Deep Boltzmann Machines

Machine Learning Seminar

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation

- Unsupervised Pretraining helps
- Structure of data not to be found in its labels
- but in the data itself!

Outline

- 1. General Boltzmann Machines
- 2. Restricted Boltzmann Machines
- 3. Deep Boltzmann Machines
- 4. Neural Networks
- 5. Experimental Results
- 6. Conclusions

Definition

$$\mathbf{v} \in \{0, 1\}^{P}$$
$$\mathbf{h} \in \{0, 1\}^{P}$$
$$[\mathbf{v}, \mathbf{h}; \theta] = -\frac{1}{2}\mathbf{v}^{T}\mathbf{L}\mathbf{v} - \frac{1}{2}\mathbf{h}^{T}\mathbf{J}\mathbf{h} - \mathbf{v}^{T}\mathbf{W}\mathbf{h}$$
$$p(\mathbf{v}; \theta) = \frac{1}{Z(\theta)}\sum_{\mathbf{h}} \exp(-E(\mathbf{v}, \mathbf{h}; \theta))$$

 $\theta = \{\mathbf{W}, \mathbf{L}, \mathbf{J}\}$

E(**v**, **h**

 (\mathbf{n}, \mathbf{n})

Gradients

Maximum Likelihood leads to the following gradients:

$$\Delta \mathbf{W} = \alpha (E_{P_{data}} [\mathbf{v} \mathbf{h}^{T}] - E_{P_{model}} [\mathbf{v} \mathbf{h}^{T}])$$
$$\Delta \mathbf{L} = \alpha (E_{P_{data}} [\mathbf{v} \mathbf{v}^{T}] - E_{P_{model}} [\mathbf{v} \mathbf{v}^{T}])$$
$$\Delta \mathbf{J} = \alpha (E_{P_{data}} [\mathbf{h} \mathbf{h}^{T}] - E_{P_{model}} [\mathbf{h} \mathbf{h}^{T}])$$

Gradients

Maximum Likelihood leads to the following gradients:

$$\Delta \mathbf{W} = \alpha (E_{P_{data}} [\mathbf{v} \mathbf{h}^{T}] - E_{P_{model}} [\mathbf{v} \mathbf{h}^{T}])$$
$$\Delta \mathbf{L} = \alpha (E_{P_{data}} [\mathbf{v} \mathbf{v}^{T}] - E_{P_{model}} [\mathbf{v} \mathbf{v}^{T}])$$
$$\Delta \mathbf{J} = \alpha (E_{P_{data}} [\mathbf{h} \mathbf{h}^{T}] - E_{P_{model}} [\mathbf{h} \mathbf{h}^{T}])$$

- *E*_{*Pmodel*}[.] is the expectation over the distribution of the current model
 - approximated with samples

Gradients

 Maximum Likelihood leads to the following gradients:

$$\Delta \mathbf{W} = \alpha (E_{P_{data}}[\mathbf{vh}^{T}] - E_{P_{model}}[\mathbf{vh}^{T}])$$
$$\Delta \mathbf{L} = \alpha (E_{P_{data}}[\mathbf{vv}^{T}] - E_{P_{model}}[\mathbf{vv}^{T}])$$
$$\Delta \mathbf{J} = \alpha (E_{P_{data}}[\mathbf{hh}^{T}] - E_{P_{model}}[\mathbf{hh}^{T}])$$

- *E*_{*P*model}[.] is the expectation over the distribution of the current model
 - approximated with samples
- *E*<sub>*P*_{data}[.] is the expectation over the completed data distribution
 </sub>
 - approximated e.g. with mean-field method

- cannot be trained directly
 - has to be approximated
 - even inference is hard
 - e.g.: Gibbs sampling requires each node to be sampled independently
 - this takes a long time and is also an approximation

Restricted Boltzmann Machines

- most problems can be solved by setting L = J = 0.
- observing one layer makes the nodes of the other independent from each other.

Deep Boltzmann Machines

- Multiple RBMs stacked upon each other
- each layer captures complicated, higher-order correlations
- promising for object and speech recognition
- deals more robustly with ambigous inputs than e.g. deep belief networks
- may be trained the same way as a BM
 - is very slow
 - may get stuck in bad local optimum

Deep Boltzmann Machines

Two-Layer example

Model:

$$E(\mathbf{v}, \mathbf{h}^{1}, \mathbf{h}^{2}; \theta) = -\mathbf{v}^{T} \mathbf{W}^{1} \mathbf{h}^{1} - \mathbf{h}^{1T} \mathbf{W}^{2} \mathbf{h}^{2}$$
$$\rho(\mathbf{v}; \theta) = \frac{1}{Z(\theta)} \sum_{\mathbf{h}^{1}, \mathbf{h}^{2}} \exp(-E(\mathbf{v}, \mathbf{h}^{1}, \mathbf{h}^{2}; \theta))$$

Conditional Probabilities:

$$p(h_j^1 | \mathbf{v}, \mathbf{h}^2) = \sigma(\sum_i W_{ij}^1 v_i + \sum_m W_{jm}^2 h_j^2)$$

$$p(h_m^2 | \mathbf{h}^1) = \sigma(\sum_j W_{im}^2 h_i^1)$$

$$p(v_i | \mathbf{h}^1) = \sigma(\sum_j W_{ij}^1 h_j^1)$$

Deep Boltzmann Machines Layer by Layer Pretraining

- Train each W_i individually by using the output of the lower RBM as input for the upper.
- The last RBM may be trained as it is.

Deep Boltzmann Machines Deep Belief Networks

- Train each W_i individually by using the output of the lower RBM as input for the upper.
- The last RBM may be trained as it is.
- ► This results in a Deep Belief Network $p(\mathbf{v}; \theta) = \sum_{\mathbf{h}^1} p(\mathbf{h}^1; \mathbf{W}^1) p(\mathbf{v} | \mathbf{h}^1; \mathbf{W}^1)$
- ► second RBM replaces $p(\mathbf{h}^1; \mathbf{W}^1)$ by $p(\mathbf{h}^1; \mathbf{W}^2) = \sum_{\mathbf{h}^2} p(\mathbf{h}^1, \mathbf{h}^2; \mathbf{W}^2)$
- if initialized correctly p(h¹; W²) is a better model

Deep Boltzmann Machines Laver by Laver Pretraining

- modify RBMs s.th. learned weights are half
 - conditionals for the bottom RBM: $p(h_j^1 = 1 | \mathbf{v}) = \sigma(\sum_i W_{ij}^1 v_i + \sum_i W_{ij}^1 v_i)$ $p(v_i = 1 | \mathbf{h}^1) = \sigma(\sum_j W_{ij}^1 h_j^1)$
- ► conditionals for the top RBM: $p(h_j^1 = 1 | \mathbf{h}^2) = \sigma(\sum_m W_{jm}^2 h_m^2 + \sum_m W_{jm}^2 h_m^2)$ $p(h_m^2 = 1 | \mathbf{h}^1) = \sigma(\sum_j W_{jm}^2 h_j^1)$
- ► after combining the distribution over \mathbf{h}^1 is: $p(h_j^1 = 1 | \mathbf{v}, \mathbf{h}^2) = \sigma(\sum_i W_{ij}^1 v_i + \sum_m W_{jm}^2 h_m^2)$
 - good initialization for mean-field method

Neural Networks

- DBM can be used to initialize a neural network
 - Weights of DBM become the weights of neural network
 - $q(\mathbf{h}|\mathbf{v})$ is the mean-field distribution of the posterior
 - neural network may be trained with backpropagation
- System may decide which of the input layers to use
 - experiments show the use of both

Experimental Results MNIST

5	1	8	0	2	7	6
3	3	9	6	١	9	8
0	7	Į	ረ	7	7	1
3	/	7	/	7	¥	9
6	3	8	6	5	5	5
6	3	2	8	2	3	0
ک	7	8	Ч	l	1	0

Training Samples

2-layer DBM						
1	6	4	1	4	1	0
7	2	8	8	4	9	4
8	3	7	4	0	4	4
3	7	2	1	7	Ŧ	7
7	4	4	4	1	0	9
3	Ò	5	9	5	2	7
5	1	9	8	l	a	6

3-layer DBM

- handwritten digits (28x28 Pixels)
- 60.000 Trainings images
- 10.000 Test images
- two DBMs were trained
 - 2-layer (500 and 1000 hidden units)
 - 3-layer (500, 500 and 1000 hidden units)
- error rates for discriminative models:
 - 2-layer DBN (baseline): 1,2%
 - 2-layer DBM: 0,95%
 - 3-layer DBM: 1,01%

Experimental Results NORB

Training Samples

		<u> </u>		. .	
×	R.	80	U	200	K
d.	2	\$	营	事	t
U	-	9	8	5	the second
X	No	1	X	252	
Ś	*	堂	1	T	2
500	6	乱	X	*	介

Generated Samples

- 24.300 stereo images (96x96 pixels)
 - 50 different 3D toy objects
 - 5 generic classes
 - 4.300 were used as test set
 - larger pixels around edges for dimensionality reduction
- trained DBMs:
 - preprocessing layer with 4000 units
 - two further layers with 4000 units
 - completely unsupervised
 - second DBM trained with additional 1.16M training instances
- error rates:
 - SVM (baseline): 11,6%
 - DBM: 10,8%
 - DBM (with additional training data): 7.1%

3. December 2013 | Matthias Bender | Machine Learning Seminar | 15

Conclusions

- DBMs find good features to model the data
- DBMs can be used for unsupervised learning
- Unsupervised Learning helps generalization
- labels do not carry much information

Sources

- R. Salakhutdinov, G. Hinton. 2009 Deep Boltzmann Machines
- G. Hinton, S. Osindero, and Y. W. Teh. 2006 A fast learning Algorithm for deep belief nets

