Maxout Networks

Hien Quoc Dang

Outline

- Introduction
- Maxout Networks
 - Description
 - A Universal Approximator & Proof
- Experiments with Maxout
- Why does Maxout work?
- Conclusion

Introduction

- Generalization
 - Adding noise
 - Training multiple models and use the average model of those
- Dropout
 - Drop a hidden unit with probability of 0.5
 - Maximal 2^h models (2⁶⁴ = 1.8x10¹⁹)
 - Approximation to geometric mean
 - Fast averaging technique (divide weights by 2)
- Maxout (Goodfellow et al)
 - Facilitate dropout's optimization
 - Improve accuracy of dropout's fast approximate model averaging technique

Traditional activation functions

- Do not use a fixed activation function
- But learn the activation function
- Piecewise Linear Function
 - Can approximate any continuous function (Stone-Weierstrass)
 - Linear almost everywhere, except k-1 points

- Maxout unit
 - k linear models
 - Output is the maximal value from k models from the given input x

Formal:

$$h_i(x) = \max_{j \in [1,k]} z_{ij}$$

Where

 $z_{ij} = x^T W_{\dots ij} + b_{ij}$ $W \in \mathbb{R}^{d \times m \times k} \text{ and } b \in \mathbb{R}^{m \times k}$

- *m:* number of hidden units
- *d*: size of input vector (x)
- k: number of linear models

Maxout : universal approximator

• Maxout networks with two hidden units:

Maxout : universal approximator

(1)

(2)

• Universal approximator theorem:

Any continuous function f can be approximated arbitrarily well on a compact domain $C \subset \mathbb{R}^n$ by a maxout network with two maxout hidden units.

- Proof
 - (Wang, 2004) Any continuous function can be expressed as a difference of 2 convex functions

 $g(x) = h_1(x) - h_2(x)$

 (Stone-Weierstrass) Any continuous function can be approximated by a piecewise linear function

 $|f(x) - g(x)| < \mathcal{E}$

Experiment on benchmark datasets

Name	Classes	Training	Test	Image	Color
MNIST	10	60 000	10 000	28x28	Grayscale
CIFAR-10	10	50 000	10 000	32x32	Color
CIFAR-100	100	50 000	10 000	32x32	Color
SVHN	10	73 257	26 032	32x32	Color

• SVHN dataset also consists of 521,131 additional samples

MNIST

- Permutation invariant MNIST
- Maxout multilayer perceptron (MLP):
 - Two maxout layers followed by a softmax layer
 - Dropout
 - Training/Validation/Test : 50,000/10,000/10,000 samples
- Error rate: 0.94%
- This is the best result without pre-training

MNIST

- Without permutation invariant restriction
- Best model consists of:
 - 3 convolutional maxout hidden layers with spatial max pooling
 - Followed by a softmax layer
- Error rate is 0.45%
- There are better results by augmenting standard dataset

CIFAR-10

- Preprocessing
 - Global constrast normalization
 - ZCA whitening
- Best model consists of
 - 3 convolutional maxout layers
 - A fully connected maxout layer
 - A fully connected softmax layer
- Error rate
 - Without data augmentation
 1
 - With data augmentation

11.68 % 9.35 %

CIFAR-100

- Use the same hyperparameters as in CIFAR-10
- Error rates
 - Without retraining using entire training set: 41.48 %
 - With retraining : 38.57 %

SVHN

- Local contrast normalization preprocessing
- 3 convolutional maxout hidden layers
- 1 maxout layer
- Followed by a softmax layer
- Error rate is 2.47%

Local contrast normalization (Zeiler&Fergus 2013)

Comparison to rectifiers

Comparison of large rectifier networks to maxout 0.160Maxout Rectifier, no channel pooling validation set error for best experiment 0.155Rectifier + channel pooling Large rectifier, no channel pooling 0.1500.1450.140 0.1350.1300.125100 400200300 500600 700800 0 training epochs

What does Maxout work?

- Enhance accuracy of dropout model averaging technique
- Maxout using with dropout improves optimization
- Maxout improves bagging training style on deeper layer

Model Averaging

- Dropout performs model averaging
- Comparing of geometric mean of sample's subsets and full model of dropout with half of the weight W
- Maxout improves accuracy of dropout

Model Averaging

- Kullback-Leibler divergence between geometric mean of sample's subset and dropout averaged model
- The approximation is more accurate for maxout units

Optimization

- Maxout works better than max pooled rectified linear units
 - Small model on large dataset
 - 2 convolutional layers
 - Training with big SVHN dataset (600,000 samples)
 - Error rate
 - Maxout error : 5.1%
 - Rectifier error : 7.3%

Optimization

- Maxout works better than max pooled rectified linear units
 - Comparison on network depth

Saturation

- Maxout:
 - Rate of sign switches is equals
 - >99.99 % filters used
- Rectifier:
 - "death rate" is bigger than "birth rate"
 - 40% filters are unused

Conclusion

- A new activation function which is suited with dropout
- Proof of a universal approximator with 2 maxout hidden units
- Maxout model benefits more from dropout than other activation functions
- Set new state of the art on 4 benchmark datasets

References

- Goodfellow et al., <u>Maxout Networks</u>, Proceedings of International Conference on Machine Learning (ICML), 2013
- Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Improving neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580, 2012.
- Zeiler, Matthew D. and Fergus, Rob. Stochastic pooling for regularization of deep convolutional neural networks. In ICLR 2013

