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Are a simple, graphical notation for conditional
Independence assertions

hence for compact specifications of full joint distributions

A BN is a directed graph with the following components:

Nodes: one node for each variable
Edges: a directed edge from node N, to node N, indicates that
variable X; has a direct influence upon variable X;

Toothache @
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In addition to the structure, we need a conditional
probability distribution for the random variable of each
node given the random variables of its parents.

l.e. we need P(X; | Parents(X)))

nodes/variables that are not connected are (conditionally)
Independent:

Weather is independent of Cavity
Toothache is independent of Catch given Cavity

P(Weather) @
Toothache
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Situation:

I'm at work

John calls to say that the in my house alarm went off
but Mary (my neighbor) did not call
The alarm will usually be set off by burglars
but sometimes it may also go off because of minor earthquakes

Variables:
Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects causal knowledge:
A burglar can set the alarm off
An earthquake can set the alarm off
The alarm can cause Mary to call
The alarm can cause John to call
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P(E)

P(B)
Burglary Earthquake 002
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Each node is is conditionally independent of its
nondescendants given its parents

P(X|U,...U,. Z; ....Z,)
=P(X|U,..,U,)
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Markov Blanket:
parents + children + children's parents

Each node is conditionally
independent of all other nodes
given its markov blanket

P(X|U, ..U, Y ...V, Zy, ., Z,))=

=P(X | all variables)

m?
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The conditional probability distributions define the joint
probability distribution of the variables of the network

P(xl,...,x,,l)ZI_[:;1 P(x,|Parents(.X,))

Example:

What is the probability that the alarm goes off and both John
and Mary call, but there is neither a burglary nor an
earthquake?

P(jAmAaN—-bA-e)=
=P(jla)P(m|a)P(a|~b,~e)P(=b)P(-e)

=0.9X0.7X0.001x0.999X0.998 ~0.00063
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Local Semantics < Global Semantics

Proof:

order the variables so that parents always appear before
children

P(J,M,A,E,B)=

apply chain rule (now each variable is conditioned on its
parents and other non-descendants)

=P(J|M,A,E,B)P(M|A,E,B)P(A|E,B)P(E|B)P(B)
use conditional independence

=P(J|A)P(M|A)P(A|E,B)P(E)P(B)
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Constructing Bayesian Networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X,..., X,
2. Fori =1ton

add X, to the network

select parents from Xq,..., X;_1 such that

i &

P(X-;|P{1-'T‘E?'T?.-i.S(X?j]] — P(X?|X1 ey Xg_lj

This choice of parents guarantees the global semantics:

P(Xy,....X,) = ---h'?:lP(X?r|X1, ..., X;—1) (chain rule)
= [I_ \P(X,|Parents(X;)) (by construction)
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Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

A .\
\/
If Mary calls, it is more likely @
that John calls as well.
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Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

. .\@
If Mary and John call, the

probability that the alarm

has gone off is larger than if

they don't call.

Node A needs parents J or M
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Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

P(A|J,M)=P(A4]J)? &

If John and Mary call, the
probability that the alarm
has gone off is higher than if
only John calls.
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Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

P(A|J,M)=P(4|M)?3& @ .@
If John and Mary call, the A
probability that the alarm @

has gone off is higher than if
only Mary calls.
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Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

(arycals)
P(B|4,J,M)=P(B)? 3¢

Knowing whether Mary or John @
called and whether the alarm
went off influences my
knowledge about whether nglary)
there has been a burglary
 J

Node B needs pérents A, JorM

Bayesian Networks 16 V2.0 |© J. Fiirnkranz



TU Darmstadt, WS 2013/14 Einflhrung in die Klnstliche Intelliger

Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

P(B|A4,J,M)=P(B|4)?

If | know that the alarm has
gone off, knowing that John Burglary |

or Mary have called does

not add to my knowledge of

whether there has beena | » Thus, no edges from
burglary or not. M and J, only from B
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Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

Knowing whether there has @

been an Alarm does not

suffice to determine the
probability of an earthquake, Burglary
Earthquake

we have to know whether
there has been a burglary
as well.
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Suppose we first select the ordering
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake,

P(E|B,A,J,M)=P(E|4,B)? @

If we know whether there has
been an alarm and whether Burglary Q

there has been burglary, no Earthquake
other factors will determine

our knowledge about whether
there has been an earthquake
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Deciding conditional
Independence is hard in
non-causal direction

for assessing whether X is

conditionally independent of
Z ask the question:

If | add variable Z in the condition,
does it change the probabilities for X?

causal models and

conditional independence

seem hardwired for humans!
Assessing conditional
probabillities is also hard In
non-causal direction

Bayesian Networks 20
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Network is less compact

more edges and more
parameters to estimate
Worst possible ordering

MaryCalls, JohnCalls

Earthquake, Burglary, Alarm
— fully connected network

MaryCalls

Earthquake

9
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Belief Functions (margin probabilities)

given the probability distribution, we can compute a margin
probability at each node, which represents the belief into the

truth of the proposition

— the margin probability is also called the belief function
New evidence can be incorporated into the network by
changing the appropriate belief functions

this may not only happen in unconditional nodes!
changes in the margin probabilities are then propagated
through the network

propagation happens in forward (along the causal links) and

backward direction (against them)
e.g., determining a symptom of a disease does not cause the
disease, but changes the probability with which we believe that
the patient has the disease
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Structure of the network

[Visit to Asia ] [Smoking ]

Patient Information

b o oo o o - ——— e e e e e e e e e e e m— e e e e  m  mm m m  m  mm  m NGE e  mm  mm m mm  m —  — — — — — — — —

_____________________________________________________________________________________________

| [TUberCU'OSiS] {Lung Cancer] [Bronchitis |

Medical Difficulties

L e e e T R — ——— i ——— o — e e e e D o o e

Tuberculosis ]

7

or Cancer

—

[ XRay Resutt | (Dysprea ;

Diagnostic Tests

b oo o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e M e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e e e e e o]
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Example: Medical Diagnosis

= Adding Probability Distributions

relationship |
(no probs ] |

needed)

WU | osont | Prosent | Truo | AN Patient Information

"""""" I NG
-

[ Bronchitis

[Lung Cancer ]

| [Tuberculosis ]

Megdical Difficulties

_____________________________________________________________________________________

probabilistic Tuberculosis
| o
e | Present | 050 |00

--------------------------------------------------
| False | Absent | 010 | 090
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_______________________________________________________________________________________________
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elief functions

Visit To Asia

Visit 1.00

No Visit 99.0,—

Tuberculosis

Present 1.04
Absent 99.0 IEE————

Einflhrung in die Klnstliche Intelliger

Patient Information

Smoking

Smoker 50.0 — E
NonSmoker 50.0 i

Lung Cancer

Bronchitis

Present 5.50
Absent 94.5

I Present 45.0
o Absent 55.0

Tuberculosis or Cancer

True
False

6.48
93.5

Medical Difficulties

Diagnostic Tests

XRay Result Dyspnea |
Abnormal 11.0m Present 43.6 E
Normal  89.0 m—— Absent 56.4 m— i

L e e e e e e e e e e e T T i e e e e e e e e i T T e

Bayesian Networks
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Interviewing the patient results in change of probability for
variable for “visit to Asia”

Visit To Asia Smoking
Visit 100 Smoker 50.0 |—
No Visit 0 Nons‘rﬁker 50.0 T
v
Tuberculosis Lung Cancer Bronchitis
Present 5.000 ' Present 5.50|I Present 45.0 l—
Absent 95.() | E— Absent 94.5 E— Absent 55.0

N e

Tuberculosis or Cancer ’

True 10.2/m
False 89.8
XRay Result ’ Dyspnea
Abnormal 14.5m Present 45. O
Normal  85.5 nu—— Absent 55. 0 |
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Patient is also a smoker...

Visit To Asia Smoking
Visit 100 Smoker 100
No Visit ¢0 NonS‘rr}ker 0 \

Tuberculosis Lung Cancer | Bronchitis |
Present 5.00 8 Present 10.0M Present 60.0|—
Absent 95.0 E— Absent 90.0 I | Absent 40.0 |

N e

Tuberculosis or Cancer ’

True 14.5m
False 85.5 ——
XRay Result | Dyspnea
Abnormal 18.5mm Present 56.4
Normal  81.5 m— | Absent 43.6
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but fortunately the X-ray is normal...

Einflhrung in die Klnstliche Intelliger

Visit To Asia
Visit 100
No Visit 0

v

Tuberculosis

Present 0.12
Absent 99.9

¥

N

Smoking

Smoker

NonSmoker 0

100

e

AN

Lung Cancer

Bronchitis

Present 0.25
Absent 99.8

¥

Present 60.0
Absent 40.0 =

<

Tuberculosis or Cancer |

Normal

O\E
100 |

True 0.36
False 99.6
XRay Result
Abnormal

1

Bayesian Networks

S

Dyspnea

Present 52.1

I
Absent 47.9 |
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Einflhrung in die Klnstliche Intelliger

but then again patient has difficulty in breathing.

Bayesian Networks

Visit To Asia

Visit 100
No Visit 0

Y

Tuberculosis |

Present 0.19
Absent 99.8

N

Smoking

Smoker

NonSmoker 0

100

.

AN

Lung Cancer

| Bronchitis |

Present 0.39
Absent 99.6 IE—

Present 92.2
Absent 7.84

s

Tuberculosis or Cancer |

True 0.56

False 99.4 —|

i

XRay Result
Abnormal 0
Normal 100

Dyspnea

Absent

Present 100

0

28
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More Complex Example:
Car Diagnosis

= |nitial evidence: Car does not start

= Test variables = Variables for possible failures
= Hidden variables: ensure spare structure, reduce parameters

Bayesian Networks 29 V2.0 | © J. Fiirnkranz



TU Darmstadt, WS 2013/14 Einfiihrung in die Kinstliche Intelliger

More Complex: Car Insurance

Age

GoodStuden i/‘
_ ( ExtraCar )
. Mileage
s .

RiskAversion
"ehicleYear
-4‘, -

ot |

MakeModel > "‘\Q‘\

%

o

[~
| "
,"‘ OwnDamage

Cushionin ’ :
' OtherCost @
MedicalCost 'w BropertyCost)

u
!
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Monitoring system for patients in intensive care

Einflhrung in die Klnstliche Intelliger

AL P HY LAk S

LH'H m relFFAMNES | III

= . >
;
)
AR T
e
i g | A
\
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Determines pedigree of breeding pigs

used to diagnose PSE disease
half of the network structure shown here

E——

pS0141889 pb30659387 p82140988
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A CPT for Boolean X ; with /: Boolean parents has
1

2" rows for the combinations of parent values /@

Each row requires one number p for X, =1rue /@
(the number for X; = false is just 1 — p)

If each variable has no more than / parents, @ @

the complete network requires O(7 - 2*) numbers
|.e., grows linearly with 7, vs. O(2") for the full joint distribution

For burglary net, 1 + 1+ 4+ 2+ 2=10 numbers (vs. 2° — 1 = 31)
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CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian v USV Mexican

E.g., numerical relationships among continuous variables
O0Level
Ot

Bayesian Networks 34 V2.0 |© J. Fiirnkranz
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Einfiihrung in die Kinstliche Intelliger

Compact Conditional Distributions
Independent Causes

Noisy-OR distributions model multiple noninteracting causes
1) Parents Uy ... Uy include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone
= P(X|Uy...U;,=U;yy...~U) =1~-11/_q

C'old Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T .98 0.02 =0.2 x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012 =0.6 x 0.2 x 0.1

Number of parameters linear in number of parents

Bayesian Networks
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Discrete (Subsidy?” and Buys”); continuous (Harvest and C'ost)

Subsidy? @

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost=c|Harvest =h, Subsidy’ =true)

= N(ath + b, 0¢)(c) -
L ap (b)Y

Tt

Mean C'ost varies linearly with Harwvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow

Bayesian Networks 37 V2.0 |© J. Fiirnkranz



TU Darmstadt, WS 2013/14 Einflhrung in die Klnstliche Intelliger

P(C | ha P(C | h”
— subventionen)

subventionen)
04 - 0,4 -
0,3 1 0,3
0,2 1 02
O’é . - 162 O,é
46 24
8 0 6
Kostenc = Ernte Kosten ¢ 510 " Emteh Kosten ¢ & Ernte A

P(Cost | Harvest , subsidy) P(Cost | Harvest ,~subsidy) P(Cost | Harvest)

=P (Cost | Harvest , subsidy)

: . Ca +P(Cost | Harvest , — subsidy)
All-continuous network with LG distributions

—  full joint distribution is a multivariate Gaussian

Discrete+-continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of

discrete variable values
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Discrete Variables
with Continuous Parents

Probability of Buys’ given C'ost should be a “soft” threshold:
1 . . . . .

08 |
=
IL
S 06 |
2
s
A
“g\ 04
=
M
=
02 |
0 |
0 2 4 6 8 10 12

Costc

Probit distribution uses integral of Gaussian:
P(x) = N0, 1)(x)dx
P(Buys! =true | Cost=c) = d((—c+ u)/o)
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1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

AN
GD G G
= &
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Discrete Variables
with Continuous Parents

Sigmoid (or logit) distribution also used in neural networks:

L
1+ exp(—2—£)

P(Buys? =true | Cost =c) =

Sigmoid has similar shape to probit but much longer tails:
1 T T T — T

/
/
I

0.9
0.8

¢)

0.7

0.6

false|Cost

0.5

0.4

P(Buys?

03 r
0.2
0.1 -

0 1 — —--'|'/’ | 1 |
0 2 4 6 3 10 12
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Industrial

Processor Fault Diagnosis - by Intel
Auxiliary Turbine Diagnosis - GEMS by GE

Diagnosis of space shuttle propulsion systems - VISTA by
NASA/Rockwell

Situation assessment for nuclear power plant — NRC

Military
Automatic Target Recognition - MITRE

Autonomous control of unmanned underwater vehicle -
Lockheed Martin

Assessment of Intent

Bayesian Networks
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Medical Diagnosis
Internal Medicine
Pathology diagnosis - Intellipath by Chapman & Hall
Breast Cancer Manager with Intellipath

Commercial
Financial Market Analysis
Information Retrieval
Software troubleshooting and advice - Windows 95 & Office 97
Pregnancy and Child Care — Microsoft

Software debugging - American Airlines’ SABRE online
reservation system
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