Maxout Networks

Hien Quoc Dang

Outline

- **Introduction**
- **Maxout Networks**
	- **Description**
	- A Universal Approximator & Proof
- Experiments with Maxout
- Why does Maxout work?
- **Conclusion**

Introduction

- Generalization
	- Adding noise
	- Training multiple models and use the average model of those
- Dropout
	- Drop a hidden unit with probability of 0.5
	- Maximal 2^h models (2⁶⁴ = 1.8x10¹⁹)
	- **Approximation to geometric mean**
	- Fast averaging technique (divide weights by 2)
- Maxout *(Goodfellow et al)*
	- Facilitate dropout's optimization
	- Improve accuracy of dropout's fast approximate model averaging technique

Traditional activation functions

- Do not use a fixed activation function
- But learn the activation function
- Piecewise Linear Function
	- Can approximate any continuous function *(Stone-Weierstrass)*
	- **EXA** Linear almost everywhere, except k-1 points

- Maxout unit
	- \blacksquare k linear models
	- Output is the maximal value from k models from the given input x

Formal:

$$
h_i(x) = \max_{j \in [1, k]} z_{ij}
$$

Where $z_{ij} = x^T W_{\dots ij} + b_{ij}$ $W \in R^{d \times m \times k}$ and $b \in R^{m \times k}$

- *m:* number of hidden units
- d: size of input vector (x)
- *k:* number of linear models

Maxout : universal approximator

Maxout networks with two hidden units:

Maxout : universal approximator

Universal approximator theorem:

Any continuous function f can be approximated arbitrarily well on a compact domain C ⊂ ℝ^{*n*} *by a maxout network with two maxout hidden units.*

Proof

 (Wang, 2004) Any continuous function can be expressed as a difference of 2 convex functions

 $g(x) = h_1(x) - h_2$ *(x) (1)*

 (Stone-Weierstrass) Any continuous function can be approximated by a piecewise linear function

 $f(x) - g(x)$ | < \mathcal{E} (2)

Experiment on benchmark datasets

SVHN dataset also consists of 521,131 additional samples

MNIST

- *Permutation invariant* MNIST
- Maxout multilayer perceptron (MLP):
	- Two *maxout layers* followed by a *softmax layer*
	- **Dropout**
	- Training/Validation/Test : 50,000/10,000/10,000 samples
- \blacksquare Error rate: 0.94%
- **This is the best result without pre-training**

MNIST

- Without permutation invariant restriction
- Best model consists of:
	- 3 convolutional maxout hidden layers with spatial max pooling
	- Followed by a softmax layer
- Error rate is 0.45%
- There are better results by augmenting standard dataset

CIFAR-10

- **Preprocessing**
	- Global constrast normalization
	- **ZCA whitening**
- Best model consists of
	- **3** convolutional maxout layers
	- A fully connected maxout layer
	- A fully connected softmax layer
- **Error rate**
	- Without data augmentation 11.68 %
	- With data augmentation 9.35 %

CIFAR-100

- **Use the same hyperparameters as in CIFAR-10**
- **Error rates**
	- Without retraining using entire training set: 41.48 %
	- **With retraining the set of the COV COV** in the set of the S8.57 %

SVHN

- **ELocal contrast normalization preprocessing**
- **3 convolutional maxout hidden layers**
- **1** maxout layer
- Followed by a softmax layer
- **Error rate is 2.47%**

Local contrast normalization (Zeiler&Fergus 2013)

Comparison to rectifiers

Comparison of large rectifier networks to maxout 0.160 Maxout Rectifier, no channel pooling validation set error for best experiment 0.155 Rectifier + channel pooling Large rectifier, no channel pooling 0.150 0.145 0.140 0.135 0.130 0.125 100 400 200 300 500 600 700 800 $\overline{0}$ training epochs

What does Maxout work?

- Enhance accuracy of dropout model averaging technique
- Maxout using with dropout improves optimization
- Maxout improves bagging training style on deeper layer

Model Averaging

- Dropout performs model averaging
- Comparing of geometric mean of sample's subsets and full model of dropout with half of the weight W
- **Maxout improves accuracy** of dropout

Model Averaging

- **Kullback-Leibler divergence** between geometric mean of sample's subset and dropout averaged model
- **The approximation is more** accurate for maxout units

Optimization

- Maxout works better than max pooled rectified linear units
	- Small model on large dataset
		- 2 convolutional layers
		- Training with big SVHN dataset (600,000 samples)
	- **Error rate**
		- Maxout error : 5.1%
		- Rectifier error : 7.3%

Optimization

- Maxout works better than max pooled rectified linear units
	- Comparison on network depth

Saturation

- Maxout:
	- Rate of sign switches is equals
	- \sim >99.99 % filters used
- **Rectifier:**
	- *"death rate"* is bigger than *"birth rate"*
	- 40% filters are unused

Training set h_0 activation sign switches/epoch

Conclusion

- A new activation function which is suited with dropout
- Proof of a universal approximator with 2 maxout hidden units
- Maxout model benefits more from dropout than other activation functions
- Set new state of the art on 4 benchmark datasets

References

- Goodfellow et al., [Maxout](http://arxiv.org/pdf/1302.4389) [Networks](http://arxiv.org/pdf/1302.4389), Proceedings of International Conference on Machine Learning (ICML), 2013
- Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Improving neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580, 2012.
- Zeiler, Matthew D. and Fergus, Rob. Stochastic pooling for regularization of deep convolutional neural networks. In ICLR 2013

