Maxout Networks @ TechiscH

(/=) UNIVERSITAT
99/~ DARMSTADT

Hien Quoc Dang




TECHNISCHE
UNIVERSITAT
DARMSTADT

S
57

=
@7

=
&7

Outline

= Introduction

= Maxout Networks

= Description
= A Universal Approximator & Proof

= Experiments with Maxout
= Why does Maxout work?

= Conclusion




Introduction

= Generalization

= Adding noise

= Training multiple models and use the average model of those
» Dropout

= Drop a hidden unit with probability of 0.5

= Maximal 2" models (294 = 1.8x101°)

= Approximation to geometric mean

= Fast averaging technique (divide weights by 2)
= Maxout (Goodfellow et al)

= Facilitate dropout’s optimization

= Improve accuracy of dropout’s fast approximate model averaging
technique
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Idea of Maxout

» Traditional activation functions
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Idea of Maxout

= Do not use a fixed activation function

» But learn the activation function v

» Piecewise Linear Function

= Can approximate any continuous
function (Stone-Weierstrass)

» Linear almost everywhere, except
k-1 points

ay ] ag fy

Piecewise linear function




Idea of Maxout

= Maxout unit
= k linear models

= Qutput is the maximal value from k models from the given input x
= Formal:

hi(X) = max; 14 Z

Where Z;=X"W_; + by
W e R>*m*k and b ¢ RMk

m: number of hidden units
d: size of input vector (X)
K: number of linear models




Idea of Maxout

Recitifier Absolute value
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Maxout : universal approximator

= Maxout networks with two hidden units:

10/12/13 | Hien Quoc Dang | Machine Learning Seminar | 8 H@



Maxout : universal approximator

= Universal approximator theorem:

Any continuous function f can be approximated arbitrarily
well on a compact domain C < R" by a maxout network
with two maxout hidden units.

= Proof

= (Wang, 2004) Any continuous function can be expressed as a
difference of 2 convex functions

g(x) = hy(x) — hy(x) (1)

= (Stone-Weierstrass) Any continuous function can be approximated
by a piecewise linear function

[ 1x)—gx) | <& (2)
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Experiment on benchmark
datasets
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Name Classes Training Test Image Color
MNIST 10 60 000 10 000  28x28 Grayscale
CIFAR-10 10 50 000 10 000 32x32 Color
CIFAR-100 100 50 000 10 000  32x32 Color
SVHN 10 73 257 26 032  32x32 Color

= SVHN dataset also consists of 521,131 additional samples




MNIST

» Permutation invariant MNIST

= Maxout multilayer perceptron (MLP):
= Two maxout layers followed by a softmax layer

= Dropout
= Training/Validation/Test : 50,000/10,000/10,000 samples

= Error rate: 0.94%

= This is the best result without pre-training

10/12/13 | Hien Quoc Dang | Machine Learning Seminar | 11 H@



MNIST

= Without permutation invariant restriction

= Best model consists of:
= 3 convolutional maxout hidden layers with spatial max pooling

= Followed by a softmax layer
= Error rate is 0.45%

» There are better results by augmenting standard dataset
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CIFAR-10

» Preprocessing
» Global constrast normalization
= ZCA whitening

= Best model consists of
= 3 convolutional maxout layers
= A fully connected maxout layer
= A fully connected softmax layer

= Error rate
= Without data augmentation 11.68 %
= With data augmentation 9.35 %




CIFAR-100

= Use the same hyperparameters as in CIFAR-10

» Error rates
= Without retraining using entire training set: 41.48 %
= With retraining : 38.57 %
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SVHN

» Local contrast normalization preprocessing
= 3 convolutional maxout hidden layers

= 1 maxout layer

= Followed by a softmax layer

= Error rate is 2.47%
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Local contrast normalization
(Zeiler&Fergus 2013)
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Comparison to rectifiers
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What does Maxout work?

» Enhance accuracy of dropout model averaging technique
= Maxout using with dropout improves optimization

= Maxout improves bagging training style on deeper layer




Model Averaging

. DI"OpOL!t performs model o Model averaging: MNIST classification
averaging | T [ = Samping, maxout|
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Model Averaging

= Kullback-Leibler d_lvergence KL divergence between model averaging strategies
between geometric mean of oo T T =
sample’s subset and dropout .| — T |
averaged model |
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Optimization

= Maxout works better than max pooled rectified linear units

= Small model on large dataset

= 2 convolutional layers

= Training with big SVHN dataset (600,000 samples)
= Error rate

= Maxout error : 5.1%

= Rectifier error : 7.3%
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Optimization

= Maxout works better than max pooled rectified linear units
= Comparison on network depth

MNIST classification error versus network depth
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Saturation

= Maxout: Training set h, activation sign switches/epoch
N . | | | | 1 | I
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Conclusion

= A new activation function which is suited with dropout
= Proof of a universal approximator with 2 maxout hidden units

= Maxout model benefits more from dropout than other activation
functions

= Set new state of the art on 4 benchmark datasets
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