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Motivation
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Unsupervised Pretraining helps
Structure of data to be found in its labels
but in the data itself!
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General Boltzmann Machines
Restricted Boltzmann Machines
Deep Boltzmann Machines
Neural Networks

Experimental Results
Conclusions

3. December 2013 | Matthias Bender | Machine Learning Seminar | 3 @



Boltzmann Machines
Definition
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1
E(v,h;0) = —%VTLV — EhT.Jh —v'Wh

p(v;0) = % zh: exp(—E(v, h; 0))

6 ={W,L,J}




Boltzmann Machines
Gradients
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Maximum Likelihood leads to the following
gradients:

AW = o(Ep,, [vh"] — Ep, ., [vh])

AL = O[(EPdata[va] - EPmode/[va])

AJ = a(Ep,, [hh"] — Ep, [hh'])
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Boltzmann Machines
Gradients
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Maximum Likelihood leads to the following
gradients:

AW = o(Ep,, [vh"] — Ep, ., [vh])

G

‘ ’®*® AL = a(Epyy,[WT] — Ep, [V ])
\’4&'{‘)/ AJ = o(Ep,,[hh"] — Ep,, [hhT])

Ep,..[.] is the expectation over the
distribution of the current model

approximated with samples
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Boltzmann Machines
Gradients
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Maximum Likelihood leads to the following
gradients:

S
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o0
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AW = o(Ep,, [vh"] — Ep, ., [vh])

AL = O[(EPdata[va] - EPmode/[va])

AJ = a(Ep,, [hh"] — Ep, [hh'])

Ep,..[.] is the expectation over the
distribution of the current model

approximated with samples
Ep,.[.] is the expectation over the completed
data distribution

approximated e.g. with mean-field method

20
X >
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Boltzmann Machines
Difficulties
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cannot be trained directly
has to be approximated
even inference is hard

e.g.: Gibbs sampling requires each node to
be sampled independently

this takes a long time and is also an
approximation
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Restricted Boltzmann Machines
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most problems can be solved by setting
L=J=0.

observing one layer makes the nodes of the
other independent from each other.
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Deep Boltzmann Machines TECHNISCHE
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Multiple RBMs stacked upon each other
each layer captures complicated,
higher-order correlations

promising for object and speech recognition
deals more robustly with ambigous inputs
than e.g. deep belief networks

may be trained the same way as a BM

is very slow
may get stuck in bad local optimum

3. December 2013 | Matthias Bender | Machine Learning Seminar | 8 @



Deep Boltzmann Machines
Two-Layer example
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Model:
E(v,h",h%0) = —v'W'h' — h'"W?h?

1
PO = Zg) ,12,,: exp(—E(v.h', h*;0))

Conditional Probabilities:

PRIV W) = 0 (Y Wivi+ D | W)
i m

p(elh') = o> W2 h!)
j

pvilh') =o(>_ W;h))
J
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Deep Boltzmann Machines
Layer by Layer Pretraining
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Train each W; individually by using the output
of the lower RBM as input for the upper.

The last RBM may be trained as it is.
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Deep Boltzmann Machines
Deep Belief Networks
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Train each W; individually by using the output
of the lower RBM as input for the upper.

The last RBM may be trained as it is.

D%
757

’::’)é‘:; W2 This results in a Deep Belief Network
P\ PV;0) = Yy p(h'; W)p(v]hT; W)
second RBM replaces p(h'; W') by
hl< ‘. ) p(h'; W2) = 3", p(h', h?; W?)

if initialized correctly p(h'; W?) is a better
W1 model
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Deep Boltzmann Machines
Layer by Layer Pretraining
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W2 W2
hl
hl
W1 W1
\Y \

modify RBMs s.th. learned weights are half
conditionals for the bottom RBM:

p(hi =1lv) = a(3, Wjvi+ 32, Wjv,
v,_1|h1 )= oY W,}h]

conditionals for the top RBM:

p(h! = 11h?) = o(3,,, WE IR, + 32, W2 H2)

P, = 1) = (>, Wi k)

after combining the dlstrlbut|on over h' is:

p(hl =1|v,h?) = o (32, Wjivi+ 35, Wi h7)

good initialization for mean-ﬂeld method
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Neural Networks
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outputo
QOO0

W2

W2 w1

DBM can be used to initialize a neural network

Weights of DBM become the weights of neural
network

g(h|v) is the mean-field distribution of the posterior
neural network may be trained with backpropagation

System may decide which of the input layers to use
experiments show the use of both

q(h2|v)
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Experimental Results
MNIST
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handwritten digits (28x28 Pixels)
60.000 Trainings images
10.000 Test images

two DBMs were trained
2-layer (500 and 1000 hidden units)
3-layer (500, 500 and 1000 hidden units)
error rates for discriminative models:
2-layer DBN (baseline): 1,2%
2-layer DBM: 0,95%
3-layer DBM: 1,01%

Training Samples

3-layer DBM
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Experimental Results
NORB
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24.300 stereo images (96x96 pixels)

50 different 3D toy objects

5 generic classes

4.300 were used as test set

larger pixels around edges for dimensionality reduction
trained DBMs:

preprocessing layer with 4000 units

Training Samples

X\ &\ = F two further layers with 4000 units
A € || = completely unsupervised
Sl (N8N T second DBM trained with additional 1.16M training
# ] 1% 2| o instances
&~ ST R error rates:
; SVM (baseline): 11,6%
5 | A |5
s L1 L DBM: 10,8%
Generated Samples DBM (with additional training data): 7.1%
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Conclusions TECHNISCHE
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DBMs find good features to model the data
DBMs can be used for unsupervised learning
Unsupervised Learning helps generalization
labels do not carry much information
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