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Motivation

* Neuroscientic conjecture:
highly class-specific neurons in the
human brain
,2grandmother neurons"
some neurons in the temporal cortex
are highly selective for object
categories such as faces or hands
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Computer Vision

* Contemporary computer vision methodology typically:
emphasizes the role of labeled data
e.g. a large collection of labeled images to build a
face detector
labeled data are rare for many problems
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Objective
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* This work investigates:

possibility to learn ,grandmother
neuron" from unlabeled data

feasibility of building high-level
features from only unlabeled
data

14.01.2014 | Fachbereich: 20 | Machine Learning Seminar | Andriy Nadolskyy



4 TECHNISCHE
UNIVERSITAT
DARMSTADT

Training set

* Constructed by sampling frames from 10 million YouTube
videos

* Each video contributes only one image to the dataset

* Each example is a color image with 200x200 pixels
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Algorithm
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* Sparse deep autoencoder with three
important ingredients:

local receptive fields
pooling
local contrast normalization
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Local receptive fields
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* Hubel and Wiesel's discovery of
neurons in the cat's visual system
(goes back to the early 60s)

* Neurons can learn to extract
elementary visual features

* Different sets of units can be forced
to have identical weight vectors

* Feature map: units in planes that
share the same set of weights
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Lp pooling
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Input 9x9

square

Learning of invariant features

O = (ZZI(E,_}')P X G(iﬂj))lXP

G: Gaussian kernel

|:  the input feature map
O: the output feature map

giving an increased weight to stronger
features and suppressing weaker features
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Local contrast normalization

Input to another layer above
(image with 8 channels)

& Number of output
\ channels = 8

* For each unit in the 3rd sublaeyr:
subtract the mean of the unit values
in a fixed window
(3x3 units, centered on the unit) 5
if euclidean norm of the resulting
9-dimensional vector greater than 1

~ divide this value by euclidean
norm: |jpl| = prf & PE vt P
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* Normalization can reduce responses,
but not enhance them
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Algorithm
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* Replicating three times the same
stage composed of:
local receptive fields
local pooling
local contrast normalization

* The output of one stage is the input
to the next one

* The overall model can be
interpreted as a nine-layered
network
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Optimization
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The parameters of the second
sublayers (H) fixed to uniform weights
Encoding weights W1 and decoding
weights W2 are adjusted

m, k are the number of examples and
pooling units in a layer respectively
H; is the vector of weights of the j-th

pooling unit
A=0.1

minimize

Input to another layer above
(image with 8 channels)

Number of output
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Image Size =200
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Model Training
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* Model parallelism by distributing the
local weights W1, W2 and H to
different machines

* Weights are divided according to the
locality of the image and stored on
different machines

* The network trained on a cluster with
1,000 machines for three days
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Test set

* 37,000 images sampled from two
datasets:
Labeled Faces In the Wild

ImageNet

* 13,026 faces sampled from non-
aligned Labeled Faces in The Wild

* The rest are distractor objects
randomly sampled from ImageNet
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Measure the performance
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* For each neuron:
find its maximum and minimum
activation values
pick 20 equally spaced
thresholds in between
take the best classication
accuracy among 20 thresholds

* The best neuron achieves 81.7%
accuracy in detecting faces
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Visualization

* Two visualization techniques to verify
if the optimal stimulus of the neuron is
indeed a face:

» visualizing the most responsive
stimuli in the test set
-+ perform numerical optimization

* Top: top 48 stimuli of the best neuron
from the test set

* Bottom: the optimal stimulus according
to numerical constraint optimization
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Robustness

* Robustness of the face detector
against common object
transformations:

scaling
out-of-plane
translation

* Results show that the neuron is
robust against complex and difficult
transformations . S ==
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Comparison with state-of-the-art
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| Dataset version | 2009 (~9M images, ~10K categories) | 2011 (~14M images, ~22K categories) |
State-of-the-art | 16.7% (Sanchez & Perronnin, 2011) 9.3% (Weston et al., 2011)
Our method 16.1% (without unsupervised pretraining) | 13.6% (without unsupervised pretraining)
19.2% (with unsupervised pretraining) 15.8% (with unsupervised pretraining)

+ ,Unsupervised pretraining":
learn features using described techniques
add one-versus-all logistic classifiers on top

* 70% relative improvement over the highest other result
on ImageNet

* Random guess achieves less than 0.005% accuracy on
ImageNet (22K categories)
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Cat and human body detectors

Concept Our Deep antoencoders | Deep autoencoders | K-means on
network | 3 layers 6 layers 40x40 images

Faces 81.7% 72.3% 70.9% 72.5%

Human bodies | 76.7% | 71.2% 69.8% 69.3%

Cats 74.8% 67.5% 68.3% 68.5%

* Is the network able to detect other high-level concepts
* Cats and body parts are quite common in YouTube
* Construct two new datasets:

human bodies against random backgrounds
cat faces against other random distractors
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* We have seen that it is possible:

- to learn ,grandmother neuron”
from unlabeled data

- to build high-level features from
only unlabeled data
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Thanks

For your good

investigated time! :-)
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Sparseness

* A random variable takes very small
absolute values and very large values 5

gaussian
o

* More often than a Gaussian random

variable of the same variance 5
[ [ 5
* To compensate: it takes values in . ‘ |
between relatively more rarely g 0 bbb Ll

* The random variable is “activated”
(significantly non-zero) only rarely
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