
Maxout Networks

Hien Quoc Dang



Outline

 Introduction

Maxout Networks

 Description

 A Universal Approximator & Proof

 Experiments with Maxout

Why does Maxout work?

 Conclusion

10/12/13 | Hien Quoc Dang | Machine Learning Seminar | 2



Introduction

 Generalization

 Adding noise

 Training multiple models and use the average model of those

 Dropout

 Drop a hidden unit with probability of 0.5

 Maximal 2h models (264 = 1.8x1019)

 Approximation to geometric mean

 Fast averaging technique (divide weights by 2)

Maxout (Goodfellow et al)

 Facilitate dropout’s optimization

 Improve accuracy of dropout’s fast approximate model averaging 
technique
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 Traditional activation functions

Idea of Maxout

Threshold function Sigmoid function
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Idea of Maxout

 Do not use a fixed activation function

 But learn the activation function

 Piecewise Linear Function

 Can approximate any continuous 
function (Stone-Weierstrass)

 Linear almost everywhere, except
k-1 points

Piecewise linear function

10/12/13 | Hien Quoc Dang | Machine Learning Seminar | 5



Idea of Maxout

Maxout unit

 k linear models 

 Output is the maximal value from k models from the  given input x

 Formal:

hi(x) = maxjϵ[1,k] zij

Where zij = xT W…ij + bij

W ϵ Rd×m×k and b ϵ Rm×k

m: number of hidden units

d: size of input vector (x)

k: number of linear models
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Idea of Maxout

k=2 k=2 k=5
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Maxout : universal approximator

Maxout networks with two hidden units:



 Universal approximator theorem:

 Proof

 (Wang, 2004) Any continuous function can be expressed as a 
difference of 2 convex functions

 (Stone-Weierstrass) Any continuous function can be approximated 
by a piecewise linear function
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Maxout : universal approximator

Any continuous function f can be approximated arbitrarily 

well on a compact domain C ⊂ ℝ n by a maxout network 

with two maxout hidden units.

g(x) = h1(x) – h2(x) (1)

| f(x) – g(x) |  < ℇ (2)



 SVHN dataset also consists of 521,131 additional samples
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Experiment on benchmark 
datasets

Name Classes Training Test Image Color

MNIST 10 60 000 10 000 28x28 Grayscale

CIFAR-10 10 50 000 10 000 32x32 Color

CIFAR-100 100 50 000 10 000 32x32 Color

SVHN 10 73 257 26 032 32x32 Color



 Permutation invariant MNIST

Maxout multilayer perceptron (MLP):

 Two maxout layers followed by a softmax layer

 Dropout

 Training/Validation/Test : 50,000/10,000/10,000 samples

 Error rate: 0.94%

 This is the best result without pre-training
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MNIST



Without permutation invariant restriction

 Best model consists of:

 3 convolutional maxout hidden layers with spatial max pooling

 Followed by a softmax layer

 Error rate is 0.45%

 There are better results by augmenting standard dataset
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MNIST



 Preprocessing

 Global constrast normalization

 ZCA whitening

 Best model consists of

 3 convolutional maxout layers

 A fully connected maxout layer

 A fully connected softmax layer

 Error rate

 Without data augmentation 11.68 %

 With data augmentation 9.35 %
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CIFAR-10



 Use the same hyperparameters as in CIFAR-10

 Error rates

 Without retraining using entire training set: 41.48 %

 With retraining : 38.57 %
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CIFAR-100
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SVHN

 Local contrast normalization preprocessing

 3 convolutional maxout hidden layers

 1 maxout layer

 Followed by a softmax layer

 Error rate is 2.47%

Local contrast normalization 

(Zeiler&Fergus 2013)
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Comparison to rectifiers



 Enhance accuracy of dropout model averaging technique

Maxout using with dropout improves optimization

Maxout improves bagging training style on deeper layer 
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What does Maxout work?



 Dropout  performs model
averaging

 Comparing of geometric 
mean of sample’s subsets
and full model of dropout 
with half of the weight W

Maxout improves accuracy
of dropout
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Model Averaging



 Kullback-Leibler divergence
between geometric mean of
sample’s subset and dropout
averaged model

 The approximation is more
accurate for maxout units
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Model Averaging



Maxout works better than max pooled rectified linear units

 Small model on large dataset

 2 convolutional layers

 Training with big SVHN dataset (600,000 samples)

 Error rate

 Maxout error : 5.1%

 Rectifier error : 7.3%
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Optimization



Maxout works better than max pooled rectified linear units

 Comparison on network depth
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Optimization



Maxout:

 Rate of sign switches
is equals

 >99.99 % filters used

 Rectifier:

 “death rate” is bigger
than “birth rate”

 40% filters are unused
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Saturation



 A new activation function which is suited with dropout

 Proof of a universal approximator with 2 maxout hidden units

Maxout model benefits more from dropout than other activation 
functions

 Set new state of the art on 4 benchmark datasets
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Conclusion
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