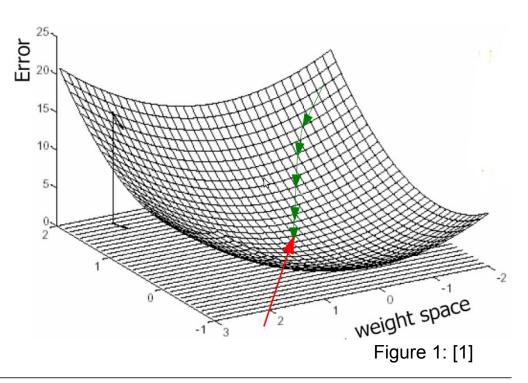

Why Does Unsupervised Pre-training Help Deep Learning?

Peter Glöckner

TECHNISCHE UNIVERSITÄT

DARMSTADT

Outline



- I. Introduction
- 2. Hypothesis
- 3. Experimental Setup
- 4. Experiments
- 5. Online Learning Experiments
- 6. Conclusion

Introduction

- Standard training
 - Gradient-based optimization
 - n-dimensional function where n is the number of weights
 - Figure 1: 2 dimensions, convex function

Introduction

- Challenges of Deep Learning
 - model with many layers of adaptive parameters
 - highly non-convex objective function
 - potential for many distinct local minima
 - standard training schemes tent to place the parameter in regions of the parameter space that generalize poorly

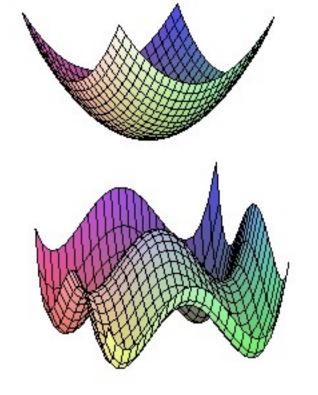


Figure 2: [2]

Introduction

- Better results when splitting the training into two phases
 - 1) unsupervised pre-training:
 - Greedy layer-wise
 - Each layer learns a nonlinear transformation of its input, that captures the main variations in its input
 - 2) supervised fine-tuning:
 - The deep architecture is fine-tuned with respect to a supervised training criterion with gradient-based optimization
- Why does unsupervised pre-training help?

- Preconditioning hypothesis
- Standard training
 - for a given layer weights are intialized using random samples from uniform
 [-1/sqrt(k),1/sqrt(k)] where k is the number of connections that a unit receives from a
 previous layer
- Unsupervisd pre-traing
 - acts as a kind of network pre-conditioner
 - putting the parameter values in the appropriate range for further supervised training
- We should get the same result when we
 - Select weight and biases according to the distribution obtained after supervised pretraining

- optimization hypothesis
 - A gradient-based optimization should end in the apparent local minimum of whatever basin of attraction we start from
 - Unsupervised pre-training puts us in regions of the parameter space where basins of attractions run deeper
 - Better optimization
 - \rightarrow Achieving lower training costs

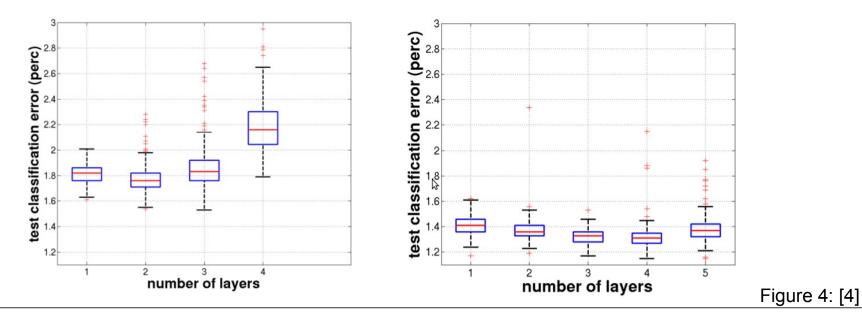
Regularization hypothesis

- Regularization effect is a consequence of the pre-training procedure
 - Establishing an initialization point of the fine-tuning procedure inside a region of the parameter space in which the parameters are henceforth restricted
 - Local basin of attraction of the supervised fine-tuning cost function (Defining a particular initialization point implicitly imposes constraints on the parameters)
 - Introducing bias towards configurations of the parameter space that are useful for unsupervised learning
- Observations we expect in the experiments
 - The two sets of models with and without unsupervised pre-training cover different regions in the parameter space
 - Better generalization/lower error on the test set
 - Not necessarily achieving lower training error (possibly worse)
 - Minimizing variance

- pre-training restricts the parameters to particular regions
 - those that correspond to capturing structure in the input distributon P(X)
- unsupervised training criteria optimized during unsupervised pre-training
 - layers are trained to represent the dominant factors of variation in the data
 - form at each layer a representation of X consisting of statistically reliable features of X
 - Ievaraging knowledge of X
 - if the pre-training strategy is effective, some of these learned features of X are also predictive of Y
 - learning P(X) is helpful for learning P(Y|X)

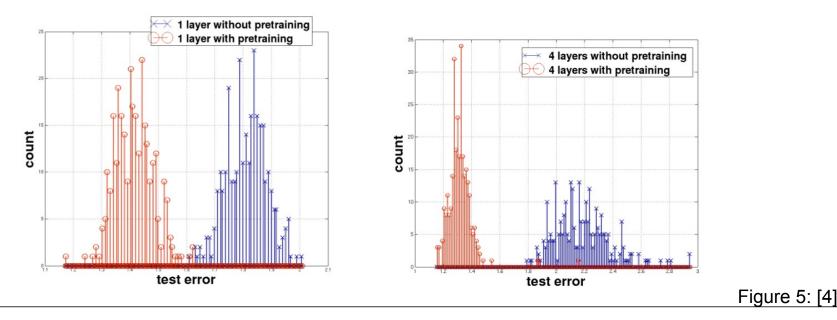
- What we expect in online learning settings
 - the beneficial generalization effects due to pre-training do not appear to diminish as the number of labeled examples grows very large (contrary to classical regularizers)
 - non convexity of the objective function
 - dependency of the stochastic gradient descent method on example ordering
 - \rightarrow starting point of a non-convex optimization matters

Experimental Setup



Datasets

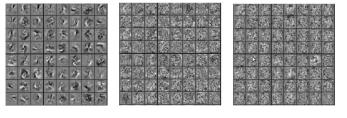
- MNIST: handwritten digits in gray-scale
- InfiniteMNIST: extension of MNIST
- Shapeset: images of triangles, squares
- Models (each with 1-5 hidden layers)
 - standard feed-forward multi-layer neural networks
 - Deep Belief Networks (DBN)
 - Stacked Denoising Auto-Encoders (SDAE)
- Hyperparameters
 - Number of hidden units
 -
- Random initialization
 - for a given layer weights are intialized using random samples from uniform
 [-1/sqrt(k),1/sqrt(k)] where k is the number of connections that a unit receives from a
 previous layer



- Experiments without (left) and with (right) unsupervised pre-training
 - 400 random initilization seeds
 - MNIST dataset
 - Model failed to converge without supervised pre-training and 5 layers
 - Blue box: top and bottom quartiles
 - Red points: outliers

- Unsupervised pre-training
 - Lower test classification error
 - Robustness to random initilization (variance stays same, bad outliners growing slowly)
 - Reduced variance supports regularization hypothesist (not explanable with a pure optimization effect)
- Without unsupervised pre-training
 - Increasing test error and variance when adding more layers
- Increasing depth \rightarrow Increasing probability of finding poor apparent local minima

23.Mai.2013 | Fachbereich Informatik | Knowledge Engineering Group | Prof. Johannes Fürnkranz | 14


Experiments

- Visualization shows to which input the units from the different layers most respond to
 - Model: DBN
 - Dataset: InfiniteMNIST
- Figure 6
 - Left to right: units from 1st, 2nd and 3rd layer
 - Top: after pre-training
 - Bottom: after pre- and supervised training
- Figure 7
 - After training without pre-training

respect to the second se	ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER	68 D. S. A.	10.000	23 2.2452	a set as a	100 PT 100	200	10000-00	100.00		1,200	(Margaret)	1000	Can 712	
· C · 31	17. 1	5	7 1	12	14	20	2	2		1	10	No.	1		
1 . "	1	5	4 :		福田		12	4	(¢	1	3	Ð	ŝ	N	
1 2			•	1	14			9	l		1	3	0	6	
- 11 2 00	1			1	1	-	1	Z	R	6	3	3	6	S	10.00
		1	6	No.		7			2	3	6		15	1	2
1 3 1 23	1 1 6	202	1	10	22	4	6		1	3	1	1	G.		Q
× . to ? 1	N "	1		1	200	1 SE	E.		21	3	金	\$	0		and the second
								Contraction (Section							
	100	1004	10.00	A	1972	10.0	100	104064	COLUMN T	100	1000	1000	100	1453	R
		l c	1	11	1			\mathbb{C}^{2}		2		14		2	
		10	* > 1	0 10	1 1	11 11 11 11 11 11 11 11 11 11 11 11 11		02	の一方	スシン	0000	変換	える		The second se
		1050	* 3 1	200	ノニ新	11		029		シャンス	のいうつ	21 S 14	うちのの	とのの	THE REAL PROPERTY OF LAND
		1050	× ジリ - ジー - リー - リー - リー	とうしょ	ノニ第	11 · 11		0295	0180	シャメシ	× (5,5)	ゆうるい	うちつきら		いたのであるので、「日本ののである」と
	1 - N -	1050	× フリ ジー ジー ・ フ	いっちょ	ノニ第一・			0295%	3100 B	シントン	のいじょう	のいとう	10000000	とうちょう	はいたのであっていたいになった。日本のあっ
			* 7 1 - 1 	2001		パー・チャン		029526	1010 x J	シャンシンのの	0.52 × 30	ひょう ひゃ ゆ	うちののの	いでものです。	はないないで、「日本の人」のである
		050	メ 	~ つらノ 、 う	ノニ第二・一つ	シーチャング		0295261	第十四日のとあ	スナスシンロウ	0.57 × 200	50 30 No 10	うちのののでい	の、そので、「なって	いいのであるというというであるというであるというで

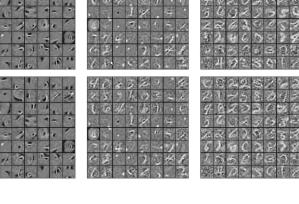

Figure 6: [4]

Figure 7: [4]

782352

- After pre-training supervised fine-tuning does not change the weights significant way
 - Stuck in a certain region of weight space
 - Supervised training has more effect on the deeper layers
 - Features increase in complexity as we add more layers
- Consistent with the predictions made by our hypothesis
 - unsupervised pre-training can "lock" the training in a region of the parameter space that is essentially inaccessible for models that are trained in a purely supervised way
- Displaying only one image for each feature does not show the set of patterns on which the feature is highly active (or highly inactive)
- not useful to show how these strategies are influenced by random initialization

- Visualization of Model Trajectories During Learning
 - Compare function represented by each network
 - Approximated function with a finite number of inputs
 - Concatenate all its outputs as one vector
 - One vector for each model at each training iteration
 - Map these vectors with a dimensionality reduction algorithm to a twodimensional space
- Color from dark blut to cyan indicates a progression in training iterations
- 50 networks with and 50 without pre-training as supervised training proceeds over MNIST

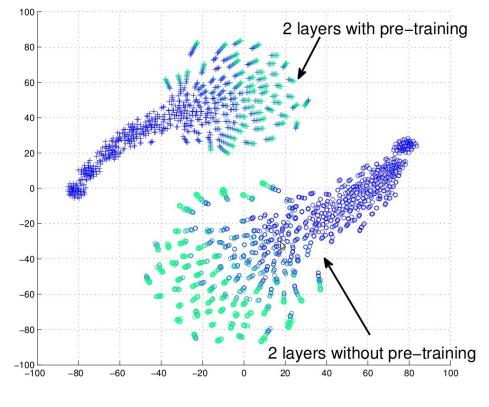


Figure 8: [4]

- Pre-trained and not pretrained models start and stay in different regions of function space
- Trajectories diverge at the end of training
 - Different initialization seed move into a different local minimum
- Figure 9: different dimensionality reduction algorithm (focusing on global structure)

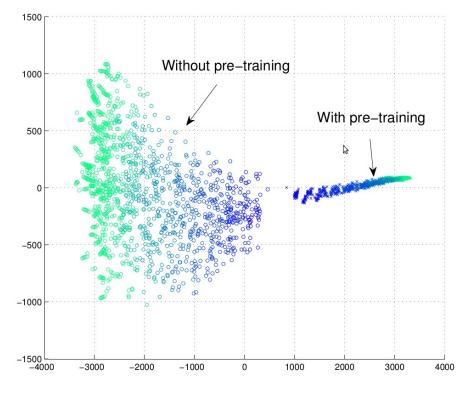
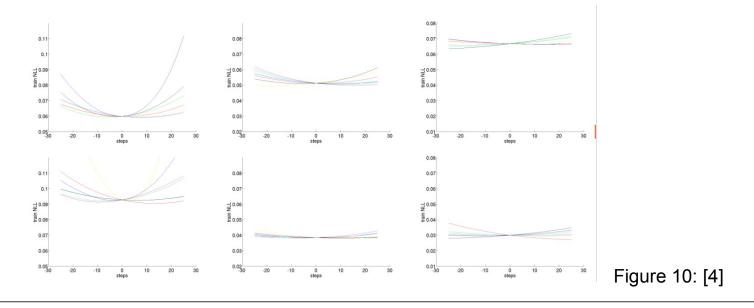
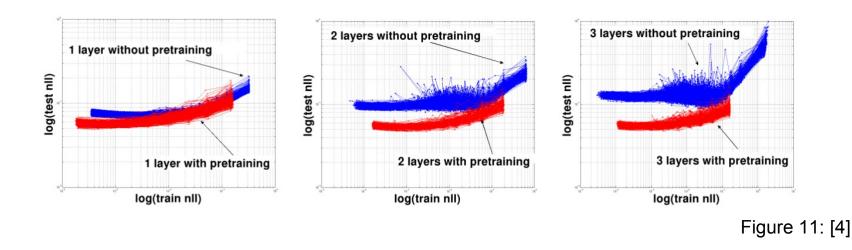



Figure 9: [4]

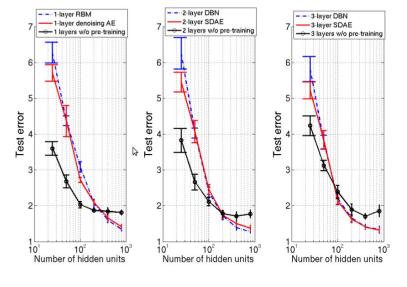
- Analyze models obtained at the end of training
 - Dataset: Shapeset
 - Stepping in parameter space in 7 random gradient directions
 - Top/Bottom: Without/With pre-training
 - Left to Right: 1,2,3 hidden layers
 - error landscape is a bit flatter in the case of unsupervised pre-training/deeper architectures
 - Models seem to be near a local minimum

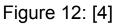

- Pre-conditioning hypothesis
 - The range and marginal distribution from which we draw initial weights is responsible for the better results
- So we should get the same results when we
 - Perform unsupervised pre-training
 - Compute historgrams for each layer's pre-trained weights and biases
 - Select weights and biases at random according to the histogramms

initialization	Uniform	Histogram	Unsup.Pre-tr.
1 layers	1.81 ± 0.07	1.94 ± 0.09	1.41 ± 0.07
2 layers	1.77 ± 0.10	1.69 ± 0.11	1.37 ± 0.09

Table 1: [4]

- Test and training error for 400 models without (blue) and with (red) pretraining on MNIST
 - Since training error tend to decrease, the trajectories run from right to left
 - Only for 1 hidden layer unsupervised pre-training reaches lower training cost (better optimization)
 - at the same training costs, the pre-trained models have lower test costs (better generalization)




- \rightarrow Experiment supports regularization hypothesis
- unsupervised pre-training
 - decreases variance
 - introduces a bias (towards "better" parameter configurations)
 - It seems restricting the possible starting points in parameter space to those that minimize the unsupervised pre-training criterion
 - \rightarrow restricts the set of possible final configurations for parameter values

- Relationship between units per layer and test error
- Regularization hypothesis suggest decreasing effectiveness with decreasing layer size
 - small networks have a limited capacity so further restricting it can harm generalization (extra regularization effect)

(Less probable that useful input transformation created by unsupervised pre-training are included)

- Unsupervised pre-training seems to help deeper/ hurt smaller networks
- generalization error increases with decreasing number of units (increases more with unsupervised pre-training)

23.Mai.2013 | Fachbereich Informatik | Knowledge Engineering Group | Prof. Johannes Fürnkranz | 23

Experiments

- Support for the optimization hypothesis in the literature
 - the reported training and test errors were lower for pre-trained networks
 - test with early stopping
 - early stopping is itself a regularizer and it can influence greatly the training error that is obtained
- Recreate experiment without early stopping
 - Higher training error/ Lower generalization error for pre-trained networks
 - maybe early stopping prevented the networks without pre-training from moving too much towards their apparent local minimum

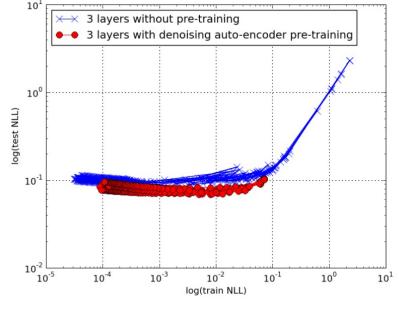
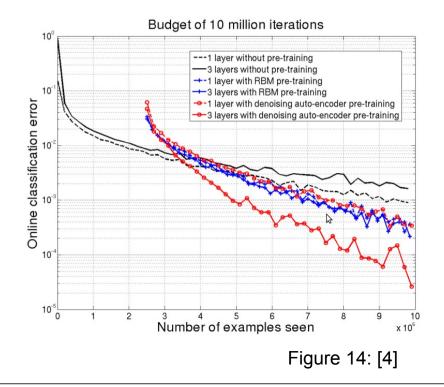



Figure 13: [4]

- Effect of pre-training with very large datasets (InfiniteMNIST)
- Online classification error (computed as an average over a block of last 100.000 errors)
 - Predict class for training example first and use prediction for calculating error
 - Use example for training
- Advantage of pre-training does not vanish
- 3 layer no pre-training generalizes worse than 1 layer no pre-training
- 1-layer networks without pre-training should in principle be able to represent the input distribution as capacity and data grow
 - Number of hidden units chosen individually (so that the error is minimized)
 - Without pre-training, networks are not able to take advantage of the additonal capacity

- Train 1-layer network with and without pre-training with 10 Million examples
- Use the same examples for calculating classification error (in the same order they were used

for training)

- Both models are better at classifying more recently seen examples
- Unsupervised pre-training shows an optimization effect
- empirical distribution (defined by the training set) converges to the true data distribution
 - Better optimization strategies should have significant impact on the generalization

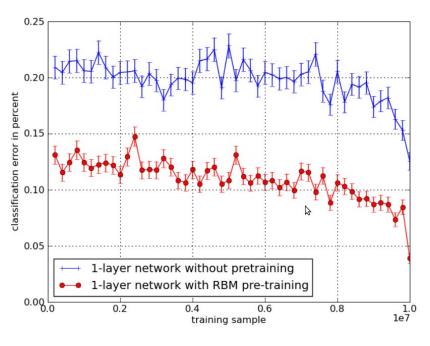


Figure 15: [4]

- Effect of example ordering
 - Datset with 10 million examples
 - Train 10 models with the same dataset, but change the order of the first million examples (keep the others fixed)
 - Measure variance of the ouput
 - Repeat process but now vary the next million examples
 -
- Figure 16
 - Lower variance with supervised pre-training
 - Increasing variance at the end: last examples have a greater influence
 - x = 0.25: start of supervised training for pre-trained networks

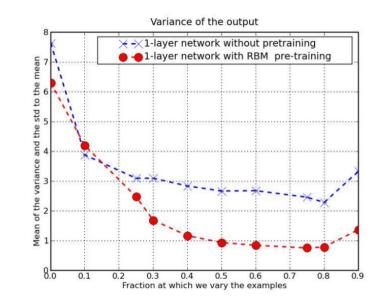
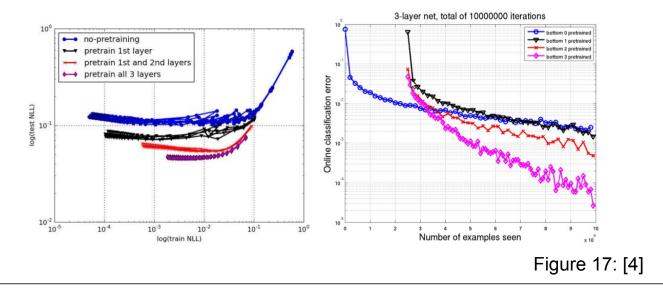



Figure 16: [4]

- Only pre-train the bottom k layers
 - Left: training vs test error on MNIST at each epoch of training
 - Pre-train more layers \rightarrow better generalization, worse training error
 - RIGHT: online classification error on InfiniteMNIST

Conclusion

- Some effects of Unsupervised pre-training are similar to the effects of a good regularizer
- that the effect of unsupervised pre-training does not go away with more training data is not an effect of classical regularizers
- Network with pre-training has lower training error on a very large data set
 - \rightarrow results are still consistent with our hypothesis
- Next steps
 - More Experiments for a better understanding of unsupervised pretraining
 - Use different datasets, architectures, algorithms, ...

• Questions …

References

- [1] TU Darmstadt Lecture: Einführung in die künstliche Intelligenz – WS 13/14 – slides: Neural Networks
- [2] http://plus.maths.org/content/sites/plus.maths.org/files/news/ 2011/convexity/3dgraph.jpg
- [3] Deep Machine Learning—A New Frontier in Artificial Intelligence Research - Itamar Arel, Derek C. Rose, Thomas P. Karnowski - 2010
- [4] Why Does Unsupervised Pre-training Help Deep Learning? -Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio - 2010