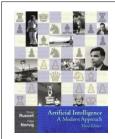
Outline

- Best-first search
 - Greedy best-first search
 - A* search
 - Heuristics
- Local search algorithms
 - Hill-climbing search
 - Beam search
 - Simulated annealing search
 - Genetic algorithms
- Constraint Satisfaction Problems
 - Constraints
 - Constraint Propagation
 - Backtracking Search
 - Local Search



Many slides based on Russell & Norvig's slides Artificial Intelligence: A Modern Approach

Constraint Satisfaction Problems

Special Type of search problem:

- state is defined by variables X_i with d values from domain D_i
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Examples:

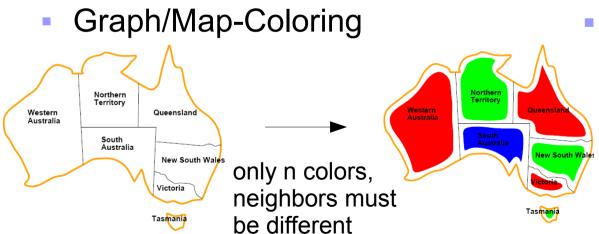
Sudoku

5	3			7					5	3	4	6	7	8	9	1	2
6			1	9	5				6	7	2	1	9	5	3	4	8
	9	8					6		1	9	8	3	4	2	5	6	7
8				6				3	8	5	9	7	6	1	4	2	3
4			8		3			1	4	2	6	8	5	3	7	9	1
7				2				6	7	1	3	9	2	4	8	5	6
	6					2	8		9	6	1	5	3	7	2	8	4
			4	1	9			5	2	8	7	4	1	9	6	3	5
				8			7	9	3	4	5	2	8	6	1	7	9

 cryptarithmetic send puzzle + MORE

MONEY

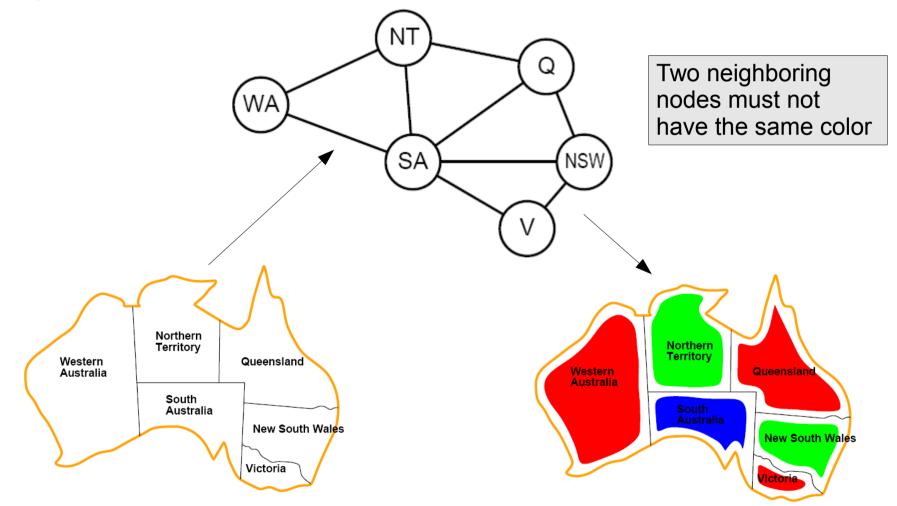
n-queens



- Real-world:
 - assignment problems
 - timetables
 - classes, lecturers rooms, studies

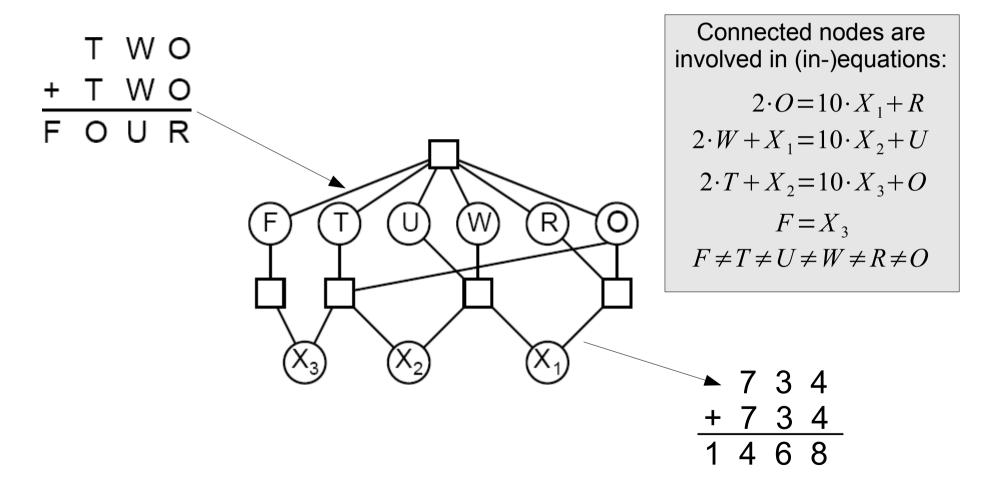
Constraint Graph

- nodes are variables
- edges indicate constraints between them



Constraint Graph

- nodes are variables
- edges indicate constraints between them



Types of Constraints

- Unary constraints involve a single variable,
 - e.g., *South Australia* \neq green
- Binary constraints involve pairs of variables,
 - e.g., South Australia \neq Western Australia
- Higher-order constraints involve 3 or more variables
 - e.g., $2 \cdot W + X_1 = 10 \cdot X_2 + U$
- Preferences (soft constraints)
 - e.g., *red is better than green*
 - are not binding, but task is to respect as many as possible
 - \rightarrow constrained optimization problems

Solving CSP Problems

Two principal approaches:

Search:

- successively assign values to variable
- check all constraints
- if a constraint is violated \rightarrow backtrack
- until all variables have assigned values
- Constraint Propagation:
 - maintain a set of possible values D_i for each variable X_i
 - try to reduce the size of D_i by identifying values that violate some constraints

Solving Constraint Problems with Search

- Constraint problems define a simple search space:
 - The start node is an empty assignment of values to variables
 - Its successors are all possible ways of assigning one value to a variable (depth 1)
 - Their successors are those with 2 variables assigned (depth 2)
 - • •
 - Until at the end all variables have been assigned a value (depth n)
- Goal test:
 - Does a node at depth n satisfy all constraints?
- Observation:
 - All solution nodes will appear at depth n → depth-first search is feasible without losing completeness

Complexity of Naive Search

- Assumptions
 - we have n variables
 - \rightarrow all solutions are a depth *n* in the search tree
 - all variables have v possible values
- Then
 - at level 1 we have n·v possible assignments (we can choose one of n variables and one of v values for it)
 - at level 2, we have (n-1)·v possible assignments for each previously assigned variable

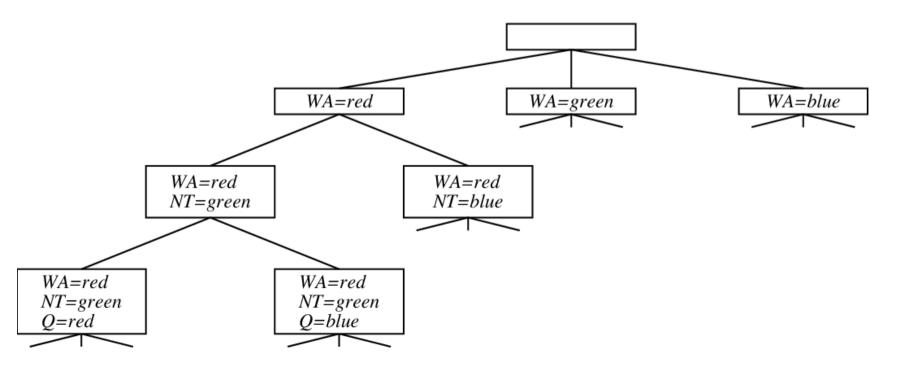
(we can choose one of the remaining n-1 variables and one of the *v* values for it)

- In general: branching factor at depth $l: (n-l+1) \cdot v$
- Hence
 - The search tree has $n!v^n$ leaves

Commutative Variable Assignments

- Variable assignments are commutative
 - [WA = red then NT = green] is the same as
 [NT = green then WA = red]
- Thus, at each node, we only need to make assignments for one of the variables

 \rightarrow Total complexity reduces to v^n



Backtracking Search

- Depth-first search with single variable assignments per level is also called backtracking search
- Backtracking is the basic uninformed search algorithm for CSPs
 - add one constraint at a time without conflict
 - succeed if a legal assignment is found
 - Can solve n-queens problems for up to $n \simeq 25$
- Complexity:
 - Worst case is still exponentional
 - heuristics for selecting variables (SELECTUNASSIGNEDVARIABLE) and for ordering values (OrderDomainValues) can improve practical performance

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

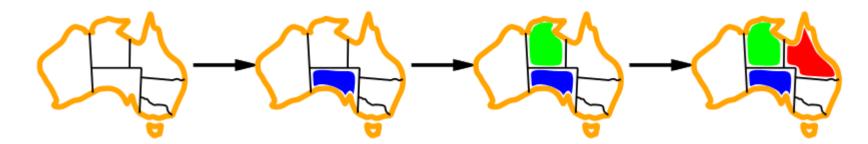
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment given CONSTRAINTS[csp] then add {var = value} to assignment result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp) if result \neq failure then return result remove {var = value} from assignment return failure

Domain-Specific Heuristics

- Depend on the particular characteristics of the problem
- Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- General-purpose heuristics
 - For CSP, good general-purpuse heuristics are known:
 - Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values

Domain-Specific Heuristics

- Depend on the particular characteristics of the problem
- Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- **General-purpose heuristics**
 - For CSP, good general-purpuse heuristics are known:
 - Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values
 - **Degree Heuristic**
 - choose the variable that imposes the most constraints on the remaining values



Domain-Specific Heuristics

- Depend on the particular characteristics of the problem
- Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- General-purpose heuristics

Least Constraining Value Heuristic

 Given a variable, choose the value that rules out the fewest values in the remaining variables

Informed Search – Constraint Satisfaction Problems

Domain-Specific Heuristics

- Depend on the particular characteristics of the problem
- Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem
- **General-purpose heuristics**
 - For CSP, good general-purpuse heuristics are known:
 - Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values
 - Degree Heuristic
 - choose the variable that imposes the most constraints on the remaining values
 - Least Constraining Value Heuristic
 - Given a variable, choose the value that rules out the fewest values in the remaining variables
 - used in this order, these three can greatly speed up search
 - e.g., n-queens from 25 queens to 1000 queens

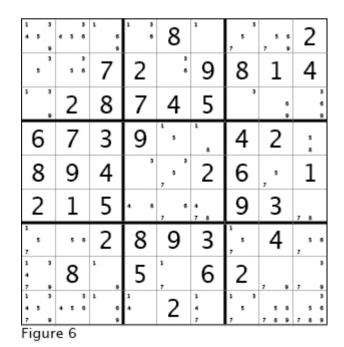
DrderDomainValues

Constraint Propagation - Sudoku

- Problem
 - CSP with 81 variables
- Constraints
 - some values are assigned in the start (unary constraints)
 - 27 constraints on 9 values that must all be different

(9 rows, 9 columns, 9 squares)

- Constraint Propagation
 - People often write a list of possible values into empty fields
 - try to successively eliminate values
- Status
 - Automated constraint solvers can solve the hardest puzzles in no time



16

Node Consistency

Node Consistency

- the possible values of a variable must conform to all unary constraints
- can be trivially enforced
- Example:
 - Soduko: Some nodes are constrained to a single value

More General Idea: Local Consistency

- make each node in the graph consistent with its neighbors
- by (iteratively) enforcing the constraints corresponding to the edges

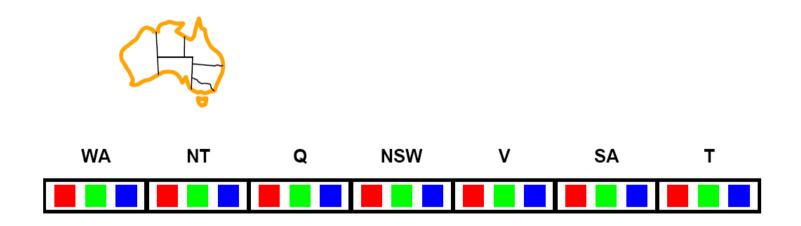
Arc Consistency

every domain must be consistent with the neighbors:

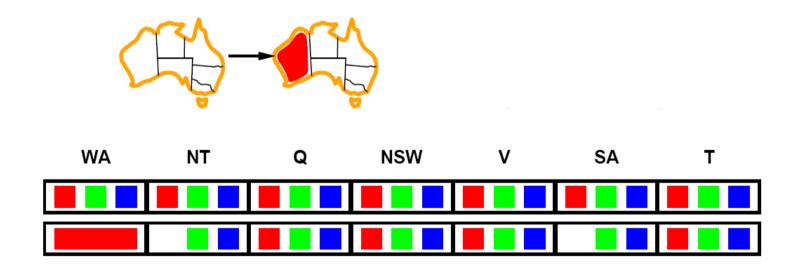
A variable X_i is arc-consistent with a variable X_i if

- for every value in its domain D_i
- there is some value in D_i
- that satisfies the constraint on the arc (X_i, X_i)
- can be generalized to n-ary constraints
 - each tuple involving the variable X_i has to be consistent

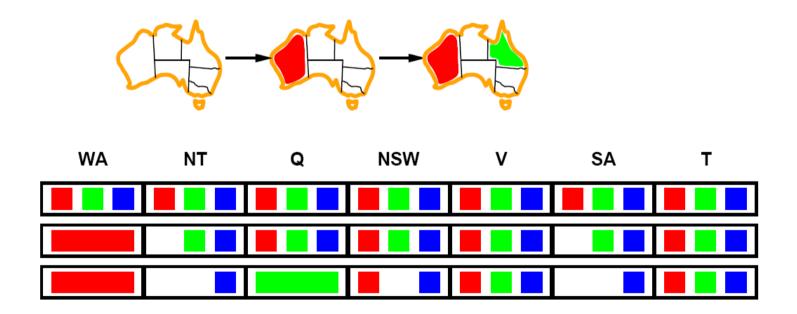
- Idea: establish arc consistency for every new variable
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values



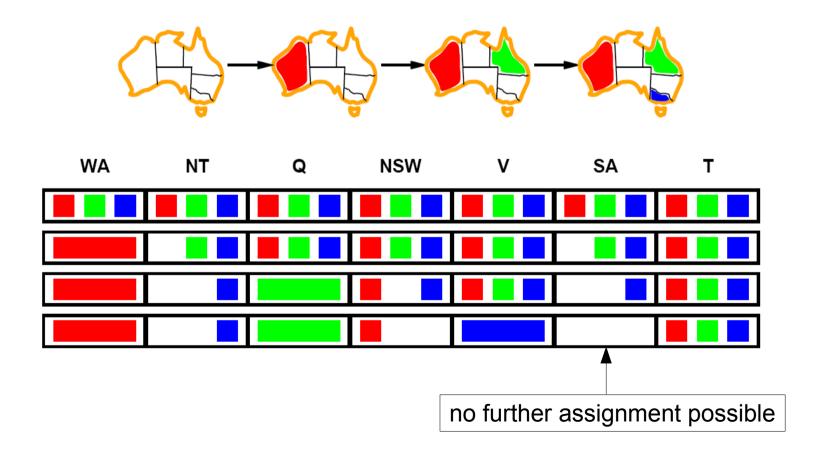
- Idea: establish arc consistency for every new variable
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable no legal values



- Idea: establish arc consistency for every new variable
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable no legal values

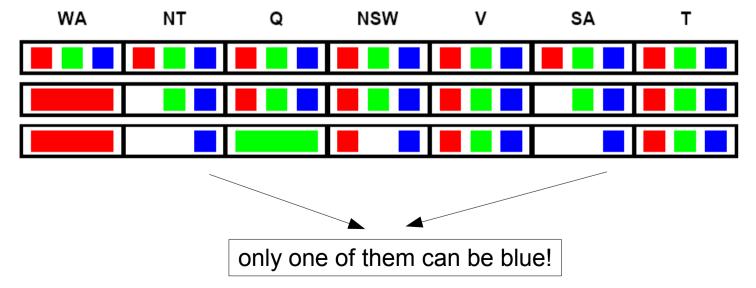


- Idea: establish arc consistency for every new variable
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable no legal values



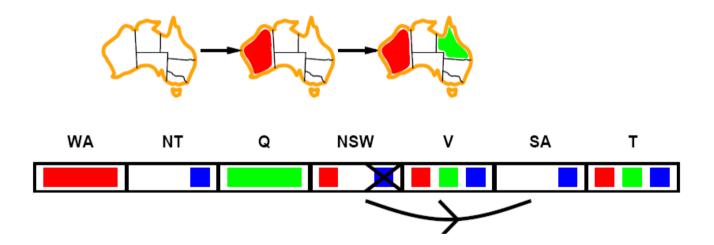
Constraint Propagation

- Problem:
 - forward checking propagates information from assigned to unassigned variables
 - but doesn't look ahead to provide early detection for all failures

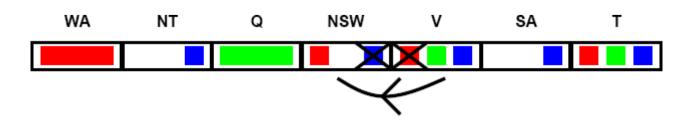


Maintaining Arc Consistency (MAC)

 After each new assignment of a value to a variable, possible values of the neighbors have to be updated:



 If one variable (NSW) looses a value (blue), we need to recheck its neighbors as well:



Arc Consistency Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$ local variables: queue, a queue of arcs, initially all the arcs in cspwhile queue is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then for each X_k in NEIGHBORS $[X_i]$ do add (X_k, X_i) to queueIf X loses a value, neigbors of X need to be rechecked.

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds $removed \leftarrow false$ for each x in DOMAIN[X_i] do if no value y in DOMAIN[X_j] allows (x, y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from DOMAIN[X_i]; $removed \leftarrow true$ return removed

• Run-time: $O(n^2d^3)$ (can be reduced to $O(n^2d^2)$) more efficient than forward checking (see later)

Path Consistency

- Arc Consistency is often sufficient to
 - solve the problem (all domains have size 1)
 - show that the problem cannot be solved (some domains empty)
- but may not be enough
 - there is always a consistent value in the neighboring region

→ Path consistency

tightens the binary constraints by considering triples of values

A pair of variables (X_i, X_j) is path-consistent with X_m if

- for every assignment that satisfies the constraint on the arc (X_i, X_j)
- there is an assignment that satisfies the constraints on the arcs (X_i, X_m) and (X_j, X_m)
- Algorithm AC-3 can be adapted to this case (known as PC-2)

. . . .

k-Consistency

- The concept can be generalized so that a set of k values need to be consistent
 - 1-consistency = node consistency
 - 2-consistency = arc consistency
 - 3-consistency = path consistency

```
    May lead to faster solution (O(n<sup>2</sup>d))
```

- but checking for k-Consistency is exponentional in k in the worst case
- therefore arc consistency is most frequently used in practice

Sudoku

- simple puzzles can be solved with AC-3
 - the 9-valued AllDiff constraints can be converted into pairwise binary constraints (36 each)
 - therefore 27x36 = 972 arc constraints
- somewhat more with PC-2
 - there are 255,960 path constraints
- however, not all problems can be solved with constraint progapagation alone
 - to solve all puzzles we need a bit of search

Integrating Constraint Propagation and Backtracking Search

- Performance of Backtracking can be further sped up by integrating constraint propagation into the search
- Key idea:
 - each time a variable is assigned, a constraint propagation algorithm is run in order to reduce the number of choice points in the search
- Possible algorithms
 - Forward Checking
 - AC-3, but initial queue of constraints only contains constraints with the variable that has been changed

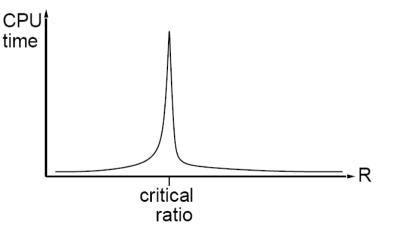
Local Search for CSP

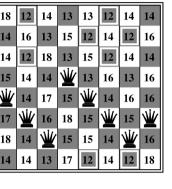
- Modifications for CSPs:
 - work with complete states
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Min-conflicts Heuristic:
 - randomly select a conflicted variable
 - choose the value that violates the fewest constraints
 - hill-climbing with h(n) = # of violated constraints

Performance:

- can solve randomly generated
 CSPs with a high probability
- except in a narrow range of

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$





Min-conflicts is the heuristic that we studied for the 8-queens problems.