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Model Averaging

� Model Averaging

• Try to prevent overfitting

• Train multiple separate neural networks

• Apply each network on test data

• Use average of all results

� Problem: Computationally expensive during training AND testing

� Fast model averaging (using Dropout)
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What is “dropout”?

� Randomly drop half of the hidden units:

• Prevents complex co-adaption on training data

• Hidden units can no longer “rely” on others

• Each neuron has to learn a generally helpful feature

� On every presentation of each training case:

• Each hidden unit has 50% chance of being “dropped out” (omitted)

� On every presentation of each training case, a different network is trained 

(most likely) which all share the same weights

� Allows to train a huge amount of networks in a reasonable time
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Training

� Stochastic gradient descent 

� Mini-Batches

� Cross-entropy objective function

� Modified penalty term:

• Set upper bound on L2-norm for the incoming weight vector of each hidden unit

• Renormalize by division, if constraint is not met

• Prevents weights from growing too big, even if proposed update is very large

• Allows to start with very high learning rate which decreases during training

• Makes a more thorough search of the weight space possible
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Testing

� For testing the “mean network” is used

• Contains ALL hidden units with halved outgoing weights

• Compensates the fact that this network has twice as many hidden units

� Why?

• For networks with single hidden layer and softmax output, using the mean 

network is equivalent to taking the mean of the probability distributions over 

labels predicted by all possible networks

� Assumption: Not all dropout networks make the same prediction

� Mean network assigns a higher log probability to the correct answer than the 

mean of the log probabilites assigned by the dropout networks
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MNIST dataset

� Popular benchmark dataset for 

machine learning algorithms

� 28x28 images of individual 

handwritten digits

� 60,000 training images and 10,000 

test images

� 10 classes (obviously!)
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MNIST experiments

� Training with dropout on 4 different architectuers:

• Number of hidden layers (2 and 3)

• Number of units per hidden layer (800, 1200 and 2000)

� Finetuning with dropout of a pretrained Deep Boltzman Machine

• 2 hidden layers (500 and 1000 units)

� Mini batches of size 100

� Maximum length of weight vector: 15
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MNIST results

� Best published result for a feed-

forward NN on MNIST without 

using enhanced training data, 

wiring info about spatial 

transformations into a CNN or 

using generative pre-training is 

160 errors

� This can be reduced to 130 errors 

by using a 50% dropout on each 

hidden unit and to 110 errors by 

also using 20% dropout on the 

input layer
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MNIST results

� Results for finetuning a pretrained deep Boltzman machine five times with 

standard backpropagation were 103, 97, 94, 93 and 88 errors

� For finetuning using 50% dropout results were 83, 79, 78, 78 and 77 with a 

mean of 79 errors which is a record for methods without prior knowledge or 

enhanced training sets



13WS13/14 Machine Learning Seminar |  Knowledge Engineering  |  Melvin Laux | 

TIMIT dataset

� Popular benchmark dataset for speech recognition

� Consists of recordings of 630 speakers with 8 dialects of American English each 

reading 10 sentences

� Includes word- and phone-level transcriptions of the speech

� Extracted inputs: 25 ms speech windows with 10 ms strides
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TIMIT experiments

� Inputs: 25 ms speech windows with 10 ms strides

� Pretrained networks with different architectures:

� Number of hidden layers (3, 4 and 5)

� Number of units per hidden layer (2000 and 4000)

� Number of input frames (15 and 31)

� Standard backpropagation finetuning vs. droput finetuning
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TIMIT result

� Frame classification: Dropout of 

50% of the hidden units and 20% 

of the input units

� Frame recognition error can be 

reduced from 22.7% without 

dropout to 19.7% with dropout, a 

record for methods without 

information about the speaker 

identity
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CIFAR-10 dataset

� Benchmark task for object 

recognition

� Subset of the Tiny Images dataset 

(50,000 training images and 

10,000 test images)

� Downsampled 32x32 color images 

of 10 different classes
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CIFAR-10 experiments

� Best previously published error rate, without transformed data, was 18.5%

� Using a CNN with 3 convolutional layers and 3 “max-pooling” layers an error 

rate of 16.6% could be achieved

� When using 50% dropout on the last hidden layer this could be further reduced 

to 15.6%
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ImageNet dataset

� Very challenging object 

recognition dataset

� Millions of labeled high-

resolution images

� Subset of 1000 classes with ca. 

1000 examples each

� All images were resized to 

256x256 for the experiments
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ImageNet experiments

� State-of-the-art result on this dataset is an error rate of 47.7%

� CNN without dropout

� 5 convolutional layers interleaved with “max-pooling” layers (after 1, 2 and 5)

� “softmax output” layer

� Achieves an error rate of 48.6%

� CNN with dropout

� 2 additional, globally connected hidden layers before the output layer using a 50% 

dropout rate

� Achieves a record error rate of 42.4%
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ImageNet results

� State-of-the-art result on this dataset is an error rate of 47.7%

� CNN without dropout achieves an error rate of 48.6%

� CNN with dropout a record error rate of 42.4%
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Reuters dataset

� Archive of 804,414 text 
documents categorized into 103 
different topics

� Subset of 50 classes and 
402,738 documents 

� Randomly split into equal-sized 
training and test sets

� Documents are represented by 
the 2000 most frequent non-
stopwords of the dataset in the 
experiments
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Reuters experiments

� Dropout backpropagation vs. standard backpropagation

� 2000-2000-1000-50 and 2000-1000-1000-50 architectures

� “softmax” output layer

� Training done for 500 epochs
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Reuters results

� The 31.05% error rate of the standard-backpropagation neural network can be 

reduced to 29.63% by using a 50% dropout
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Conclusion

� Random dropout allows to train many networks “at once”

� Good way to prevent overfitting

� Can be easily implemented

� Parameters are strongly regularized by being shared by all models

� “Naive Bayes” is an extreme, yet familiar case of Dropout

� Can be further improved (Maxout Networks or DropConnect)
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Questions

Questions? Ask!
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