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Why Does Unsupervised Pre-training 
Help Deep Learning?
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Introduction

 Standard training
 Gradient-based optimization

 n-dimensional function where n is the number of weights
 Figure 1: 2 dimensions,

convex function

Figure 1: [1]
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Introduction

 Challenges of Deep Learning
 model with many layers of adaptive 

parameters
 highly non-convex objective function
 potential for many distinct local minima
 standard training schemes tent to place 

the parameter in regions of the 
parameter space that generalize poorly

Figure 2: [2]
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Introduction

 Better results when splitting the training into two phases
 1) unsupervised pre-training: 

 Greedy layer-wise
 Each layer learns a nonlinear transformation of its input, that 

captures the main variations in its input
 2) supervised fine-tuning:

 The deep architecture is fine-tuned with respect to a supervised 
training criterion with gradient-based optimization

 Why does unsupervised pre-training help?
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Hypothesis

 Preconditioning hypothesis

 Standard training
 for a given layer weights are intialized using random samples from uniform                     

[-1/sqrt(k),1/sqrt(k)] where k is the number of connections that a unit recevies from a 
previous layer

 Unsupervisd pre-traing
 acts as a kind of network pre-conditioner
 putting the parameter values in the appropriate range for further supervised training

 We should get the same result when we
 Select weight and biases according to the distribution obtained after supervised pre-

training
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Hypothesis

 optimization hypothesis
 A gradient-based optimization should end in the apparent local 

minimum of whatever basin of attraction we start from
 Unsupervised pre-training puts us in regions of the parameter space 

where basins of attractions run deeper
 Better optimization

 → Achieving lower training costs
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Hypothesis

 Regularization hypothesis

 Regularization effect is a consequence of the pre-training procedure
 Establishing an initialization point of the fine-tuning procedure inside a region of the parameter 

space in which the parameters are henceforth restricted
 Local basin of attraction of the supervised fine-tuning cost function

(Defining a particular initialization point implicitly imposes constraints on the parameters)
 Introducing bias towards configurations of the parameter space that are useful for unsupervised 

learning

 Observations we expect in the experiments
 The two sets of models with and without unsupervised pre-training cover different regions in 

the parameter space
 Better generalization/lower error on the test set
 Not necessarily achieving lower training error (possibly worse)
 Minimizing variance
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Hypothesis

 pre-training restricts the parameters to particular regions
 those that correspond to capturing structure in the input distributon P(X)

 unsupervised training criteria optimized during unsupervised pre-training
  layers are trained to represent the dominant factors of variation in the data
 form at each layer a representation of X consisting of statistically reliable 

features of X
 levaraging knowledge of X
 if the pre-training strategy is effective, some of these learned features of X are 

also predictive of Y 
 learning P(X) is helpful for learning P(Y|X)
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Hypothesis

 What we expect in online learning settings
 the beneficial generalization effects due to pre-training do not appear 

to diminish as the number of labeled examples grows very large
(contrary to classical regularizers)

 non convexity of the objective function
 dependency of the stochastic gradient descent method on example 

ordering
  → starting point of a non-convex optimization matters
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Experimental Setup

 Datasets
 MNIST: handwritten digits in gray-scale
 InfiniteMNIST: extension of MNIST
 Shapeset: images of triangles, squares

 Models (each with 1-5 hidden layers)
 standard feed-forward multi-layer neural networks
 Deep Belief Networks (DBN)
 Stacked Denoising Auto-Encoders (SDAE)

 Hyperparameters
 Number of hidden units
 ….

 Random initialization
 for a given layer weights are intialized using random samples from uniform                     

[-1/sqrt(k),1/sqrt(k)] where k is the number of connections that a unit recevies from a 
previous layer
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Experiments

 Experiments without (left) and with (right) unsupervised pre-training
 400 random initilization seeds
 MNIST dataset
 Model failed to converge without supervised pre-training and 5 layers
 Blue box: top and bottom quartiles
 Red points: outliers

Figure 4: [4]
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Experiments

 Unsupervised pre-training
 Lower test classification error
 Robustness to random initilization (variance stays same, bad outliners growing slowly)
 Reduced variance supports regularization hypothesist (not explanable with a pure optimization effect)

 Without unsupervised pre-training 
 Increasing test error and variance when adding more layers

 Increasing depth  Increasing probability of finding poor apparent local minima→

Figure 5: [4]
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Experiments

 Visualization shows to which 
input the units from the different 
layers most respond to
 Model: DBN
 Dataset: InfiniteMNIST

 Figure 6
 Left to right: units from 1st, 2nd 

and 3rd layer
 Top: after pre-training
 Bottom: after pre- and supervised 

training
 Figure 7

 After training without pre-training

Figure 6: [4]

Figure 7: [4]
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Experiments

 After pre-training supervised fine-tuning does not change the weights 
significant way
 Stuck in a certain region of weight space
 Supervised training has more effect on the deeper layers
 Features increase in complexity as we add more layers

 Consistent with the predictions made by our hypothesis
 unsupervised pre-training can “lock” the training in a region of the parameter 

space that is essentially inaccessible for models that are trained in a purely 
supervised way

 Displaying only one image for each feature does not show the set of 
patterns on which the feature is highly active (or highly inactive)

 not useful to show how these strategies are influenced by random 
initialization
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Experiments

 Visualization of Model Trajectories 
During Learning
 Compare function represented by each 

network
 Approximated function with a finite 

number of inputs
 Concatenate all its outputs as one 

vector
 One vector for each model at each 

training iteration
 Map these vectors with a dimensionality 

reduction algorithm to a two-
dimensional space

 Color from dark blut to cyan indicates 
a progression in training iterations

 50 networks with and 50 without 
pre-training as supervised training 
proceeds over MNIST

Figure 8: [4]
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Experiments

 Pre-trained and not pre-
trained models start and 
stay in different regions of 
function space

 Trajectories diverge at the 
end of training
 Different initialization seed 

move into a different local 
minimum

 Figure 9: different 
dimensionality reduction 
algorithm (focusing on 
global structure)

Figure 9: [4]
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Experiments

 Analyze models obtained at the end of training
 Dataset: Shapeset
 Stepping in parameter space in 7 random gradient directions
 Top/Bottom: Without/With pre-training
 Left to Right: 1,2,3 hidden layers
 error landscape is a bit flatter in the case of unsupervised pre-training/deeper architectures
 Models seem to be near a local minimum

Figure 10: [4]
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Experiments

 Pre-conditioning hypothesis
 The range and marginal distribution from which we draw initial 

weights is responsible for the better results
 So we should get the same results when we

 Perform unsupervised pre-training
 Compute historgrams for each layer's pre-trained weights and biases
 Select weights and biases at random according to the histogramms

initialization Uniform Histogram Unsup.Pre-tr.

1 layers 1.81 ± 0.07 1.94 ± 0.09 1.41 ± 0.07

2 layers 1.77 ± 0.10 1.69 ± 0.11 1.37 ± 0.09

Table 1: [4]
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Experiments

 Test and training error for 400 models without (blue) and with (red) pre-
training on MNIST
 Since training error tend to decrease, the trajectories run from right to left
 Only for 1 hidden layer unsupervised pre-training reaches lower training cost 

(better optimization)
 at the same training costs, the pre-trained models have lower test costs (better 

generalization)

Figure 11: [4]
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Experiments

  → Experiment supports regularization hypothesis
 unsupervised pre-training

 decreases variance 
 introduces a bias (towards “better“ parameter configurations)
 It seems restricting the possible starting points in parameter space to 

those that minimize the unsupervised pre-training criterion
 → restricts the set of possible final configurations for parameter 

values
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Experiments

 Relationship between units per layer and 
test error

 Regularization hypothesis suggest 
decreasing effectiveness with decreasing 
layer size
 small networks have a limited capacity so 

further restricting it can harm 
generalization (extra regularization effect)

(Less probable that useful input 
transformation created by unsupervised 
pre-training are included)

 Experiment
 Unsupervised pre-training seems to help 

deeper/ hurt smaller networks
 generalization error increases with 

decreasing number of units (increases more 
with unsupervised pre-training)

Figure 12: [4]
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Experiments

 Support for the optimization hypothesis 
in the literature
 the reported training and test errors were 

lower for pre-trained networks
 test with early stopping
 early stopping is itself a regularizer and it 

can influence greatly the training error that 
is obtained

 Recreate experiment without early 
stopping
 Higher training error/ Lower generalization 

error for pre-trained networks
 maybe early stopping prevented the 

networks without pre-training from moving 
too much towards their apparent local 
minimum

Figure 13: [4]
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Online Learning Experiments

 Effect of pre-training with very large datasets (InfiniteMNIST)
 Online classifiction error (computed as an average over a block of last 100.000 errors)

 Predict class for training example first and use prediction for calculating error
 Use example for training

Figure 14: [4]

 Advantage of pre-training does not 
vanish

 3 layer no pre-training generalizes 
worse than 1 layer no pre-training

 1-layer networks without pre-training 
should in principle be able to represent 
the input distribution as capacity and 
data grow
 Number of hidden units chosen individually 

(so that the error is minimized)
 Without pre-training, networks are not able 

to take advantage of the additonal capacity
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Online Learning Experiments

 Train 1-layer network with and 
without pre-training with 10 Million 
examples

 Use the same examples for 
calculating classification error
 (in the same order they were used 
for training)

 Both models are better at classifying 
more recently seen examples

 Unsupervised pre-training shows an 
optimization effect

 empirical distribution (defined by the 
training set) converges to the true 
data distribution
 Better optimization strategies should 

have significant impact on the 
generalization

Figure 15: [4]
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Online Learning Experiments

 Effect of example ordering
 Datset with 10 million examples
 Train 10 models with the same dataset, but change the order of the first million examples 

(keep the others fixed)
 Measure variance of the ouput
 Repeat process but now 

vary the next million examples
 ….

 Figure 16
 Lower variance with supervised

 pre-training
 Increasing variance at the end: 

last examples have a greater influence
 x = 0.25: start of supervised training for

 pre-trained networks

Figure 16: [4]
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Online Learning Experiments

 Only pre-train the bottom k layers
 Left: training vs test error on MNIST at each epoch of training

 Pre-train more layers  better generalization, worse training error→
 RIGHT: online classification error on InfiniteMNIST

Figure 17: [4]
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Conclusion

 Some effects of Unsupervised pre-training are similiar to the 
effects of a good regularizer

 that the effect of unsupervised pre-training does not go away 
with more training data is not an effect of classical regularizers

 Network with pre-training has lower training error on a very 
large data set

 → results are still consistent with our hypothesis
 Next steps

 More Experiments for a better understanding of unsupervised pre-
training

 Use different datasets, architectures, algorithms, ...
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 Questions ...
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