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Previous Results

• In a paper from 1985, Lai and Robbins described policies which

ensured for any suboptimal machine j that

E[Tj(n)] ≤ cj(n) · lnn, where cj(n)→ cj ∈ R as n→∞,

given the reward distributions are in a certain class.

• Moreover, they showed that under some mild assumptions any

arbitrary policy satisfies

E[Tj(n)] ≥ cj · lnn

for large n, leaving the former policies (asymptotically) optimal.
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Main Result

In a nutshell, the main result of Auer et al. is to give a very simple and

efficient policy, called UCB1, which achieves

E[Tj(n)] ≤ c · lnn+ c′, where 0 ≤ c, c′ ∈ R,

for all n, under very little assumptions on the underlying reward

distributions.

This yields a bound on the regret R(n) within a constant factor of lnn

uniformly for all n.
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UCB1

We define X̄j,n = 1
n

∑n
t=1Xj,t, i.e. the average reward of machine j in n

successive plays.

The (deterministic) policy UCB1 proceeds as follows:

1. For n = 1, . . . ,K, play bandit n. (Initialize by playing each machine

once.)

2. After n ≥ K plays, select machine

i = arg max
j

X̄j,Tj(n) +

√
2 lnn

Tj(n)
,

The name UCB1 (Upper Confidence Bound) relates to the second

summand and will become clearer considering the proof.
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Theorem

Let K > 1 and Xi,n be random rewards with support in [0, 1]. Suppose

we play the bandits successively following policy UCB1. Then it holds

that

R(n) ≤

8
∑

j:µj<µ∗

(
lnn

∆j

)+

(
1 +

π2

3

)( K∑
j=1

∆j

)
.
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Hoeffding’s Inequality

For the proof, we need the following fact from probability theory. It is a

special case of Hoeffding’s inequality.

Fact

Let X1, . . . , Xn be independent, identically distributed random variables

with common range [0, 1] and mean µ. Denote their average by

X̄n = 1
n (X1 + · · ·+Xn). Then, for all a ≥ 0, we have

P[X̄n ≥ µ+ a] ≤ e−2na
2

and P[X̄n ≤ µ− a] ≤ e−2na
2

.
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Proof

For better presentation, we put ct,s =
√

2 ln t
s . Also, for all expressions

referring to some optimal bandit we add ∗ as a superscript.

Moreover, let the random variables It indicate the index of the machine

played at time t. We use [A] to denote the indicator function of some

event A.

Thus, according to UCB1 we can write

[It = i] = 1 ⇐⇒ i = arg max
j

X̄j,Tj(t−1) + ct−1,Tj(t−1)

to express bandit i has been picked at time t.
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Proof

Let i ∈ {1, . . . ,K} be any index and ` ∈ N. Then we have

Ti(n) = 1 +

n∑
t=K+1

[It = i] ≤ `+

n∑
t=K+1

[It = i, Ti(t− 1) ≥ `]

≤ `+

n∑
t=K+1

[X̄∗T∗(t−1) + ct−1,T∗(t−1) ≤ X̄i,Ti(t−1) + ct−1,Ti(t−1),

Ti(t− 1) ≥ `]

≤ `+

∞∑
t=1

t−1∑
s=1

t−1∑
si=`

[X̄∗s + ct,s ≤ X̄i,si + ct,si ].
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Proof

Observe that, if X̄∗s + ct,s ≤ X̄i,si + ct,si , then at least one of the

following must hold

X̄∗s ≤ µ∗ − ct,s
X̄i,si ≥ µi + ct,si

µ∗ < µi + 2ct,si .

This is true, since if we assume the contrary, then

X̄∗s + ct,s > µ∗ ≥ µi + 2ct,si > X̄i,si + ct,si ,

a contradiction.
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Proof

Using Hoeffding’s inequality, we can bound the first two events by

P[X̄∗s ≤ µ∗ − ct,s] ≤ e
−2s
(√

2 ln t/s
)2

= e−4 ln t = t−4

and similarly P[X̄i,si ≥ µi + ct,si ] ≤ t−4.

The third relation does not hold anymore as soon as si gets large

enough. More precisely, for si ≥ (8 lnn)/∆2
i we have

µ∗ − µi − 2ct,si = µ∗ − µi − 2
√

(2 ln t)/si ≥ µ∗ − µi −∆i = 0.
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Proof

Hence, choosing ` = d(8 lnn)/∆2
i e, we finally obtain

E[Ti(n)] ≤ `+

∞∑
t=1

t−1∑
s=1

t−1∑
si=`

(
P[X̄∗s ≤ µ∗ − ct,s] + P[X̄i,si ≥ µi + ct,si ]

)
≤
⌈

8 lnn

∆2
i

⌉
+

∞∑
t=1

t∑
s=1

t∑
si=1

2t−4

≤ 8 lnn

∆2
i

+ 1 +
π2

3
.

With R(n) =
∑
j:µj<µ∗ ∆j E[Tj(n)], this is the assertion.
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Conclusion

• The multiarmed bandit problem is “solved optimally” by policies

that bound the regret asymptotically by lnn.

• We have examined UCB1 as a very simple policy achieving this

bound uniformly over n.

• This policy is widely used and leads to the UCT algorithm in Monte

Carlo Tree Search.
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