Building High-level Features Using Large Scale Unsupervised Learning

TECHNISCHE UNIVERSITÄT DARMSTADT

Machine Learning Seminar

Overview

- Motivation and objective
- Training set
- Algorithm
- Test set
- Performance
- Visualization
- Other high level concepts
- Summary

Motivation

- Neuroscientic conjecture:
 - highly class-specific neurons in the human brain
 - "grandmother neurons"
 - some neurons in the temporal cortex are highly selective for object categories such as faces or hands

Computer Vision

- Contemporary computer vision methodology typically:
 - emphasizes the role of labeled data
 - e.g. a large collection of labeled images to build a face detector
 - labeled data are rare for many problems

Objective

- This work investigates:
 - possibility to learn "grandmother neuron" from unlabeled data
 - feasibility of building high-level features from only unlabeled data

Training set

- Constructed by sampling frames from 10 million YouTube videos
- Each video contributes only one image to the dataset
- Each example is a color image with 200x200 pixels

Algorithm

- Sparse deep autoencoder with three important ingredients:
 - local receptive fields
 - pooling
 - local contrast normalization

Local receptive fields

- Hubel and Wiesel's discovery of neurons in the cat's visual system (goes back to the early 60s)
- Neurons can learn to extract elementary visual features
- Different sets of units can be forced to have identical weight vectors
- Feature map: units in planes that share the same set of weights

14.01.2014 | Fachbereich: 20 | Machine Learning Seminar | Andriy Nadolskyy

Number of input channels = 3

- $O = (\sum \sum I(i,j)^P \times G(i,j))^{1/P}$
- Gaussian kernel G:
 - I: the input feature map
 - O: the output feature map
- giving an increased weight to stronger features and suppressing weaker features

Image Size = 200

One layer

W

Lp pooling

Local contrast normalization

- For each unit in the 3rd sublaeyr:
 - subtract the mean of the unit values in a fixed window (3x3 units, centered on the unit)
 - if euclidean norm of the resulting
 9-dimensional vector greater than 1
 - divide this value by euclidean norm: ||p|| = $\sqrt{p_1^2 + p_2^2 + \dots + p_n^2}$
- Normalization can reduce responses, but not enhance them

Algorithm

- Replicating three times the same stage composed of:
 - local receptive fields
 - local pooling
 - local contrast normalization
- The output of one stage is the input to the next one
- The overall model can be interpreted as a nine-layered network

Optimization

- The parameters of the second sublayers (H) fixed to uniform weights
- Encoding weights W1 and decoding weights W2 are adjusted
- m, k are the number of examples and pooling units in a layer respectively
- H_j is the vector of weights of the j-th pooling unit
- $\lambda = 0.1$

$$\begin{array}{ll} \underset{W_{1},W_{2}}{\text{minimize}} & \sum_{i=1}^{m} \left(\left\| W_{2}W_{1}^{T}x^{(i)} - x^{(i)} \right\|_{2}^{2} + \right. \\ & \lambda \sum_{j=1}^{k} \sqrt{\epsilon + H_{j}(W_{1}^{T}x^{(i)})^{2}} \right). \end{array}$$

Model Training

- Model parallelism by distributing the local weights W₁, W₂ and H to different machines
- Weights are divided according to the locality of the image and stored on different machines
- The network trained on a cluster with 1,000 machines for three days

$$\begin{array}{ll} \underset{W_{1},W_{2}}{\text{minimize}} & \sum_{i=1}^{m} \left(\left\| W_{2}W_{1}^{T}x^{(i)} - x^{(i)} \right\|_{2}^{2} + \right. \\ & \lambda \sum_{j=1}^{k} \sqrt{\epsilon + H_{j}(W_{1}^{T}x^{(i)})^{2}} \right). \end{array}$$

Test set

- 37,000 images sampled from two datasets:
 - Labeled Faces In the Wild
 - ImageNet
- 13,026 faces sampled from nonaligned Labeled Faces in The Wild
- The rest are distractor objects randomly sampled from ImageNet

Measure the performance

For each neuron:

- find its maximum and minimum activation values
- pick 20 equally spaced thresholds in between
- take the best classication accuracy among 20 thresholds
- The best neuron achieves 81.7% accuracy in detecting faces

Visualization

- Two visualization techniques to verify if the optimal stimulus of the neuron is indeed a face:
 - visualizing the most responsive stimuli in the test set
 - perform numerical optimization
- Top: top 48 stimuli of the best neuron from the test set
- Bottom: the optimal stimulus according to numerical constraint optimization

Robustness

- Robustness of the face detector against common object transformations:
 - scaling
 - out-of-plane
 - translation
- Results show that the neuron is robust against complex and difficult transformations

Comparison with state-of-the-art baselines

Dataset version	$2009 \ (\sim 9M \text{ images}, \sim 10K \text{ categories})$	$2011 \ (\sim 14 \text{M images}, \sim 22 \text{K categories})$
State-of-the-art	16.7% (Sanchez & Perronnin, 2011)	9.3% (Weston et al., 2011)
Our method	16.1% (without unsupervised pretraining) 19.2% (with unsupervised pretraining)	13.6% (without unsupervised pretraining) 15.8% (with unsupervised pretraining)

- "Unsupervised pretraining":
 - learn features using described techniques
 - add one-versus-all logistic classifiers on top
- 70% relative improvement over the highest other result on ImageNet
- Random guess achieves less than 0.005% accuracy on ImageNet (22K categories)

Cat and human body detectors

Concept	Our network	Deep autoencoders 3 layers	Deep autoencoders 6 layers	K-means on 40x40 images
Faces	81.7%	72.3%	70.9%	72.5%
Human bodies	76.7%	71.2%	69.8%	69.3%
Cats	74.8%	67.5%	68.3%	68.5%

- Is the network able to detect other high-level concepts
- Cats and body parts are quite common in YouTube
- Construct two new datasets:
 - human bodies against random backgrounds
 - cat faces against other random distractors

Summary

- We have seen that it is possible:
 - to learn "grandmother neuron" from unlabeled data
 - to build high-level features from only unlabeled data

Thanks

For your good

investigated time! :-)

References

- Quoc V. Le, Marc' A. Ranzato, R. Monga, M. Devin, K. Chen, Greg S. Corrado, J. Dean, Andrew Y. Ng. 2012 Building High-level Features Using Large Scale Unsupervised Learning
- R. Quian Quiroga, L. Reddy, C. Koch, and I. Fried. 2007
 Decoding Visual Inputs From Multiple Neurons in the Human Temporal Lobe
- I. Arel, Derek C. Rose, and Thomas P. Karnowski. November 2010
 Deep Machine Learning A New Frontier in Artificial Intelligence Research
- G. Hinton. October 26, 2006
 To Recognize Shapes, First Learn to Generate Images
- Bruno A. Olshausen & David J. Field. June 1996
 Emergence of simple-cell receptive field properties by learning a sparse code for natural images
- Andrew Ng (http://www.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf) CS294A Lecture notes. Sparse autoencoder
- Y. LeCun, P. Haffner, L. Bottou and Y. Bengio.
 Object Recognition with Gradient-Based Learning
- Aapo Hyvärinen. 2009
 Statistical Models of Natural Images and Cortical Visual Representation
- P. Sermanet, S. Chintala and Y. LeCun. 2012 Convolutional Neural Networks Applied to House Numbers Digit Classification
- Nicolas Pinto, David D. Cox, James J. DiCarlo. 2008 Why is real-world visual object recognition hard?

Sparseness

- A random variable takes very small absolute values and very large values
- More often than a Gaussian random variable of the same variance
- To compensate: it takes values in between relatively more rarely
- The random variable is "activated" (significantly non-zero) only rarely

